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Montpellier, Montpellier, France, 2Centro de Genómica, Instituto Valenciano de Investigaciones
Agrarias (IVIA), Valencia, Spain
The function of abscission zones (AZs) determines the timing of fleshy fruit

abscission, with important consequences not only for the optimal fruit harvest,

but also on the overall final fruit quality. In this context, chemical treatments are

commonly used at different stages of fruit development to control fruit

abscission, which can also have positive or negative effects on fruit quality. In

the current review, we examine commonly used chemicals that affect the

metabolic activity in the AZs of fleshy fruit, in addition to their effects on fruit

quality characteristics. The main hormone metabolism and signaling in the AZ

include that of ethylene, auxin, abscisic acid and jasmonates, and the molecular

components that are involved are covered and discussed, in addition to how

these hormones work together to regulate AZ activity and hence, affect fruit

quality. We focus on studies that have provided new insight into possible protein

complexes that function in the AZ, including multiple MADS-box transcription

factors, with potential overlapping regulatory roles which exist between AZ

development, ethylene production, AZ activation, fruit ripening and overall fruit

quality. The view of the AZ as a cross roads where multiple pathways and signals

are integrated is discussed.
KEYWORDS

abscission, ethylene, jasmonates, abscisic acid, fleshy fruit, ripening, reactive oxygen
species (ROS), auxins
1 Introduction

Fresh fruit quality is very difficult to define because it must include the characteristics

and properties that a fruit must attain to satisfy the requirements and needs of all the

components of the production chain. Given the different and sometimes contrasted

interests of producers, packers, distributors, sellers and consumers, it is comprehensible

that the definition of fruit quality depends on the perspective. If we consider the

expectations of the fruit consumers (i.e. the final component of the production chain)
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each variety has a characteristic fruit size and shape, and the

changes that may occur within them, for environmental reasons

or due to the cultural practices applied, may depreciate the market

crop value and modify the consumers’ purchase decision. Other

quality aspects of fruit include the presence of fruit surface defects,

the coloration of the fruit peel and flesh, the firmness of the fruit,

and the degree of maturity, which is determined mainly by the

acidity and sweetness of the fleshy fruit tissues. These particular

fresh fruit quality attributes are affected by both the activity of

different physiological processes and the production practices

carried out before harvest, in addition to the postharvest practices

employed to extend shelf-life. In this context, the activity of the fruit

abscission zone (AZ) plays a fundamental role to maintain and even

enhance some of the fresh fruit quality attributes outlined

above (Figure 1).

Abscission zones (AZs) are specialized tissues where the

metabolic and structural modifications necessary to carry out

organ detachment (abscission) from the main plant body are

executed, and have essential functions in the detachment of

flowers, developing and ripening fruit, all of which affect the

overall harvest quantity and quality of fleshy fruits (for recent

reviews, see Patharkar and Walker, 2018; Meir et al., 2019;

Tranbarger and Tadeo, 2020). Cell separation in the AZs of

flowers and fruits is triggered by both developmental and

environmental cues. Many crop species flower profusely, and

both unpollinated flowers and flowers that do not hold

preferential positions in the canopy or inflorescence, naturally

detach once the first fruits are initially set and begin to develop

(Stephenson, 1981). In addition to flower drop, a considerable

number of young developing fruits detach during the so-called

“physiological fruit drop” (PFD). This self-regulatory mechanism
Frontiers in Plant Science 02
for natural fruit abscission effectively adjusts fruit load to the plant’s

nutritional status (Addicott, 1982). The outcome of the fruit set

period, which determines the number of developing fruits per plant,

has a significant impact on final fruit size. Thus, the higher the

intensity of fruit abscission during the fruit set period, the larger the

fruit size will be at full maturity. Likewise, fruits that continue to

develop when fruit set is poor are much larger than the standard size

for the variety. However, each variety is marketed with a standard

and distinctive size so that when fruit set is poor, fruits show non-

standard oversize. In addition to quality loss due to fruit oversizing,

other fruit characteristics are usually also affected. In citrus, for

example, the surface of oversized fruits is very rough, the peel is

thickest, and the final color is poor, and hence the external

appearance is less appealing to consumers. Not all fruit crop

species produce fruit of marketable size through self-regulating

mechanisms, and therefore fruit thinning practices are required to

achieve optimal fruit size (Dennis, 2000). Manual thinning (i.e. the

removal of fruit by hand) is one of the production practices used to

reduce the fruit load of fruit trees. Another possibility is the use of

chemical thinning agents such as plant growth regulators (Table 1)

that cause fruit loosening by activating the fruit AZs (Bangerth,

2000). Chemical thinning has been and continues to be used

successfully with several fruit crop species to increase fruit quality

and crop value (Pescie and Strik, 2004; Han et al., 2019; Bound,

2021; Costa and Botton, 2022; Continella et al., 2022; Torres et al.,

2024). Metamitron (3-methyl-4-amino-6-phenyl-1,2,4-triazin-5-

one) is a systemic herbicide that is taken up by leaves and

transiently inhibits photosystem II electron transport when it

reaches chloroplasts (McArtney et al., 2012). Since the beginning

of the 2000s, metamitron formulations have been marketed for use

as a chemical fruit-thinning agent by limiting carbohydrate supply,
FIGURE 1

Plant hormones and abscission control agents that affect abscission zone (AZ) activity and fruit quality characteristics. Fleshy fruit can undergo
abscission at different stages of fruit development, and it is still unclear whether the underlying mechanisms are the same.
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TABLE 1 Abscission control agents and their effect on fruit abscission and ripening.

Agent Pathway targeted Abscission effect Ripening effect References1

2-Chloroethylphosphonic acid
(ethephon)

Ethylene POSITIVE POSITIVE Edgerton and Greenhalgh (1969);
Alferez et al. (2006); Cao et al.

(2024); Hale et al. (1970); Looney
(1972); Rugini et al. (1982)

1-Aminocyclopropane-1-carboxylic acid
(ACC)

Ethylene POSITIVE POSITIVE Uzquiza et al. (2014); Merelo et al.
(2017); Torres et al. (2024); Yang
et al. (2017); Waseem et al. (2019);

Griesser et al. (2020)

Aminoethoxyvinylglycine
(AVG)

Ethylene
biosynthesis

NEGATIVE NEGATIVE Gomez-Cadenas et al. (2000);
Yuan and Carbaugh (2007); Dal
Cin et al. (2008); Silverman et al.
(2004); Kim et al. (2024); Nguyen

et al. (2024)

1-Methylcyclopropene
(1-MCP)

Ethylene
signaling

NEGATIVE NEGATIVE Greene and Schupp (2004); Pozo
et al. (2004); Yuan and Carbaugh
(2007); Peng and Fu (2022); Cao
et al. (2024); Kim et al. (2024)

5-Chloro-3-methyl-4-nitro-1H-pyrazole
(CMNP)

Ethylene POSITIVE POSITIVE Hartmond et al. (2000); Alferez
et al. (2006); Alferez et al. (2013);

Sharma et al. (2017)

Methyl jasmonate
(MeJA)

Jasmonate POSITIVE POSITIVE/
NEGATIVE2

Uzquiza et al. (2013); Uzquiza
et al. (2014); Fidelibus et al.

(2022); Zapata et al. (2014); Lv
et al. (2018); Wu et al. (2022)

Coronatine Jasmonate POSITIVE ? Burns et al. (2003); Pozo
et al. (2004)

2,4-Dichlorophenoxyacetic acid
(2,4-D)

Auxin NEGATIVE NEGATIVE Agustı ́ et al. (2006); Peng et al.
(2013); Dongariyal et al. (2024);

Frenkel and Dyck (1973);
Ferguson et al. (1984); Alhassan

et al. (2022)

Naphthaleneacetic acid
(NAA)

Auxin POSITIVE/
NEGATIVE2

POSITIVE/
NEGATIVE2

Anthony and Coggins (2001); Li
and Yuan (2008); Zhu et al.
(2011); Masia et al. (1998);
Clayton-Cuch et al. (2021);

Böttcher et al. (2022)

Other synthetic auxins3 Auxin NEGATIVE NEGATIVE Sarooshi (1982); Alhassan et al.
(2020); Alhassan et al. (2022);

Mostert et al. (2024)

Nordihydroguaiaretic acid
(NDGA)

ABA
biosynthesis

NEGATIVE NEGATIVE Zhu et al. (2022); Zhang et al.
(2009b); Wang et al. (2016);
Tomiyama et al. (2021)

Fluridone ABA
biosynthesis

NEGATIVE NEGATIVE Zacarias et al. (1995); Zhang et al.
(2009a); Zhang et al. (2009b)

Paclobutrazol
(PP333)

Gibberellin
biosynthesis

POSITIVE POSITIVE Mauk et al. (1986); Richardson
et al. (1986); Zacarias et al. (1995);

Chen et al. (2020); Liu et al.
(2023); Wu et al. (2023)

Gibberellic acid
(GA3)

Gibberellin NEGATIVE NEGATIVE Sarooshi (1982); Stutte and Gage
(1990); Zacarias et al. (1995);
Dagar et al. (2012); Kuhn et al.

(2020); Luo et al. (2024)
F
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1Only the selected publications reporting the role of these chemicals in abscission and ripening are given.
2The effect of Methyl jasmonate (MeJA) and Naphthaleneacetic acid (NAA) on abscission and ripening is dose-dependent.
33,5,6-Trichloro-2-pyridyloxyacetic acid (3,5,6-TPA), 2-(4-Amino-3, 5-dichloro-6-fluoropyridin-2yl) oxyacetic acid (Fluroxypyr), S-Ethyl-4-chloro-O-tolylooxythioacetate (MCPA).
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which triggers abscission of flowers and young developing fruit. The

application of metamitron to apple, pear or peach tree varieties

produces a significant reduction in fruit set and increases the final

fruit size, thus improving overall crop quality (Elsysy et al., 2020;

Farias et al., 2020; Rosa et al., 2022). In addition to fruit size, AZ

activation may also enhance other quality attributes. For example,

the varieties of Pyrus sinkiangensis Yü grown in China’s Xinjiang

region produce high quality fruits called fragrant pears because of

their abundant floral aroma (Volk and Cornille, 2019). However,

Xinjiang pear trees produce mature fruit with both deciduous and

persistent calyxes. The quality of fruit with the calyxes detached is

superior to those that have retained it, as they contain more juice,

display a better-balanced sweetness/acidity ratio, have smaller cores,

fewer stone cells, and maintain the characteristic egg shape (Kurban

et al., 2012; Bo-Hui et al., 2015). Thus, studies of calyx abscission in

this East Asian pear species target an increased production of high-

quality fruit (Pei et al., 2016; Zhou et al., 2018; Gong et al., 2020).

Once fruit set is complete, fruit continue to develop and ripen until

they reach maturity. During this ripening period is when important

fresh fruit quality attributes, such as peel and flesh color, and flesh

acidity and sweetness, are achieved. However, in many fruit crop

species, fruit attachment weakens during ripening and wind induced

branch movements can result in fruit detachment before full maturity.

This process, known as preharvest abscission or preharvest fruit drop,

not only determines the optimum harvesting period, but also makes it

impossible to market a portion of the fruit load because the external

appearance, color, aroma, and flavor of the detached fruits deteriorate

rapidly upon hitting the ground. For another example, ripe fruit

abscission of oil palm (Elaeis guinenesis) affects the quality of the

fruit, and the palm oil obtained from the mesocarp. When ripe fruit

shed from the bunch and fall to the ground they can be bruised and

injured, which activates an endogenous lipase that releases free fatty

acids (FFA) from triglycerides stored in the fruit mesocarp (Desassis,

1957; Morcillo et al., 2013). Therefore, AZ activation not only has a

negative effect on the yield (if shed fruit are not included in the harvest)

and increase labor costs (due to the need to pick up shed fruit from the

ground) but also the quality of the oil (Corley and Law, 2001;

Sambanthamurthi, 2002; Corley and Tinker, 2016). The high

endogenous lipase activity that releases FFA in the mesocarp of

bruised ripe fruit has a major impact on the quality of the oil

because an FFA content of 45% is thought to be unfit for human

consumption, hence, low-lipase oil palm lines have been identified and

studied to introgress the trait into main elite genotypes (Ebongue et al.,

2008; Morcillo et al., 2013). Furthermore, the acidification and

decreased quality of the oil due to the increase in FFA released by

the lipase in detached fruit is another reason why ongoing studies on

ripe fruit abscission target the identification of markers, and/or non-

shedding phenotypes for the development of either elite non-shedding

or delayed-shedding genotypes (Fooyontphanich et al., 2021; Morcillo

et al., 2021). Another interesting example or pre-harvest fruit drop is

with date palm (Phoenix dactylifera L.). When fruits are shed at the

immature green stage (i.e. the Kimri stage) when, cell elongation is still

occurring, the dropped fruit that are picked up off the ground are

greatly appreciated and consumed by local people, and are more

beneficial to human health compared to the fruit eaten at the riper

stages (Othmani et al., 2020).
Frontiers in Plant Science 04
The response of the AZ cells to abscission signals is regulated by

the balance between auxin and ethylene processes, including

biosynthesis, transport and signal transduction of both hormones

(extensive reviews on this subject can be found in: Taylor and

Whitelaw, 2001; Estornell et al., 2013; Meir et al., 2015; Tucker and

Kim, 2015; Tranbarger and Tadeo, 2020). Thus, treatments with

ethylene biosynthesis inhibitors such as aminoethoxyvinylglycine

(AVG), which blocks ACC synthase activity (Yu and Yang, 1979)

and ethylene antagonists such as 1-methylcyclopropene (1-MCP),

which competes with ethylene for binding to receptors preventing

downstream ethylene signal transduction (Sisler and Serek, 1997;

Watkins, 2006), delay preharvest abscission and also fruit ripening,

thereby improve fruit quality (Greene and Schupp, 2004; Yuan and

Carbaugh, 2007; Arseneault and Cline, 2016; Babalık, 2021;

Elmenofy et al., 2021; Kaur et al., 2021; Lwin and Lee, 2021).

Treatments with synthetic auxins such as naphthaleneacetic acid

(NAA) also delay preharvest abscission but, at the same time,

increase ethylene production in the fruit mesocarp, which

accelerates ripening and softening, thus deteriorates fruit quality

(Yuan and Carbaugh, 2007; Li and Yuan, 2008).

It is also important to note that, in certain cases, the activation of

AZs has a beneficial effect on fruit quality. Manual destemming of

clusters to produce stemless table grapes or mechanical harvesting for

wine or raisins results in an open wound at the stem end of the berry,

usually called a wet stem scar, due to tissue debris that remains

adhered to the pedicel. The mechanical damage leads to juice leakage

and leaves the berry mesocarp exposed to dehydration and invasion

by pathogenic microorganisms, which reduces shelf-life and berry

quality. The use of abscission agents, such as the ethylene releasing

agent ethephon (2-chloroethylphosphonic acid), the immediate

metabolic precursor of ethylene 1-aminocyclopropane-1-carboxylic

acid (ACC), methyl jasmonate or coronatine (a phytotoxin that

mimics jasmonic acid isoleucine), all stimulate the detachment of

mature grape berries (Fidelibus et al., 2007; Uzquiza et al., 2013, 2014;

Ferrara et al., 2016; Fidelibus et al., 2022). All these treatments

promote the formation of a dry stem scar probably through

transdifferentiation of the stem end cells of the berry into a

protective layer that minimizes the loss of berry quality.

The quality and commercial value of fresh fruit can also be

deteriorated by the abscission process that may occur during

postharvest storage. This problem affects citrus fruits and other

fruits that are marketed in bunches such as grapes, cherry

tomatoes, bananas or the tropical fruit longkong. The external and

internal ripening of citrus fruit is not necessarily synchronized, which

implies that the quality characteristics of the fruit peel and flesh are

independently regulated (Tadeo et al., 2008). A green peel color of

fruit from early varieties of oranges and clementines, or fruit

harvested early to avoid winter frosts, deters purchase by

consumers, even if the internal quality is commercially acceptable.

Degreening treatments with ethylene gas in controlled environmental

chambers result in chlorophyll degradation and unmasking, and

synthesis of carotenoids (Wardowsky et al., 2006; Porat, 2008),

making the fruit that acquire an orange coloration more acceptable

for marketing. However, degreening can have a negative impact on

other fruit quality characteristics as it accelerates senescence,

promotes calyx abscission, and shortens shelf life (Wardowsky
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et al., 2006; Baldwin et al., 2014). Treatments prior to degreening with

synthetic auxins such as 2,4-dichlorophenoxyacetic acid (2,4-D),

3,5,6-Trichloro-2-pyridyloxyacetic acid (3,5,6-TPA), 2-(4-amino-3,

5-dichloro-6-fluoropyridin-2yl) oxyacetic acid (Fluroxypyr) and S-

ethyl-4-chloro-O-tolylooxythioacetate (MCPA) reduce calyx

abscission and improve, in some cases, fresh fruit quality by

reducing fruit weight and firmness loss and calyx browning (Sdiri

et al., 2013; Gill et al., 2015; Alhassan et al., 2020, 2022; Mostert et al.,

2024). Longkong (Lansium domesticum Correa.) is a non-climacteric

tropical fruit of the Meliaceae family that develops in inflorescences,

with bunches containing 25-40 units, that is consumed fresh in

Southeast Asia. Longkong fruit may detach from the bunch

naturally both during growth and development and after harvest,

while post-harvest treatment with NAA or 1-MCP delays abscission

of commercially harvested ripe fruit (Taesakul et al., 2012). Grape

berry abscission is a common problem during postharvest storage of

table grapes (Lavee, 2017; Meena et al., 2017). Grape berry is a non-

climacteric fruit and abscisic acid (ABA) appears to play a role in the

onset of ripening and during postharvest storage (Sun et al., 2010). In

addition, ABA promotes the activity of cell wall hydrolases, including

cellulases and polygalacturonases, in the pedicel-peduncle boundary

AZ (Zhang and Zhang, 2009) therefore, controlling ABA biosynthesis

during postharvest storage could prevent berry abscission. Treatment

of grape bunches with nordihydroguaiaretic acid (NDGA), an

inhibitor of 9-cis-epoxycarotenoid dioxygenase (NCED), the key

enzyme in ABA biosynthesis (Han et al., 2019), delays the decline

in the berry detachment force and reduces berry abscission (Zhu

et al., 2022). Tomatoes harvested in bunches have a fresh appearance

that is highly appealing to consumers. However, unlike individual

tomatoes, the shelf-life and quality of bunch tomatoes is linked to

stem and calyx desiccation and fruit abscission. Treatment with

minerals, ascorbic acid, salicylic acid or 1-MCP maintains the

brightness of the calyx and fruit appearance, and delays bunch fruit

drop (Beno-Moualem et al., 2004; Lichter et al., 2006; Aktas et al.,

2012; Zhu et al., 2022). Bananas are perennial monocotyledon

herbaceous plants with a pseudostem consisting of dozens of

narrow leaves and a tuberous rhizome or underground corm, a

true stem that produces suckers that allow the plant to grow

vegetatively (Lobo and Rojas, 2020). Each pseudostem produces a

single inflorescence with female flowers that give rise to fruits known

as “fingers”. Up to 20 fingers can grow in bunches known as “hands”

and there can be between 5 and 20 hands per inflorescence depending

on the variety. Bananas are usually marketed by hands with the crown

attached, but can undergo a physiological disorder known as “finger

drop”, during which individual fingers may detach from the hands

due to the weakening of the peel at the pedicel-pulp boundary region

(Luyckx et al., 2016). The separation region between the pedicel and

the fruit pulp does not contain a true AZ, although cell wall

remodeling enzymes are upregulated during the process of finger

detachment in a pedicel rupture area (MbéGuié-A-MbéGuié et al.,

2009). Separated fingers maintain, in principle, a good eating quality

but the wound resulting from the detachment process reduces both

consumer appeal and hence, the market value. In addition, the wound

also represents an entry route for pathogens, which results in a

reduced postharvest shelf-life of the fruit. Treatment of hands with

gibberellic acid (GA3) (Salazar and Serrano, 2013) or a combination
Frontiers in Plant Science 05
of 1-MCP and modified atmosphere packaging maintains banana

fruit quality and reduces the occurrence of finger drop (Li et al.,

2023b). Finally, the identification of oil palm fruit bunches that are

ready to be harvested is determined by the number of detached fruits

found on the ground below the ripening fruit bunch (Lai et al., 2023).

However, as discussed above, detached fruits can be injured and

activate endogenous lipase in the mesocarp that increases FFA

content, which leads to decreased extracted oil quality.

Furthermore, bunches are typically stored for some time periods

before oil is extracted, which can increase ripe fruit abscission and

lipase activity. Hence, to minimize acidity, fruit bunches need to

undergo post-harvest heat treatments to inactivate the endogenous

lipase (Morcillo et al., 2013). However, fruit bunches also need to be

harvested at the time of maximum oil content, so these conflicting

requirements (i.e. maximum oil content versus limiting oil acidity)

require a large and increasing costly labor force, posing major

challenges for the industry (Lai et al., 2023). Oil palm provides

examples in which harvest and post-harvest activation of the AZs

have numerous effects on fruit quality, quantity and overall

harvest cost.
2 Hormonal crosstalk occurs between
the maturing fruit and the fruit AZ that
regulates ripening-related abscission

Fleshy fruits are traditionally classified into two broadly defined

categories, climacteric and non-climacteric, according to their

respiratory profile and the way in which ethylene is produced

during ripening (Seymour et al., 2013). Non-climacteric fruits

such as citrus, grape, olive, sweet cherry, or litchi respire and

produce ethylene at basal levels during ripening and the

subsequent period of over-ripening, marked by fruit aging and

decay. This class of fruits produce ethylene by the so-called

autoinhibitory system-1 (McMurchie et al., 1972; Lelievre et al.,

1997), by which ethylene synthesis is maintained at low levels

through ethylene perception mechanisms (Barry and Giovannoni,

2007; Liu et al., 2015). In contrast to non-climacteric fruits,

climacteric fruits such as tomato, apple, banana, mango, or peach

are characterized by a burst of respiration that is accompanied by a

dramatic increase in ethylene production at the onset of ripening

through the shift from autoinhibitory system-1 to autocatalytic

system-2 ethylene production (Osorio et al., 2012; Chen et al.,

2018). Non-climacteric fruits are harvested at horticultural

maturity, with a balanced acidity to sweetness ratio appropriate

for each destination market. In contrast, climacteric fruits can be

harvested at physiological maturity, given that ripening of

climacteric fruits does not stop when they are detached from the

tree and therefore ethylene continues to have an effect, which

shortens post-harvest shelf life and fruit quality. Indeed,

autocatalytic ethylene production in climacteric fruits shortens

shelf life and causes detrimental effects on fruit quality during

postharvest storage if appropriate treatments are not applied

(Zhang et al., 2017; Fernández-Cancelo et al., 2024).
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Dynamic changes in the amounts of phytohormones, mainly

auxins, ethylene, and ABA, slow down the expansion of fleshy fruits

and promote maturation and ripening. The maintenance of a high

content of active natural auxins, such as indole-3-acetic acid (IAA), or

exogenous application of IAA or synthetic auxins at the end of the

growth period cause a delay in ripening in both climacteric and non-

climacteric fruits (Camarero et al., 2023; Chen et al., 2023; Chirinos

et al., 2023; Lv et al., 2023). The decrease in physiologically active IAA

content, typically observed during fruit maturation and ripening, is due

to a reduction in the expression of biosynthetic genes and an increase in

the expression of genes involved in IAA conjugation to amino acids

(Böttcher et al., 2011; Fortes et al., 2015; Feng et al., 2021; Fenn and

Giovannoni, 2021; Huang et al., 2022). Ethylene plays a central role in

the regulation of natural ripening of climacteric fruits, not only through

the sharp ethylene increase at the beginning of the process, but also

when ethylene is applied exogenously, it accelerates ripening and, vice

versa, inhibitors of ethylene biosynthesis or perception stop ripening.

The onset of climacteric ripening with the shift from autoinhibitory

system-1 to autocatalytic system-2 ethylene production is caused by

ethylene biosynthesis, signaling, and response gene expression changes

(for recent reviews, see Brumos, 2021; Fenn and Giovannoni, 2021).

Abscisic acid plays important roles in the ripening of non-climacteric

fruits for recent reviews, see Bai et al., 2021; Gupta et al., 2022; Perotti

et al., 2023). Similar to the case of ethylene, the application of ABA or

inhibitors of its biosynthesis, such as fluridone or nordihydroguaiaretic

acid (NDGA), accelerates or delays fruit ripening, respectively (Zhang

et al., 2009a; Villalobos-González et al., 2016; Wang et al., 2016; Lama

et al., 2020). Abscisic acid content increases at the onset of ripening of

non-climacteric fruits and, depending on the species, its accumulation

is continuous, as in citrus (Feng et al., 2021) and olive (Camarero et al.,

2023), or decreases transiently during the last stages of ripening, as in

grapevine (Pilati et al., 2017). The increase in ABA content during

ripening is controlled by the balance in the expression of genes related

to ABA biosynthesis and catabolism (Wheeler et al., 2009; Pilati et al.,

2017). However, it is interesting to note that there is increasing

evidence that shows ethylene and ABA are involved in the regulation

of ripening in both climacteric and non-climacteric fruits. The

involvement of ABA in the ripening of climacteric fruits is

apparently related to its modulation of the ethylene biosynthetic

pathway. Thus, ABA treatment accelerates tomato fruit ripening

through the upregulation of the genes that encode ACC synthases

and ACC oxidases, principle enzymes for ethylene biosynthesis (Zhang

et al., 2009a), while overexpression of the ABA receptor SlPYL9 also

accelerates tomato ripening through enhanced ABA accumulation and

a significant increase in ethylene production (Kai et al., 2019). On the

other hand, deletion of SlNCED1, a key regulatory enzyme of ABA

biosynthesis, blocks the changes in tomato fruit texture that occur

during ripening by downregulating the expression of genes associated

with cell wall metabolism (Sun et al., 2012). Although non-climacteric

fruits only produce basal levels of ethylene during ripening, an

acceleration of ripening-associated processes can be induced by

treatments with ethylene gas, ACC, the immediate water-soluble

metabolic precursor of ethylene, or ethylene-releasing compounds,

such as ethephon (Barry and Giovannoni, 2007; Chen et al., 2018),

These observations suggest the involvement of ethylene perception and
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signaling in the regulation of ripening of non-climacteric fruits (Chen

et al., 2018; Alferez et al., 2021; Dorta et al., 2023).

In addition to changes in color, aroma and flavor during

ripening, fleshy fruits also undergo cell separation processes that

lead to changes in fruit texture and detachment from the plant. Fruit

softening is due to the progressive loss of flesh firmness through the

action of a combination of hydrolases and cell wall remodeling

proteins on the primary cell walls (Shi et al., 2023; Su et al., 2023).

In addition, the rate of softening in climacteric and non-climacteric

fruits is mainly due to the antagonistic action of auxin and ethylene or

ABA (Li et al., 2021b, 2022; Wang and Seymour, 2022; Chen et al.,

2023; Mattus-Araya et al., 2023; Qin et al., 2023). As in the case of

fruit softening, hydrolases and cell wall remodeling proteins cause the

disassembly of primary cell walls in fruit-AZs, resulting in the

progressive weakening of adhesion between adjacent cells, and

ultimately leading to fruit abscission. In fact, abscission of maturing

fruit can be considered as one of the terminal events of the ripening

program (Sexton, 2001). There is a broad range of internal and

external stimuli mediated by phytohormones that elicit an abscission

response (for review, see Taylor and Whitelaw, 2001). The generally

accepted model suggests that a reduction in auxin efflux from the

subtending organ to the AZ enables ethylene to trigger abscission

(Basu et al., 2013; Chersicola et al., 2017; Botton and Ruperti, 2019;

Dong et al., 2021). Abscisic acid has also been implicated in triggering

fruit abscission by acting as a hormonal sensor of the abscising

stimulus that modulates the level of ACC and ethylene emission

(Guinn, 1982; Gomez-Cadenas et al., 2000; Eccher et al., 2013;

Wilmowicz et al., 2016). All these three phytohormones, auxin,

ethylene, and ABA, play an active role in the ripening of fleshy

fruits and organ abscission and, therefore, hormonal crosstalk

between maturing fruit and fruit AZs may be associated with the

weakening of the attachment of maturing fruit to the plant.

Maturing fruits are mostly detached through the function of AZs

located at the fruit-pedicel boundary region, at the calyx-AZ

(Tranbarger and Tadeo, 2020), which is traversed by the vascular

system that connects the fruit with other plant organs and is embedded

in fruit tissues (for examples, see Rascio et al., 1985; Henderson and

Osborne, 1990; Roongsattham et al., 2016; Merelo et al., 2017). This

location of the calyx-AZ at the stem-end region of maturing fruits

strongly suggests that a potential crosstalk between fruit and calyx-AZ

tissues may influence abscission activation during ripening. As there is

a decrease in IAA content in the maturing fruit, it is deduced that cell-

to-cell polar auxin transport to the calyx-AZ would be greatly reduced,

favoring the action of other abscission-activating hormones such as

ethylene and ABA. Ethylene gas has high diffusion rates within cells as

well as across lipid membranes and may reach the calyx-AZ to activate

abscission. Transporters have been described for the immediate

metabolic precursor of ethylene, ACC, which may also allow it to

readily reach the calyx-AZ (Hirner et al., 2006; Choi et al., 2019).

Members of transporters from different families including the ATP-

binding cassette (ABC) G-family, nitrate transporter/peptide

transporter (NPF) family and multidrug and toxic compound

extrusion (MATE) family, have been shown to import or export

ABA over short and long distances (Anfang and Shani, 2021; Zhang

et al., 2023), implying that ABA accumulated in maturing fruits may
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also reach the calyx-AZ and participate in the activation of abscission.

Ethylene, ACC and ABA modulate the expression of genes associated

with hormone metabolism in a hormonal environment with lower

amounts of IAA, enhancing the abscission response and inducing the

expression of hydrolases and cell wall remodeling proteins in calyx-AZ

cells to favor mature fruit detachment.
3 Hormonal metabolism and signaling
in fruit abscission zones during
maturing fleshy fruit abscission

Developing fruits undergo a final ripening process in which their

growth in size substantially slows down and culminates with the

acquisition of the attributes that will make them edible and desired

by consumers. During ripening, fruits develop towards senescence and,

gradually, the force with which they are attached to the calyx generally

declines. The molecular signals triggering maturing fruit abscission are

poorly understood and it is also unclear whether they are the same in

all fruit crop species, although the importance in the abscission process

of certain growth-regulating metabolites such as auxin, ethylene, ABA

and JA is supported by many research reports.
3.1 Auxin-related gene expression in
maturing fruit abscission zones

Auxins are involved in the transition from fruit growth-to-

ripening and the initiation of ripening (for recent reviews, see

Brumos, 2021; Li et al., 2021b). A decline in the content of IAA

in fruits seems to be critical to slow down fruit growth and launch

the ripening process. Application of auxin transport inhibitors such

as 2,3,5-triiodobenzoic acid (TIBA) or N-1-napthylphthalamic acid

(NPA) promote ripening in grape berries (Yakushiji et al., 2001;

Serrano et al., 2023), while treatment with the synthetic auxin

naphthaleneacetic acid (NAA) during pre-véraison delays it

(Böttcher et al., 2011; Ziliotto et al., 2012; Dal Santo et al., 2020).

The onset of ripening in both climacteric and non-climacteric fleshy

fruit is also characterized by a decrease in fruit adhesion to the calyx

and similar as during ripening, treatment with synthetic auxins

delays abscission in citrus, apple, pear, or mango (Anthony and

Coggins, 2001; Yuan and Carbaugh, 2007; Dal Cin et al., 2008;

Hagemann et al., 2014; Murayama et al., 2015). Therefore, in

general auxins play an inhibitory role in fleshy fruit ripening.

However, there are exceptions to this general rule that give rise to

fruit with diverse qualities. For example, late ripening fruits of some

citrus or olive cultivars retain high auxin content (Camarero et al.,

2023; Lv et al., 2023). Interestingly, a high concentration of IAA in

the fruit of melting-flesh peach is required to induce the peach 1-

aminocyclopropane-1-carboxylate synthase1 gene (PpACS1), that

encodes a key ethylene biosynthesis enzyme, and the burst of

system-2 ethylene production (Tatsuki et al., 2013). Furthermore,

in stony hard peaches, there is no increase in IAA compared with

the melting flesh peaches, which have a large increase in IAA and

high system-2 ethylene production. These examples suggest that in
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some cases there are systems that function to uncouple the auxin-

ethylene control of ripening.

The decline in auxin content in fruit AZs results in increased

ethylene sensitivity and the initiation of abscission (Meir et al.,

2015). Changes in IAA content in fruit AZs can be due to alterations

in auxin transport from the subtending senescing fruit, which affect

auxin metabolism and/or cellular transport and auxin signaling in

that tissue. Olive fruit ripening and abscission of maturing olive

fruit are modulated by auxin content. Both the content of IAA and

fruit detachment force (FDF) in fruits of the Picual olive cultivar

decreased from 164 days after anthesis while the content of IAA

continued an upward pattern, and FDF remained high in the

Arbequina olive cultivar resulting in a delay in fruit ripening and

abscission (Parra-Lobato and Gomez-Jimenez, 2011; Camarero

et al., 2023). Mature fruit abscission in Picual was associated with

downregulation of several auxin synthesis-related genes encoding

anthranilate synthase beta subunit 1 and flavin-containing

monooxygenase YUCCA, and the upregulation of a gene for

GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase (Gil-

Amado and Gomez-Jimenez, 2013; Briegas et al., 2020). In addition,

the genes for several AUXIN RESISTANT1 (AUX1) and LIKE

AUX1 (LAX1) auxin influx carriers were also downregulated in the

fruit AZ. These changes in auxin synthesis and transport genes in

the olive fruit AZ were mostly associated with downregulation of

several auxin response genes, including members of the Auxin/

Indole-3-Acetic Acid (Aux/IAA) and auxin response factor (ARF)

families (Gil-Amado and Gomez-Jimenez, 2013; Briegas et al.,

2020). Similar transcriptomic changes to those occurring during

natural abscission of maturing olive fruits have also been described

in the abscission of Védrantais climacteric melons (Corbacho et al.,

2013). Ethylene treatment of maturing citrus fruit accelerates

abscission and its effect on the calyx AZ was also associated with

changes in auxin signaling (Cheng et al., 2015; Merelo et al., 2017).

In this regard, it is interesting to note that Ciclev10030696m and

Ciclev10000693m, homologs respectively of AtARF2 and AtARF17

from Arabidopsis, were upregulated in the calyx AZ of ethylene-

treated fruits (Merelo et al., 2017). The activity of ARF2 and ARF17

is related, respectively, to floral organ abscission (Ellis et al., 2005;

Okushima et al., 2005) and anther dehiscence (Xu et al., 2019), two

cell separation processes, strongly suggesting that citrus homologs

of these genes might play a key role in abscission of maturing fruits

of citrus. Abscission of maturing fruits in Elaeis oleifera, the oil palm

from South and Central America, could also be related to auxin

metabolism and signaling (Morcillo et al., 2021). An RNA-seq study

in the AZ located between the pedicel and mesocarp of fruits from a

non-shedding oil palm genotype showed decreased expression of

several Arabidopsis homologs related to IAA homeostasis,

including a PIN-LIKE 5 that regulates intracellular auxin

homeostasis, an IAR3-like amido hydrolase that releases free IAA

from inactive IAA-amino acid conjugates, and a PINOID-like

protein involved in signal transduction and auxin response, which

might be associated with non-shedding character of this variant.

Likewise, in the AZ during ripe fruit abscission of the African oil

palm (E. guineensis), dynamic changes in the expression of genes

encoding proteins involved in auxin related processes including

transport, conjugation and signaling, were found during both
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ethylene induced and natural abscission that occurs in the field

(Fooyontphanich et al., 2021). Interestingly, alterations in auxin-

related genes in ripe oil palm fruit AZs are similar to those that have

been described in the pedicel AZ of tomato flowers following

artificial auxin depletion (Meir et al., 2010, 2015). This opens the

door to the possibility that, whatever the stage of fruit development,

the triggering of abscission may be associated with similar

alterations in auxin-related genes. The KNOTTED1-LIKE

HOMEOBOX PROTEIN1 (KD1) gene is highly expressed in

tomato flower and leaf AZs, regulates tomato flower pedicel

abscission via alteration of the auxin gradient and response (Ma

et al., 2015; Sundaresan et al., 2021). The KD1 transcription factor

appears to alter various regulatory pathways, in particular a

disruption of the auxin response gradient in the pedicel AZ,

which activates abscission. Early stages of tomato flower and fruit

abscission are associated with decreases in the expression of auxin

efflux and influx carriers such as SlPIN1, SlPIN6, SlPIN9 and

SlAUX/LAX2 (Shi et al., 2017; Dong et al., 2021). Recent work

suggests changes in the distribution of auxin flow across the

abscission zone are likely more important than the auxin

response system for the regulation of abscission (Shi et al., 2017;

Dong et al., 2021). Similarly, hydrogen sulfide (H2S) inhibits tomato

pedicel abscission apparently through the downregulation of genes

associated with cell wall modification (Liu et al., 2022a). The

authors proposed that H2S reconstructs a basipetal auxin gradient

along the pedicel, which may in turn decrease the AZ sensitivity to

ethylene and result in the inhibition of pedicel abscission. The

critical role of polar auxin transport in the control of tomato fruit

abscission appears to be linked to the expression of the transcription

factor BEL1-LIKE HOMEODOMAIN11 (SlBEL11) in the pedicel

AZ. Knockdown of SlBEL11 by RNAi causes premature fruit drop

from the breaker stage of fruit development and this effect was

associated with a decrease in the level of quercetin, an auxin

transport inhibitor, in the pedicel AZ (Dong et al., 2024). In fact,

quercetin treatment suppressed fruit drop in SlBEL11-RNAi (RNA

interference) plants. SlBEL11, through the regulatory role of

SlMYB11 in flavonoid synthesis, seems to adjust the auxin flux

coming from the fruit to maintain the auxin response gradient in

the pedicel AZ and, thus, prevents premature fruit drop (Dong

et al., 2024). The activation of ethylene biosynthesis in the fruit-AZ

of litchi that occurs in response to auxin depletion was reported to

be associated with the upregulation of the genes for two

transcription factors, LcARF5 and LcEIL1, involved in auxin and

ethylene signaling respectively (Ma et al., 2024). LcARF5 activated

the gene expression for the peptide ligand LcIDL1 and its receptor

LcHSL2, while LcEIL1 also activated the expression of LcIDL1 thus

launching the cell separation process in the fruit-AZ. Therefore, the

physiological signal derived from auxin depletion in the fruit-AZ of

litchi resulted in the upregulation of both auxin and ethylene

signaling mediators, LcARF5 and LcEIL1, which triggered

abscission through the activation of the LcIDL1-LcHSL2

regulatory module (Ma et al., 2024).

Some treatments that improve postharvest quality in fruit bunches

also affect auxin metabolism and cellular transport. The application of

gibberellic acid (GA3) is successfully used in the production of seedless

table grapes that are highly appreciated by consumers. In addition to
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favoring stenospermocarpy, GA3 reduces the occurrence of the

physiological disorder known as rachis browning, which is

characterized by the browning of the berry skin and rachis (Lichter,

2016; Suehiro et al., 2019). However, GA3 treatment has the trade-off of

promoting abscission during storage. This abscission-promoting effect

of GA3 seems to be related to a strong reduction of IAA content in the

berry AZ (Yu et al., 2024). GA3 treatment results in seed growth arrest

leading to loss of auxin synthesizing capacity of seed traces, while

developing seeds in non- GA3-treated berries show elevated levels of

expression of auxin biosynthesis genes VvYUC2 and VvYUC4 and

auxin transporter VvPIN4 and VvAUX1 in the berry AZ (Yu et al.,

2024). GA3 treatment reduced gene expression of ethylene receptors

VvETR1 and VvETR2, and VvEIN4 in the berry AZ, which increased

ethylene sensitivity in the tissue and consequently increased both the

activity of several cell wall hydrolases and fruit abscission.
3.2 Ethylene-related gene expression and
metabolism in mature abscission zones

Ethylene, structurally the simplest plant hormone, has long

been viewed as a key regulator of organ abscission, given that

ethylene gas is often released from organs prior to abscission, and

treatments with ethylene can induce organ abscission (Jackson and

Osborne, 1970; Addicott, 1982) (for a recent review see Botton and

Ruperti, 2019). In fact, ethylene was first discovered as the active

agent that promoted leaf abscission from illuminating gas (Bakshi

et al., 2015). As discussed above, treatments with ethylene

biosynthesis inhibitors or ethylene antagonists inhibit both fruit

abscission and ripening. In addition, the list of fruit species that

abscise in response to exogenous ethylene treatments is very long,

suggesting an almost universal role for ethylene in fruit abscission.

A series of earlier studies on the biochemical and molecular basis of

ethylene biosynthesis during peach fruit abscission first

demonstrated the molecular basis of ethylene production and

how ethylene can regulate gene expression in the AZ (Ruperti

et al., 1998, 2001, 2002). The studies demonstrated how 1-

aminocyclopropane-1-carboxylate oxidase (ACO) activity, an

ethylene biosynthesis enzyme, and gene expression closely

paralleled ethylene evolution in the peach fruit AZ. They

determined that the increase in ethylene in the AZ prior to

abscission is primarily through the increased activity of ACO.

They went on to identify ethylene induced transcripts in the AZ,

which shows the specificity of the response to ethylene in the AZ

(Ruperti et al., 2002). In the following sections, we focus on recent

discoveries about the role of ethylene and the metabolic and

transcriptional consequences that occur in the AZ, from the most

extensively studied fleshy fruit species that includes representatives

from both climacteric and non-climacteric species.

Tomato is the most extensively studied model for climacteric

fruit ripening and abscission; however, it remains to be seen

whether it is representative for all fleshy fruits. In any case, it is

an important baseline to see how ethylene regulates tomato AZ

pedicel function. Furthermore, both unfertilized flowers and fully

ripe fruit can be shed through the function of the AZ located within

the pedicel, so with tomato, both types of abscission must be
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considered given there may be similar functions at different

developmental stages (Iwai et al., 2013; Ito and Nakano, 2015;

Tranbarger and Tadeo, 2020). Indeed, while both unfertilized

flowers and fully ripe fruit can be shed through the function of

the same AZ located within the pedicel, the majority of the studies

use flower abscission as the model of study (Meir et al., 2010).

Therefore, here we will focus on what is known about the events

that occur in the developing pedicel AZ, in particular the effects on

ethylene production, and how these events may have consequences

on mechanisms that determine fruit quality.

The tomato ripening mutant Never-ripe (Nr) has a loss-of-

function for the ethylene receptor SlETR3, and has delayed floral

abscission, providing genetic evidence of the importance of ethylene

perception for organ abscission (Tucker et al., 1984; Wilkinson et al.,

1995). In addition, a splice variant of the key suppressor of ethylene

response, CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), is

targeted for degradation by the microRNA miR1917 in the tomato

fruit pedicel AZ (Wang et al., 2018). Overexpression of miR1917

resulted in higher expression of genes involved in ethylene signaling

and biosynthesis, enhanced increased ethylene emission and early

pedicel abscission. During premature abscission of tomato flowers

and fruits triggered by low light stress, the tomato CLAVATA3-

WUSCHEL (SlCLV3-SlWUS) signaling pathway modulates the

auxin response gradient, which causes an increase in ethylene

production in the AZ, and premature fruit abscission (Cheng et al.,

2022). The tomato ERF family transcription factor ETHYLENE-

RESPONSIVE FACTOR 52 (SlERF52) gene is specifically expressed

in pedicel AZs, and SlERF52 expression is suppressed in plants with

impaired function of MACROCALYX (MC) and JOINTLESS (J),

both of which are key regulators of pedicel AZ development (Nakano

et al., 2014; Wang et al., 2021). Furthermore, SlERF52 suppression

results in a decrease in cellulase and polygalacturonase gene

expression, in addition to genes that regulate meristematic activities

in pedicel AZs, including the tomato WUSCHEL (LeWUS)

homologue, GOBLET (GOB), and LATERAL SUPPRESSOR (Ls)

(Nakano et al., 2014). The results suggest that SlERF52 plays a key

role in AZ transcriptional regulation during both AZ development

and the activation stage. Indeed, a recent study found that SlERF52

regulates the gene expression of an aquaporin tonoplast intrinsic

protein SlTIP1;1 (Wang et al., 2021). When SlTIP1;1 is knocked out,

abscission is delayed, while when SlTIP1;1 is overexpressed abscission

is accelerated. They found that SlTIP1;1 mediates abscission via an

increase in cytoplasmic H2O2 concentrations and osmotic water

permeability, which enhances turgor pressure and the necessary

break force for cell separation of AZ cells. With regard to ethylene,

they demonstrated a positive loop in which cytoplasmic H2O2

activates ethylene production that then activates SlERF52 expression.

MADS-box proteins are known to play important roles in

tomato pedicel AZ development and fruit ripening (Ito and

Nakano, 2015; Li et al., 2023a). MADS-box proteins are also

known to function together in complexes, and these interactions

provide possible links between AZ development, activation and

fruit ripening and qualities. First characterized by the j mutant,

which lacks a pedicel AZ, the MADS-box J was shown to be

essential for pedicel AZ development (Mao et al., 2000). Later, it

was found that J can function as a complex with other MADS-box
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proteins, including MC and SlMBP21 (JOINTLESS 2; J2), that

regulates both AZ development and activation (Nakano et al.,

2012; Liu et al., 2014; Roldan et al., 2017). While SlMBP21 is

involved in pedicel-AZ differentiation in tomato, no clear role for

SlBMP21 in the regulation of fruit ripening has yet been described

(Liu et al., 2014; Roldan et al., 2017; Soyk et al., 2017). However,

mutations in genes associated with pedicel-AZ formation show

pleiotropic effects (Vrebalov et al., 2009; Nakano et al., 2012; Yuste-

Lisbona et al., 2016), and one report of a possible role for SlBMP21

in ripening comes from the observation by Joubert (Joubert, 1965)

that an additional J gene, jointless-2 with incomplete action, did not

show the slow ripening characteristic of the J2 mutation. Therefore,

SlMBP21/J2 most likely has a positive role in tomato fruit ripening.

In addition, down-regulation of SEPALLATA (SEP) homologs of

strawberry, banana and apple inhibit ripening and prolong fruit

shelf life, pointing to a conserved positive role of SEP genes in

controlling fruit ripening (Seymour et al., 2011; Ireland et al., 2013;

Elitzur et al., 2016). Protein complexes formed by J, MC, and

SlMBP21 confer the auxin/ethylene regulation that determines the

activation of abscission and also regulate the meristematic

maintenance genes LeWUS, Blind (Bl), GOB, and Ls and the

development of the pedicel-AZ (Nakano et al., 2012; Liu

et al., 2014).

Another tomato MADS-box protein gene, FOREVER YOUNG

FLOWER-LIKE (SlFYFL), an ortholog of Arabidopsis FYF/AGL42,

is highly expressed in the tomato fruit AZ (Xie et al., 2014). In

tomato plants ectopically expressing SlFYFL, the development of

the fruit AZ is impaired and ethylene production is reduced

possibly due to the downregulation of ethylene biosynthesis

pathway genes, along with several ethylene-response genes.

Furthermore, carotenoid accumulation is also reduced in fruits of

these 35S:FYFL plants but, in contrast, postharvest fruit storage is

improved (Xie et al., 2014). In fact, SlFYFL was found to interact

with other important fruit related MADS-box proteins including

SlMADS-RIN, SlMADS1 and in particular with J, which is involved

in AZ development. Similarly, the tomato homologs of MADS-box

SEPALLATA 4 (AT2G03710), SlCMB1, SlMADS-RIN, SlMBP21

and SlMADS1, are all involved, in one way or another, in flower and

fruit abscission and/or fruit ripening and also modify ethylene

metabolism (Vrebalov et al., 2002; Dong et al., 2013; Liu et al.,

2014; Xie et al., 2014; Li et al., 2017; Roldan et al., 2017; Zhang et al.,

2018; Xing et al., 2022; Zhang et al., 2024a, b). Yeast two-hybrid

assays revealed that SlMBP21 interacts with APETALA2a (SlAP2a),

TOMATO AGAMOUS-LIKE1/ARLEQUIN (TAGL1/ALQ), J, MC,

MADS-RIN and SlMADS1, while SlMADS1, in addition to

SlMBP21, interact with MC and MADS-RIN (Xing et al., 2022;

Zhang et al., 2024a, b). On the other hand, SlCMB1 also interacted

in yeast two-hybrid assay with TAGL1/ALQ, SlMADS1 and

MADS-RIN (Zhang et al., 2018). The TAGL1/ALQ, the tomato

ortholog of the duplicated SHATTERPROOF (SHP) MADS box

genes of Arabidopsis, is also necessary for fruit ripening (Vrebalov

et al., 2009). The Alq mutation caused by ectopic overexpression of

TAGL1 (Giménez et al., 2010) affects the reproductive development

of tomato plants by producing defects in the formation of the style

and pedicel AZs and homeotic alterations that affect the identity of

floral organs by converting sepals into fruit-like organs (Pineda
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et al., 2010). TAGL1/ALQ transcriptional activity regulates ethylene

production and some fruit ripening characteristics such as

carotenoid production and fruit stiffness (Vrebalov et al., 2002;

Itkin et al., 2009; Giménez et al., 2010). Therefore, TAGL1/ALQ has

a positive role in tomato fruit ripening. The involvement of TAGL1/

ALQ in tomato fruit ripening perhaps occurs through its role in the

positive regulation of ethylene production (Jeon et al., 2024).

TAGL1/ALQ’s role in the development of style- and pedicel-AZ

is potentially through its relationship with J (Pineda et al., 2010).

Finally, different tomato MADS-box proteins (TDR4/FUL1, MBP7/

FUL2, TAGL1/ALQ, TAG1, TAG1, MBP21, and TDR5) have been

identified as potential MADS-RIN interactors (Martel et al., 2011;

Bemer et al., 2012). Amongst these MADS-box proteins, MBP7/

FUL2, is involved in tomato style AZ formation and ripening, given

thatMBP7/FUL2 overexpression blocks style abscission and extends

tomato fruit shelf life, possible through functions in modulating

post-harvest water loss (Wang et al., 2014). In addition to the

participation of MBP7/FUL2 in style abscission and the regulation

of tomato fruit shelf-life, MBP7/FUL2 is also involved in flower

pedicel abscission (Cheng et al., 2022). Overall, these studies

provide insight into possible protein complexes, which include

many MADS-box transcription factors with potential overlapping

regulatory roles which exist between AZ development, ethylene

production, AZ activation, and fruit ripening and overall fruit

quality (Figure 2; Table 2).

The tomato Hybrid Proline-rich Protein (THyPRP) gene is

specifically expressed in the tomato flower AZs and when silenced,

pedicel abscission is inhibited (Sundaresan et al., 2018). In THyPRP

silenced plants, a decrease in expression for ethylene biosynthesis

genes, including ACS, ACO, most likely results in reduced ethylene

production in the AZ, which inhibits the acquisition of the

competence of the AZ cells to respond to ethylene signaling.

Overall, these studies show the central role of the ethylene

biosynthesis and signal transduction pathways during tomato

pedicel abscission, not only at the activation stage, but also earlier

during the differentiation of the AZ, with apparent roles in

regulating meristematic AZ gene regulators. This points out the

powerful molecular tools that can be discovered in relation to AZ

activation, and their potential for applications in the maintenance of

overall fruit quality.

Table grapes, a non-climacteric fruit, are susceptible to

abscission during post-harvest storage and transport, which has

negative impacts on their commercial value (Zoffoli et al., 2009).

Whereas grapes are non-climacteric, ethylene has been shown to

play an important role in regulating AZ activity and hence, grape

quality (Hedberg and Goodwin, 1980; El-Zeftawi, 1982; Ferrara

et al., 2016). A recent article examined the effects of preharvest

treatments with either nano-calcium (nano-Ca) and CaCl2 (Cl–Ca)

(Zhu et al., 2024). The study found that nano-Ca significantly

increased the calcium content in fruits, rachis, and the fruit AZ,

while it inhibited ethylene production through a decrease in the

expression of VvACO1. In addition, grapes pretreated with nano-

calcium had a higher AZ pectin calcium content, decreased the

activities of polygalacturonase (PG) and pectinesterase (PE),

delayed pectin degradation, reduced weight loss percentage, decay

percentage, malondialdehyde (MDA) content, and relative
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conductivity, and maintained a higher berry detachment force

(BDF) and lower berry abscission percentage. Another problem is

the common use of gibberellic acid-3 (GA3) as a pretreatment to

increase size and marketability that also increases the post-harvest

grape berry abscission rate (Nakamura and Hori, 1981; Casanova

et al., 2009; Zoffoli et al., 2009; Meneses et al., 2020). A recent article

revealed a lower expression of auxin biosynthesis genes, IAA

content, and expression of ethylene receptor genes in GA3-treated

berry clusters which results in a higher sensitivity to ethylene and

abscission (Yu et al., 2024). Overall, it appears that ethylene

biosynthesis and perception play regulatory roles during post-

harvest grape berry abscission.
3.3 Jasmonate-related gene expression
and metabolism in maturing fruit
abscission zones

Jasmonates (JAs) are a family of phytohormones involved in plant

adaptation to biotic and abiotic challenges, but also control different

aspects of plant development and defense (Wasternack and Strnad,

2018; Ghorbel et al., 2021; Luo et al., 2023). Methyl jasmonate (MeJA),

a volatile member of the JA family, has been shown in pre- or post-

harvest treatments to enhance fruit quality in a number of fruit crops,

including cherry, medlar fruit, kiwifruit, apricot, plum and apple

(Saracoglu et al., 2017; Öztürk et al., 2019; Faizy et al., 2021; Öztürk

and Yücedag, 2021; Öztürk et al., 2022; Wang et al., 2024). The fruit

quality characters enhanced byMeJA include the retention of fruit flesh

firmness, maintenance of bioactive compounds, slowing of color

changes, reduction of respiration, delay of harvest, reduced weight

loss, showing thatMeJA is an effective tool tomaintain a wide variety of

fruit attributes. In addition, JAs enhance and play a functional role in

Arabidopsis floral organ abscission, and JA treatments also increase

the rate of fruit abscission in a number of crops, including citrus,

tomato, grape and apple (Hartmond et al., 2000; Kender et al., 2001;

Beno-Moualem et al., 2004; Kim et al., 2013; Uzquiza et al., 2014;

Fidelibus et al., 2022; Wang et al., 2024). Interestingly, apples treated

with MeJA have a decreased amount of early fruit drop, and enhanced

fruit drop rate at the mature stage of development, suggesting the AZ

response to JA is developmentally regulated (Wang et al., 2024). In a

recent study with tomato, the class III homeodomain-leucine zipper

transcription factor, HOMEOBOX15A (SlHB15A) was demonstrated

to be a negative regulator of pedicel abscission using flower explants as

a model (Liu et al., 2022b). The SlHB15A transcription factor

negatively regulates abscission by decreasing JA-isoleucine (JA-Ile)

amounts in the AZ through inhibiting the expression of the gene for

JASMONATE-RESISTANT1 (SlJAR1) involved in JA-Ile biosynthesis.

The JAR1 enzyme catalyzes the conjugation of isoleucine to JA, the

final step in the formation of the bioactive JA molecule JA-Ile that

binds to the JA receptor, CORONATINE INSENSITIVE 1 (COI1)

(Ghorbel et al., 2021). The study also provides evidence that the

SlJAR1-dependent JA-Ile-induced abscission is both dependent and

independent of ethylene action. Finally, the authors also suggest that

in the absence of ethylene, the JA-dependent pathway may play

an important role in non-climacteric fruit abscission. Overall, while it

remains to be determined whether the metabolism of JAs in the pedicel
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AZ of ripe fruit play an important role in the timing of fruit abscission,

it is clear that JA metabolites have special properties that enhance

quality attributes and can affect the abscission process of a number

of fruit crops.
3.4 Abscisic-related gene expression and
metabolism in maturing fruit
abscission zones

Abscisic acid (ABA), with well-known roles in the regulation of

plant growth and development, responses to abiotic and biotic

stresses, and multiple physiological processes, has also been shown

to play important roles in fruit ripening of both climacteric and

non-climacteric fruit (Bai et al., 2021; Gupta et al., 2022; Perotti

et al., 2023). As a generalization, ABA appears to be a major

regulator of non-climacteric fruit ripening, while ABA and

ethylene act together synergistically or through crosstalk to

regulate climacteric fruit ripening. ABA can induce ethylene

biosynthetic genes and result in a higher ethylene production, or

in other cases, the ABA response depends on a functional ethylene

signaling pathway (Zou et al., 2022). Nevertheless, the effects of

ABA in both types of fruit, whether with or without an ethylene

burst during ripening, appear to be similar and include cell wall

loosening, color, changes in metabolites, including sugars,

phenolics, flavonoids and antioxidants, and flavor related to the

production of esters and volatiles (Gupta et al., 2022). Therefore,

ABA has major role in determining important attributes for

fruit quality.

ABA has long been considered a positive regulator of abscission

since it was found to play a role in abscission of leaf explants
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(Abeles, 1967). Furthermore, its role as an accelerator of leaf explant

abscission was associated with increased ethylene production

(Abeles, 1967; Jackson and Osborne, 1972; Sagee et al., 1980). In

addition to leaves, ABA also stimulated abscission of fleshy fruits.

Rasmussen and co-workers (Rasmussen, 1974) observed that the

uptake of ABA by the peduncle of mature citrus fruit explants

accelerated abscission by causing a decrease in the fruit removal

force (FRF). In addition, they also observed that the drop in FRF in

fruit explants producing ethylene was greater when they were also

treated with ABA, suggesting that ethylene and ABA are likely to

have a combined effect on fruit abscission. A later study by Gómez-

Cadenas and co-workers (Gomez-Cadenas et al., 2000) showed that

citrus fruit abscission induced by carbohydrate starvation produced

by defoliation was triggered by increases in the levels of ABA and 1-

aminocyclopropane-1-carboxylic acid (ACC), the immediate

metabolic precursor of ethylene. ABA treatment of fully defoliated

citrus trees accelerated fruit abscission while treatment with

fluridone, an indirect inhibitor of ABA synthesis (Bartels and

Watson, 1978; Moore and Smith, 1984), delayed abscission

suggesting that ABA appeared to act as a mediator between

carbohydrate deficiency and ACC (Gomez-Cadenas et al., 2000).

Many table grape varieties show berry abscission during postharvest

storage (Rizzuti et al., 2015). The shedding of berries in the clusters

was associated with senescence-induced ethylene as application of

1-methylcyclopropene (1-MCP), an ethylene antagonist, prevented

rachis browning and blocked abscission (Wang et al., 2019). Table

grapes undergo a rapid and transient increase in ABA accumulation

in both rachis and berries, while ethylene emission increased

continuously during postharvest storage (Zhu et al., 2022). Berry

abscission was associated with a high decrease in FRF and increases

in the activity of cell wall remodeling enzymes (pectin
FIGURE 2

Protein interactions and transcriptional connections between tomato AZ function and fruit ripening. Proteins in blue are positive and those in red are
negative regulators respectively. JOINTLESS, MACROCALYX and MBP21/J2 form a complex and can activate meristem activity genes.
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methylesterase, polygalacturonase and cellulase) in berry-AZs.

Treatment with nordihydroguaiaretic acid (NDGA), an inhibitor

of 9-cis-epoxycarotenoid dioxygenase (NCED), to grape clusters

increased FRF and reduced berry abscission, cell wall remodeling

enzyme activity in berry-AZs, and ABA content and ethylene

emission in both rachis and berries (Zhu et al., 2022). This effect
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of NGDA on ethylene emission and ABA accumulation appeared to

be caused by reduced expression of VvNCED1 and VvACO1, key

enzymes in ABA and ethylene biosynthesis respectively. Therefore,

ethylene-induced postharvest abscission in grapes could be favored

by the transport of ABA from the senescing berry to the berry-AZ,

thus affecting ethylene synthesis.
TABLE 2 Components with regulatory roles in the AZ related to metabolism and effects on fruit quality discussed in this review.

Gene name Pathwaytargeted Abscission
effect

Ripening
effect

References

KNOTTED1-LIKE HOMEOBOX
PROTEIN1 (KD1)

Auxin transport POSITIVE ? Ma et al. (2015);
Sundaresan et al. (2021)

HOMEOBOX15A (SlHB15A) AZ activation
Jasmonate metabolism

NEGATIVE ? Liu et al. (2022b)

BEL1-LIKE
HOMEODOMAIN11 (SlBEL11)

Auxin transport NEGATIVE ? Dong et al. (2024)

MicroRNA1917/CONSTITUTIVE
TRIPLE RESPONSE1 (CTR1) Module

Ethylene biosynthesis and signaling POSITIVE POSITIVE Wang et al. (2018)

CLAVATA3-WUSCHEL
(SlCLV3-SlWUS) Module

Auxin response
Ethylene biosynthsis

POSITIVE ? Cheng et al. (2022)

ETHYLENE-RESPONSIVE FACTOR
52 (SlERF52)

AZ development and activation POSITIVE ? Nakano et al. (2014); Wang
et al. (2021)

NEVER-RIPE (NR/SlETR3) AZ activation
Ethylene response

POSITIVE POSITIVE Tucker et al. (1984);
Lanahan et al. (1994);
Wilkinson et al. (1995)

MADS-box transcription factor
FOREVER YOUNG

FLOWER-LIKE (SlFYFL)

AZ activation
Ethylene biosynthesis

NEGATIVE NEGATIVE2 Xie et al. (2014)

MADS-box transcription factor
JOINTLESS (J)

AZ development POSITIVE ? Mao et al. (2000)

MADS-box transcription factor
SlMBP21/J2

AZ development
Ethylene and auxin homeostasis

POSITIVE POSITIVE Joubert, 1965); Liu et al.
(2014); Li et al. (2017);

Roldan et al. (2017); Zhang
et al. (2024a); Zhang

et al. (2024b)

MADS-box transcription factor
MACROCALYX (MC)

AZ development POSITIVE ? Nakano et al. (2012); Liu
et al. (2014)

TOMATO AGAMOUS-LIKE1/
ARLEQUIN (TAGL1/ALQ)

AZ development POSITIVE POSITIVE Vrebalov et al. (2002); Itkin
et al. (2009); Pineda

et al. (2010)

MADS-box transcription factor
FRUITFULL2 (MBP7/FUL2)

AZ activation
Auxin gradient

Ethylene response

POSITIVE POSITIVE3 Bemer et al. (2012); Wang
et al. (2014); Cheng

et al. (2022)

1MADS-box transcription factor
SlMADS-RIN

Fruit ripening pathways ? POSITIVE Xie et al. (2014)

1MADS-box transcription
factor SlMADS1

Fruit ripening pathways ? NEGATIVE Dong et al. (2013); Xie
et al. (2014)

1MADS-box transcription factor SlCMB1 Fruit ripening pathways ? POSITIVE Zhang et al. (2018); Xing
et al. (2022)

1APETALA2a (SlAP2a) Fruit ripening pathways ? NEGATIVE Chung et al. (2010)
1Roles during abscission are unknown, but interact with other AZ development related MADS-box transcription factors.
2When SlFYFL is overexpressed ectopically, there is a decrease in ethylene emission in the fruit, postharvest storage of fruit is improved.
3Affects ripening in an ethylene-independent manner (Bemer et al., 2012).
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4 The AZ at the cross roads to
integrate pathways and signals related
to development, whole plant
physiological status, environment,
adaptation and defense

Signaling within the AZ has a pivotal role in determining the

timing of fruit abscission. The current model of AZ function is

based on four stages, including 1) AZ development, 2) AZ

competence to react to stimulus, 3) activation of abscission and 4)

scar formation. All these stages can have an effect on the final

outcome of the fruit quality, whether indirect or direct. A picture is

emerging in which these stages may not be independent, and may

be interlinked through the formation of transcriptional complexes

whose activity may not only provide connections between the

different stages of abscission, but also the final characteristics of

the fruit. Clearly, we know that auxin and ethylene play important

roles during the acquisition of competence and activation stages,

but how they interact at the molecular level is still unclear. In

addition, we know less about the roles of other hormones, including

ABA and JAs. It appears that in many cases ABA and JA act

indirectly through ethylene by stimulating an increase in the

transcripts related to ethylene biosynthesis, which results in more

ethylene production. However, in other cases, it may be that ABA or

JA have independent roles, and their stimulatory activities are

synergistic with ethylene. The details of these mechanisms remain

to be determined, and crosstalk between signaling pathways is

currently a major focus of abscission research.

The current review has focused on the AZ metabolism during

ripe fruit abscission that effects fruit quality, but most of our

knowledge about mature fruit abscission comes from work with

the tomato pedicel AZ during flower abscission. Are the

mechanisms of flower abscission the same for mature fruit

abscission, or are there different mechanisms dependent on the

developmental stage? In addition, we have not discussed important

abscission regulatory pathways that have been discovered from

other organ abscission models, in particular Arabidopsis. One

important mechanism, the INFLORESCENCE DEFICIENT IN

ABSCISSION (IDA) peptide with receptor-like kinases HAESA

(HAE)/HAE-LIKE2 (HAL2) pathway, was first discovered to

function during Arabidopsis floral organ abscission (Stenvik et al.,

2008). There is now evidence that the IDA/HAE/HAL2 pathway

also functions during fruit abscission, including litchi fruitlet

abscission, the tomato pedicel AZ, mango, citrus, and oil palm

(Estornell et al., 2015; Stø et al., 2015; Tranbarger et al., 2019; Li

et al., 2021a; Mesejo et al., 2021; Rai et al., 2021; Lu et al., 2023; Ma

et al., 2024). In particular, the recent article on litchi showed the

litchi AUXIN RESPONSE FACTOR 5 (LcARF5) activates litchi

LcIDL1/LcHSL2 gene expression, while the ETHYLENE

INSENSITIVE 3-like transcription factor LcEIL3 activates LcIDL1

gene expression (Ma et al., 2024). This provides a possible
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mechanistic explanation for the interplay between auxin and

ethylene to initiate abscission.

A recent study on Arabidopsis floral abscission found the secretory

manganese superoxide dismutase (SOD), MSD2, may play an

integrative role between the IDA/HAE/HAL2 pathway, ethylene,

nitric oxide (NO) and ABA signaling components (Lee et al., 2022).

The evidence suggests that MSD2 and ROS signaling functions

upstream of the IDA/HAE/HAL2 pathway. Furthermore, during

litchi fruitlet abscission, the DOF (DNA binding with one finger)

transcription factor LcDOF5.6 functions to repress ROS accumulation

in fruitlet AZ and fruitlet abscission (Ma et al., 2023). When LcDOF5.6

is silenced, the gene expression for the ROS production enzyme

LcRbohD increases, which results in higher ROS accumulation in the

AZ and fruitlet abscission. From these recent studies, it appears that

ROS signaling may play an integrative role during organ abscission.
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