Skip to main content

ORIGINAL RESEARCH article

Front. Plant Sci.
Sec. Plant Biotechnology
Volume 15 - 2024 | doi: 10.3389/fpls.2024.1524665

Improved plant biomass production under low nitrogen conditions through conditional accumulation of the second messenger, guanosine tetraphosphate, in chloroplasts and mitochondria

Provisionally accepted
  • 1 Tokyo Institute of Technology, Meguro City, Japan
  • 2 Nippon Telegraph and Telephone (Japan), Tokyo, Japan

The final, formatted version of the article will be published soon.

    To enhance plant biomass production under low nitrogen conditions, we employed a method to artificially and temporarily accumulate the bacterial second messenger, guanosine tetraphosphate (ppGpp), to modify plastidial or mitochondrial metabolism. Specifically, we fused a chloroplast or mitochondrial transit-peptide to the N-terminus of the bacterial ppGpp synthase YjbM, which was conditionally expressed by an estrogen-inducible promoter in Arabidopsis. The resulting recombinant Arabidopsis plants exhibited estrogen-dependent ppGpp accumulation in chloroplasts or mitochondria and showed reduced fresh weight compared to wild type (WT) plants when grown on agar-solidified plates containing a certain amount of estrogen. This finding aligns with the previous study indicating that plastidial ppGpp levels can influence plant biomass production. When the recombinant plants were grown in the soil with estrogen and low nitrogen-containing water at specific time intervals, they exhibited greater fresh weight than WT plants. These results suggest that the conditional accumulation of ppGpp in not only chloroplasts, but also in mitochondria can lead to improved plant biomass production in soil with low nitrogen applications.

    Keywords: Arabidopsis, biomass, chloroplast, Mitochondria, Nitrogen starvation, ppGpp

    Received: 08 Nov 2024; Accepted: 19 Dec 2024.

    Copyright: © 2024 Goto, Nemoto, Sakoda, Sakurai, Imamura and Masuda. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Shinji Masuda, Tokyo Institute of Technology, Meguro City, Japan

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.