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Dihydroporphyrin iron (DH-Fe) is a novel plant growth regulator that plays

significant roles in plant stress resistance. We found that Andrographis

paniculata is extremely sensitive to low temperature (LT) with a threshold of

25°C. To evaluate whether and how DH-Fe alleviates LT stress in A. paniculata,

different DH-Fe concentrations (0, 10, 20, and 40 mg·L-1) were applied to

estimate its effects on C and N metabolism and antioxidative capacity in A.

paniculata grown under 20°C. Pre-treatment of DH-Fe alleviated LT-induced

anthocyanin accumulation. Additionally, it relieved LT-induced oxidative stress

by increasing the activity of catalase (CAT). DH-Fe reduced the contents of

sucrose, soluble sugar and starch and the activities of sucrose synthase (SS) and

hexokinase (HXK), but stimulated the activities of sucrose phosphate synthase

(SPS), glucose-6-phosphate dehydrogenase (G6PDH), glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), phosphoenolpyruvate carboxylase (PEPC),

isocitrate dehydrogenase (ICDH), and malic enzyme (ME). Soluble protein and

proline contents were decreased by DH-Fe, while total N and free amino acids

contents were increased, accompanying by the enhancement of the activities of

glutamine synthase (GS), glutamic-oxaloacetic transaminase (GOT) and

glutamic-pyruvic transaminase (GTP). Simultaneously, the content of

andrographolide, the bioactive ingredient of A. paniculata, was remarkably

declined. These results indicated that DH-Fe alleviates LT-induced oxidation by

increasing sugar catabolism and allocating C metabolic flow to N assimilation. A
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concentration of 20 mg·L-1 DH-Fe is recommended to be used to enhance LT

tolerance in A. paniculata. Our results update the understanding of the

mechanism of plant cold tolerance and provide new ideas for relieving plant

cold damage.
KEYWORDS
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Highlights
• Andrographis paniculata is sensitive to low temperature

with a threshold of 25°C.

• Low temperature stress increases sugar accumulation but

decreases nitrogen accumulation in A. paniculata.

• DH-Fe enhances the activities of carbohydrate metabolism

and nitrogen assimilation enzymes.

• DH-Fe alleviates oxidative stress of plants under

low temperature.
1 Introduction

Temperature is a key environmental factor that determines plant

growth and distribution. The frequent occurrence of extreme weather

due to climate change and the introduction of plants in higher

latitude areas have resulted in short-term low temperature (LT)

stress on plants. LT stress is divided into chilling stress (< 20°C)

and freezing stress (< 0°C) according to the environmental

temperature. The underlying mechanisms by which LT constrains

plant growth and productivity are complex (Ding et al., 2019). The

most common impact of LT stress on plants is disruption of the

integrity of plant cell membranes, thereby increasing oxidative stress

and inhibiting plant growth (Manasa et al., 2022).

Since plants are sessile, they adapt to environmental

fluctuations through metabolism. There are many physiological

protective mechanisms for plants to cope with LT stress. Plants can

enhance osmotic regulation ability through accumulation of

osmotic substances such as soluble sugars and proline (Raza et al.,
iron; G6PDH, glucose-

ehyde 3-phosphate

, glutamic-oxaloacetic

S, glutamine synthase;

DA, malondialdehyde;

oxylase; ROS, reactive

02
2023a), and increase reactive oxygen species (ROS) scavenging

capacity through enzymatic and non-enzymatic pathways to

maintain cell redox homeostasis (Kocsy et al., 2001).

Carbon (C) and nitrogen (N) metabolisms are of great

importance in plant adaptation to abiotic stresses (Cui et al.,

2019). Exposure to LT stress usually causes a decline in growth

and N assimilation, but increases carbohydrate accumulation.

Sucrose catabolism plays important roles in alleviating plant

stress (Zhang et al., 2024). C partitioning and the generation of

reductants (NADPH) catalyzed by dehydrogenases protect plants

from LT stress (Airaki et al., 2012; Kitashova et al., 2023). It has also

been widely reported that enhanced N metabolism increases plant

fitness under the stresses such as drought (Zhong et al., 2019),

salinity (Shao et al., 2015), heavy metal (Hussain et al., 2020), and

high and low temperature (Luo et al., 2023; Soualiou et al., 2023).

Therefore, modulating carbon and nitrogen metabolism could

ameliorate plant stress tolerance.

Exogenous application of plant growth regulator plays an

important role in alleviating plant LT stress and restoring plant

productivity (Zhou et al., 2003; Ritonga and Chen, 2020). For

examples, exogenous 5-aminolevulinic acid (ALA) protects plants

against cold-triggered oxidative stress by interacting with GABA,

NO, H2O2, and JA (Liu et al., 2018, 2019, 2020); melatonin alleviates

plants cold stress by regulating redox homeostasis (Li et al., 2018a).

Some plant hormones and analogue such as abscisic acid, salicylic

acid, and trinexapac-ethyl also act as growth regulators which can

enhance plant osmotic regulation and antioxidant capacity (Guan

et al., 2018; Raza et al., 2023b). Cao et al. (2017) reported that

exogenous glycine alleviates cold stress of rice plant by mediating N

uptake, photosynthesis, and antioxidant defense ability.

Dihydroporphyrin iron (DH-Fe) is a novel plant growth regulator

derived from silkworm excrement. Due to its characteristics of

safety and green and pollution-free, it has been extensively used in

enhancing crop stress resistance and improving the yield of cereal

and economic crops (Cao et al., 2016, 2018; Chu et al., 2023; Yang

et al., 2023). It is consistently revealed that DH-Fe ameliorates plant

photosynthesis and antioxidant capacity. However, the effects of

DH-Fe on plant LT stress resistance and the physiological

mechanism have not been well understood.

Andrographis paniculata is a medicinal plant originating from

tropical regions that could be sensitive to LT stress. It has been
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introduced to and mainly cultivated in the south China since the

early 20th century. With the growing demand of pharmaceutical

industry for the herb, it has been recently introduced northward to

the area north of the Yangtze River, where the temperature could be

the key factor restricting the growth and the completion of its life

cycle. Given the excellent performance of DH-Fe in ameliorating

plant stress resistance, this study intended to investigate the

protective effect of DH-Fe on A. paniculata under LT stress. We

aimed to reveal the physiological mechanism by which DH-Fe

rescues A. paniculata plants from LT stress. It could provide new

ideas for relieving plant cold damage.
2 Materials and methods

2.1 Plant materials and treatments

Andrographis paniculata (Burm. f.) Ness from the Acanthaceae

was used as experimental material. The seeds were provided by the

seed bank of Guangxi Botanical Garden of Medicinal Plants.

Genetic stable and consistent lines were obtained by single plant

selection and cultivation for three generations. The seeds were sown

on seedbed filled with wet perlite-vermiculite (V: V = 4: 1) and

incubated in a growth chamber for germination. The photoperiod

was 14 h and light intensity was 100 mmol·m-2·s-1 provided by LED

with a constant temperature of 28°C. Two weeks after germination,

the seedlings were transplanted to a seedling-raising plate and

continued to grow for a month in the light and temperature

conditions described above. The mixture of perlite, vermiculite

and organic fertilizer (V: V: V = 4: 1: 2) was used as growth

substratum. When the seedlings were 6-leaf age, they were

transplanted to pots and grown in the mixture of perlite,

vermiculite and organic fertilizer (V: V: V = 4: 1: 2) with the light

and temperature conditions above. The seedlings at 12-leaf age were

used for temperature treatments. The plants were put in light

incubator at constant temperature of 10°C, 15°C, 20°C, 25°C, or

30°C with a photoperiod of 14/10 h light/dark. The intensity of light

in the incubator was 100 mmol·m-2·s-1. The plants were watered

once a week with the nutrition solution as reported previously

(Huang et al., 2023), to avoid water stress.

DH-Fe was provided by Nanjing Bostec Biological Engineering

Co., Ltd. (Nanjing, China), and the content of active ingredient of

the product is 0.02%. The concentration of DH-Fe applied in this

study was 0, 10, 20, and 40 mg·L-1. Plants grew in optimal

temperature (30°C) were foliar sprayed with DH-Fe 3 days before

LT stress (20°C) treatment. Then the plants were exposed to 20°C

and grown in incubator with the light intensity of 100 mmol·m-2·s-1

and the photoperiod of 14/10 h light/dark. After treatment for 7

days, the plants were sampled for evaluating the effects of DH-Fe on

plant LT stress tolerance.
2.2 Measurements of total N

Aboveground of the plants were harvested and oven-dried at

70°C to a constant weight. Then the samples were fine pulverized,
Frontiers in Plant Science 03
and about 50 mg powder was used for total nitrogen measurement.

The samples were digested with H2SO4-H2O2 at 260°C. The

contents of NH4
+ and NO3

- in the digestion solution were

measured using the indophenol blue colorimetry method at 625

nm (Novamsky et al., 1974) and ultraviolet spectrophotometry at

210 nm (Norman and Stucki, 1981) with (NH4)2SO4 and KNO3 as

standard, respectively. Total N content is the sum of NH4
+ and

NO3
- contents.
2.3 Anthocyanin measurements

Anthocyanin in fresh leaves was extracted by immersing the

samples in acid ethanol solution (0.1 mol·L-1 HCl in 95% ethanol)

and incubating at 60°C water bath for 1 h. The absorbance of the

extract was measured at 530 nm, 620 nm, and 650 nm, respectively.

Anthocyanin content based on fresh weight was calculated using the

molar extinction coefficient of 4.62 × 104 mM-1·cm-1 (Sun et al., 2018).
2.4 Measurement of hydrogen peroxide
and lipid peroxidation

H2O2 was measured by colorimetry with titanium (Brennan

and Frenkel, 1977). Frozen leaf samples (0.1 g) were homogenized

with 10 mmol·L-1 3-amino-1,2,4-triazole and centrifuged at 4°C and

9400 g for 10 min. The supernatant was reacted with 0.1% titanium

sulphate in 20% H2SO4. Removing precipitant, the supernatant was

measured colorimetrically at 410 nm. H2O2 was used as standard.

Malondialdehyde (MDA) content represents lipid peroxidation.

MDA in leaf samples was prepared as soluble protein described

latter. The supernatant was reacted with 0.6% thiobarbituric acid in

5% trichloroacetic acid in boiling water bath for 15 min. After

centrifuging at 9400 g for 10 min, the supernatant was measured

spectrophotometrically at 450 nm, 532 nm, and 600 nm,

respectively. The MDA content was calculated as in Kramer et al

(1991) using the coefficient of 0.155 mM-1·cm-1.
2.5 Soluble protein and antioxidant indexes

Soluble protein was extracted by 100 mmol·L-1 sodium

phosphate buffer (pH7.5) by homogenizing frozen samples in

pre-cooled mortar and pestle. The homogenates were centrifuged

at 4°C and 9400 g for 10 min, and soluble protein content in the

supernatant was measured spectrophotometrically at 562 nm using

the BCA-protein assay (Smith et al., 1985).

Catalase (CAT) activity was measured by monitoring the decline

rate of absorbance at 240 nm (A240) after adding 0.1 mL enzymes

extract in 1 mL reaction system containing 50 mmol·L-1 sodium

phosphate buffer (pH7.8) and 20 mmol·L-1 H2O2. The activity of

CAT was represented as mmol H2O2·mg-1 protein·min-1. The

extinction coefficient of H2O2 is 36 mM-1·cm-1 (Havir and Mchale,

1987). Superoxide dismutase (SOD) activity was measured by

monitoring the inhibition of photochemical reduction of nitro-blue

tetazolium (NBT) (Jalali-e-Emam et al., 2011).
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2.6 Amino acids and proline

Total free amino acids were measured by ninhydrin method

(Sun et al., 2006) with some modifications. Frozen leaf samples

(0.1 g) were homogenized with 10% acetic acid, and then

centrifuged at 4°C and 9400 g for 10 min. The supernatant was

incubated in boiling water bath for 15 min, and then reacted with

0.5% ninhydrin reagent in the mixture of N-propyl alcohol, N-

butanol, ethylene glycol, and sodium acetate buffer (pH5.4) (V: V:

V: V = 1: 2: 4: 0.6) in boiling water bath for 15 min. The absorbance

at 580 nm was detected and the content of amino acid N was

calculated with leucine as standard.

Proline in frozen leaf samples (0.1 g) was extracted with 3%

sulfosalicylic acid in boiling water bath for 10 min. After cooling, 2

mL extract was reacted with 3 mL 2.5% ninhydrin in the mixture of

acetic acid and 6 mol·L-1 orthophosphoric acid (H3PO4) (V: V = 3:

2) in boiling water bath for 40 min. Cooling again, the proline in the

solution was extracted with 2 mL methylbenzene, and then

measured spectrophotometrically at 520 nm (Bates et al., 1973).

The proline concentration was calculated by the standard curve.
2.7 Nitrogen metabolism enzymes

Frozen leaf samples (0.1 g) were homogenized with 3 ml 50

mmol·L-1 Tris-HCl (pH8.0, containing 2 mmol·L-1 Mg2+, 2 mmol·L-1

DTT and 0.4 mol·L-1 sucrose) and centrifuged at 4°C and 9400 g for

10 min. The supernatant was used for measurement of glutamine

synthase (GS), glutamate synthase (GOGAT), glutamate

dehydrogenase (GDH), glutamic-oxaloacetic transaminase (GOT),

and glutamic-pyruvic transaminase (GPT) activities as reported

previously (Zhong et al., 2017). Soluble protein in enzyme extract

was measured using the BCA-protein assay.
2.8 Sugars and starch

Sucrose and soluble sugar were extracted by deionized water at

80°C water bath for 30 min and 3 times. The extracts were collected.

Starch in the residues was extracted using perchloric acid after

starch was gelatinized at boiling water bath. Sucrose was quantified

colorimetrically at 500 nm by the dioxybenzene method (Li et al.,

2012), and soluble sugar and starch were measured using the

sulfuric acid-anthrone method (Wang et al., 2002). Sucrose and

glucose were used as standard.
2.9 Quantification of carbohydrate
metabolic enzymes activities

Enzymes were extracted by homogenizing frozen leaf samples

(~ 0.1 g) with HEPES-KOH (pH7.5) containing 50 mmol·L-1

MgCl2, 10 mmol·L-1 b-mercaptoethanol, 2 mmol·L-1 EDTA, and

2% (W/V) PVP. The homogenates were centrifuged at 4°C and
Frontiers in Plant Science 04
9400 g for 10 min. The supernatant was used for enzyme activity

measurements. Sucrose synthase (SS) and sucrose phosphate

synthase (SPS) activities were assayed by the kits (Suzhou Michy

Biomedical Technology Co., Ltd).

The assay mixture of hexokinase (HXK) contained 100 mmol·L-1

Tris-HCl (pH7.5), 2 mmol·L-1 MgCl2, 10 mmol·L-1 KCl, 1 mmol·L-1

NAD+, 1 mmol·L-1 ATP, 1 unit G6PDH, 2 mmol·L-1 glucose, and 0.1

mL enzyme extract in a total volume of 1 mL (Dai et al., 1999).

The reaction medium of glucose-6-phosphate dehydrogenase

(G6PDH) contained 100 mmol·L-1 Tris-HCl (pH8.0), 10 mmol·L-1

MgCl2, 1 mmol·L-1 NADP+, 5 mmol·L-1 glucose 6-phosphate, and 0.1

mL enzyme extract in a total volume of 1 mL (Airaki et al., 2012).

The assay mixture of glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) contained 100 mmol·L-1 Tris-HCl (pH8.4), 10 mmol·L-1

MgCl2, 2.5 mmol·L-1 DTT, 5 mmol·L-1 ATP, 5 mmol·L-1 3-PGA, 0.2

mmol·L-1 NADPH, and 0.1 mL enzyme extract in a total volume of 1

mL (Schulman and Gibbs, 1968).

The phosphoenolpyruvate carboxylase (PEPE) activity was

assayed in a system containing, in a total volume of 1 mL, 100

mmol·L-1 Tris-HCl (pH8.0), 10 mmol·L-1 MgCl2, 25 mmol·L-1

NaHCO3, 1 mmol·L-1 DTT, 0.2 mmol·L-1 NADH, 24 units of L-

malate dehydrogenase, 8 mmol·L-1 PEP, and 0.1 mL enzyme extract

(Petersen et al., 2001).

The assay mixture of malic enzyme (ME) contained 100

mmol·L-1 HEPES-KOH (pH 7.5), 5 mmol·L-1 MgSO4, 0.5

mmol·L-1 NADP+, 5 mmol·L-1 L(+)-malate, and 0.1 mL of enzyme

extract in a total volume of 1 mL (Kulichikhin et al., 2009).

The assay mixture of isocitrate dehydrogenase (ICDH)

contained 100 mmol·L-1 K2HPO4-KH2PO4 (pH7.5), 50 mmol·L-1

MgCl2, 1 mmol·L-1 NADP+, 30 mmol·L-1 isocitrate, and 0.1 mL

enzyme extract in a total volume of 1 mL (Airaki et al., 2012).

Enzyme activities were calculated by the average rate of NAD

(P)+ reduction or NAD(P)H oxidation during the first 2 min after

the start of the reaction. Soluble protein in enzyme extract was

measured using the BCA-protein assay.
2.10 Quantification of diterpenoid lactones

Diterpene lactones (andrographolide, neoandrographolide,

14-deoxyandrographolide, and 14-deoxy-11, 12-didehydro

andrographolide) were quantified by the HPLC method. About

0.1 g fine pulverized dry leaf samples were immersed in 5 mL 40%

(V/V) methanol, and ultrasound extracted for 30 min. Then the

extract was filtered by 0.22 mm water-phase filter membrane, and

detected by the HPLC (2030C-Plus, Shimadzu, Japan) at 205 nm

using the Agi lent C18 chromatography column with

octadecylsilane bonded silica gel as filler. Mobile phase A was

acetonitrile, and mobile B was water. Elution gradient: 0-15 min,

80%-75% B and 20%-25% A; 15-30 min: 75%-72% B and 25%-

28% A; 30-60 min: 72%-60% B and 28%-40% A; 60-65 min: 60%-

15% B and 40%-85% A; 65-70 min, 15%-0% B and 85%-100% A.

The injection volume was 10 mL. Column temperature was 30°C,

and flow rate was 1 mL·min-1.
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2.11 Statistical analysis

All the tests were carried out in triplicate or quadruplicate, and

the results were presented as mean value ± standard deviation.

Analysis of significant differences and correlation was performed in

SPSS Statistics 19 software (IBM Inc., Chicago, IL, USA), using the

one-way ANOVA and Duncan’s multiple range method and

Pearson correlation coefficient method, respectively. Statistical

significance was considered when P < 0.05.
3 Results

3.1 Low temperature inhibits A. paniculata
growth and promote oxidation stress

As shown in Figure 1A, A. paniculata is extremely sensitive to

low temperature (LT). A. paniculata grown vigorously at 30°C, but
Frontiers in Plant Science 05
its growth was inhibited and its development was accelerated when

the temperature was 20°C and 25°C, in which conditions plants

showed early flower branch differentiation and even early flowering.

Plants cannot survive at 10°C, and the growth was arrested at 15°C.

Anthocyanin was remarkably accumulated when temperature

was lower than 25°C (Figure 1B), while soluble protein was

decreased gradually with the increase of temperature (Figure 1C).

Additionally, LT remarkably increased the contents of H2O2 and

MDA, as well as the activity of SOD (Figures 1D–F), while the CAT

activity was dramatically reduced when the temperature was lower

than 20°C (Figure 1G). These results suggested that A. paniculata is

a LT-sensitive plant, which is damaged from LT lower than 25°C.

Leaf N content showed an upward tendency with the increase of

temperature, but there was no significant difference among 20°C,

25°C, and 30°C (Figure 1H). Sucrose, soluble sugar and starch

contents were reduced with the increase of temperature, but they

were not different between 25°C and 30°C (Figures 1I–K). The

results indicated that LT suppressed C and N metabolism of A.
FIGURE 1

Effects of temperature on plant growth, antioxidant, and the accumulation of nitrogen and sugars. (A) Phenotype of plants grown under different
temperature for 60 days. Red arrows indicate flower branches. (B) Anthocyanin content. (C) Soluble protein content. (D) H2O2 content.
(E) Malondialdehyde (MDA) content. (F) Superoxide dismutase (SOD) activity. (G) Catalase (CAT) activity. (H) Total leaf nitrogen content. (I) Sucrose
content. (J) Soluble sugar content. (K) Starch content. Data represented as means ± SD (n = 4). Different letters on the bars indicates significant
difference by the one-way ANOVA and Duncan’s multiple range method (P < 0.05).
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paniculata. In the following study, 20°C was represented as

LT stress.
3.2 DH-Fe pretreatment alleviated LT stress
induced oxidation stress

Plants were pretreated with different DH-Fe concentrations and

grown at 20°C. It was clear that application of DH-Fe reduced the

accumulation of anthocyanin in leaves under LT stress (Figure 2A).

The H2O2 and malondialdehyde (MDA) contents were remarkably

reduced by DH-Fe, with the lowest contents at 20 mg·L-1 DH-Fe

(Figures 2B, C). The SOD activity was significantly repressed when

the DH-Fe concentration was 40 mg·L-1 (Figure 2D). In contrast, the

CAT activity was triggered by DH-Fe application, with a significant

increase at 20 and 40 mg·L-1 (Figure 2E). Apparently, DH-Fe is an

effective protectant for plants under LT stress.
3.3 DH-Fe pretreatment reduced LT stress
induced sugar accumulation

DH-Fe remarkably reduced the accumulation of sucrose, with

the lowest content at 20 mg·L-1 (Figure 3A). Both total soluble sugar

and starch contents were not different from the control at 10 mg·L-1

DH-Fe, but they were remarkably lower at 20 and 40 mg·L-1 DH-Fe

(Figures 3B, C).
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The activity of SPS was remarkably higher at 20 mg·L-1 DH-Fe

than that in the control (Figure 4A). In contrast, DH-Fe treatments

significantly suppressed SS and HXK activities (Figures 4B, C). The

GAPDH, PEPC and ICDH activities were remarkably increased by

all DH-Fe concentrations (Figures 4D, E, H), while the G6PDH and

ME activities were significantly higher at 20 mg·L-1 DH-Fe

(Figures 4F, G). The results revealed that DH-Fe stimulated sugar

catabolism in A. paniculata under LT stress.
3.4 DH-Fe pretreatment increased N
metabolism under LT stress

DH-Fe application raised the content of leaf total N, which was

significantly higher at 20 and 40 mg·L-1 DH-Fe (Figure 5A).

However, DH-Fe remarkably declined the accumulation of

soluble protein, and the lowest soluble protein content was

observed at 20 mg·L-1 DH-Fe (Figure 5B). In line with total N,

free amino acids content was markedly enhanced by DH-Fe, with

the greatest at 20 mg·L-1 DH-Fe (Figure 5C). Conversely, the proline

content was descended in DH-Fe treatments (Figure 5D).

DH-Fe application considerably enhanced the GS activity

(Figure 6A), but reduced the GOGAT activity (Figure 6B). Both

GOT and GPT activities were remarkably increased at 20 and 40

mg·L-1 DH-Fe (Figures 6C, D). These results indicated that DH-Fe

promoted N uptake and assimilation in A. paniculata under

LT stress.
FIGURE 2

Effects of DH-Fe on antioxidant capacity. (A) Leaves phenotype was pictured 7 days after LT treatments. (B) Hydrogen peroxide content.
(C) Malondialdehyde content. (D) Superoxide dismutase activity. (E) Catalase activity. Data represented as means ± SD (n = 4). Different letters on the
bars indicates significant difference by the one-way ANOVA and Duncan’s multiple range method (P < 0.05).
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3.5 DH-Fe pretreatment decreased
andrographolide accumulation under
LT stress

DH-Fe pretreatment mainly affected andrographolide (AG) of

diterpene lactones in A. paniculata. With the growing DH-Fe

concentration, AG content was decreased gradually and significantly

(Figure 7A). However, the contents of neoandrographolide (NAG)

and 14-deoxyandrographolide (DOAG) were not significantly affected

by DH-Fe (Figures 7B, C). In contrast, 20 mg·L-1 DH-Fe remarkably
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increased the content of 14-deoxy-11, 12-didehydroandrographolide

(DHAG) (Figure 7D). The AG content was negatively correlated with

N content (P < 0.05) but positively correlated with sugars contents

(P > 0.05) (Table 1).
4 Discussion

A. paniculata originated from South Asia and is widely

distributed in South Asia, Southeast Asia, and southern China.
FIGURE 4

Effects of DH-Fe on carbon metabolism enzymes. (A) Sucrose phosphate synthase (SPS) activity. (B) Sucrose synthase (SS) activity. (C) Hexokinase (HXK)
activity. (D) Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) activity. (E) Phosphoenolpyruvate carboxylase (PEPC) activity. (F) Glucose-6-
phosphate dehydrogenase (G6PDH) activity. (G) Malic enzyme (ME) activity. (H) Isocitrate dehydrogenase (ICDH) activity. Data represented as means ±
SD (n = 3). Different letters on the bars indicates significant difference by the one-way ANOVA and Duncan’s multiple range method (P < 0.05).
FIGURE 3

Effects of DH-Fe on sugar and starch accumulation. (A) Sucrose content. (B) Soluble sugar content. (C) Starch content. Data represented as means ±
SD (n = 4). Different letters on the bars indicates significant difference by the one-way ANOVA and Duncan’s multiple range method (P < 0.05).
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Low temperature is the main obstacle it faces during its northward

introduction. In this study, by treating with temperature gradients,

we found that A. paniculata is very sensitive to low temperature.

Temperature at 20°C-25°C not only inhibited its growth but also

accelerated its development, and temperature lower than 15°C

retarded its growth or even lethal for the plant. Thus, 15°C and

25°C could be the temperature thresholds for the survival and

vigorous growth of this plant species, respectively. To reveal the

physiological mechanism by which A. paniculata in response to LT

is of great significance for enhancing its LT tolerance via application

of exogenous regulators and breeding.

LT stress dysregulates many physiological processes in plant

such as reactive oxygen species (ROS) metabolism, photosynthesis,

respiration, and N metabolism (Airaki et al., 2012). LT evokes the

production of ROS in plants, predisposing them to oxidative bursts

and stress within plant cells. The production and scavenging of ROS

are pivotal for plants to adapt to LT stress. LT conditions (e.g. 15°C,

20°C, and 25°C) elevated oxidative stress of plants as indicated by
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increased H2O2 and MDA contents, as well as enhanced SOD

activity. Under LT conditions, limitation of CO2 fixation coupled

with over-reduction of the electron transport chain is the main

cause of ROS production (Suzuki and Mittler, 2006).

Dihydroporphyrin is a type of reduced porphyrin, a specific

chlorophyll derivative; Fe is an important factor mediating

chlorophyll biosynthesis. Foliar DH-Fe application restores leaf

chlorophyll content, enhances the activities of antioxidant

enzymes, and decreases the generation rate of H2O2 (Cao et al.,

2016). Here, DH-Fe at 20 and 40 mg·L-1 considerably dropped the

accumulation of H2O2 and MDA, but remarkably increased the

CAT activity under LT stress, suggesting that appropriate

concentration of DH-Fe alleviates LT-induced oxidative stress by

enhancing CAT activity in A. paniculata plants.

Sugars function as osmoprotectants, whose accumulation has

been considered to be an adaptive mechanism of plants to stresses

(Ahmad et al., 2020). However, high accumulation of sugars leads to

plant growth retardation and even is toxic to plants (Huang et al.,
FIGURE 5

Effects of DH-Fe on N status in A. paniculata grown under low temperature. (A) Total N content. (B) Soluble protein content. (C) Free amino acid
content. (D) Proline content. Data represented as means ± SD (n = 4). Different letters on the bars indicates significant difference by the one-way
ANOVA and Duncan’s multiple range method (P < 0.05).
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2022). Excessive accumulation of sugars triggers the synthesis of

anthocyanin (Murakami et al., 2008). Here, we found that LT stress

induced a great accumulation of anthocyanin in leaves, which was

associated with the build-up of sugars. It was suggested that sugar

could inhibit plant growth via the synthesis of anthocyanin. An

extensive accumulation of anthocyanin coupled with the increases

in SOD activity and MDA content lead to plant senescence (Jakhar

and Mukherjee, 2014). The increased anthocyanin content and

oxidative stress under LT stress could contribute to LT-induced

early flowering in A. paniculata. Thus, the catabolism of sugars

(carbohydrates) could be beneficial for plants to acclimate LT stress.

DH-Fe alleviates plant senescence under stress condition (Chu

et al., 2023). The results in this study showed that high DH-Fe

concentration eliminated the phenotype of anthocyanin

accumulation, accompanying with reduced sugar accumulation.

Simultaneously, the SOD activity and MDA content were

decreased. The results indicated that DH-Fe delayed senescence

of A. paniculata plants under LT stress by accelerating

sugar catabolism.
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C partitioning between biosynthetic and dissimilatory pathways

is essential in plant LT acclimation (Kitashova et al., 2023). Several

enzymes such as sucrose phosphate synthase (SPS) and

phosphoenolpyruvate carboxylase (PEPC) play important roles in

mediating C metabolic flow into downstream TCA cycle and N

assimilation (Champigny and Foyer, 1992; Yu et al., 2017; Li et al.,

2018b). The pentose phosphate pathway (PPP) is important to

produce precursors for nucleotide and amino acid biosynthesis, to

provide reductant for anabolism, and to defeat oxidative stress

(Stincone et al., 2014). In this study, the activities of SPS, PEPC,

G6PDH and GAPDH were elevated by pretreatment of DH-Fe

under LT stress, whereas the HXK and SS activities were

downregulated. It was implied that DH-Fe pretreatment activated

the PPP and downstream glycolysis under LT stress.

NADPH oxidase contributes to the production of ROS in LT

conditions (Suzuki and Mittler, 2006). It has been proposed that the

NADPH-generating dehydrogenases function in plant cold stress

acclimation through their effect on the redox state of plant cells

(Airaki et al., 2012). The PPP is a critical process producing
FIGURE 6

Effects of DH-Fe on N metabolic enzymes in A. paniculata grown under low temperature. (A) Glutamine synthase (GS) activity. (B) Glutamate synthase
(GOGAT) activity. (C) Glutamic-oxaloacetic transaminase (GOT) activity. (D) Glutamic-pyruvic transaminase (GPT) activity. Data represented as means ±
SD (n = 3). Different letters on the bars indicates significant difference by the one-way ANOVA and Duncan’s multiple range method (P < 0.05).
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NADPH, which functions in maintaining redox balance under

stress situations. The key enzyme in PPP, NDAP-dependent

G6PDH, together with other NADPH-generating enzymes such

as ICDH andME could provide NADPH for ATP synthesis (Lawlor
Frontiers in Plant Science 10
and Tezara, 2009), N assimilation (Thormählen et al., 2015), and

reduction of oxidized glutathione (Lascano et al., 1999). In the

current study, the activities of G6PDH, ICDH and ME were

remarkably increased by DH-Fe, implying that DH-Fe enhanced

LT stress tolerance of A. paniculata plants by promoting the

production of reductants.

Increase in sugar catabolism not only maintains cell redox

homeostasis but also provides C skeletons for N metabolism. The

increased ICDH activity could provide more C skeletons (a-
ketoglutarate) for N assimilation. In this study, DH-Fe reversed

the inhibition of LT stress on N metabolism, which was

corroborated by the increases in the activities of GS, GOT and

GTP and the content of N. It was suggested that DH-Fe promotes N

uptake and assimilation to enhance the resistance of A. paniculata

to LT stress. N metabolism has been demonstrated to be essential

for plant fitness (Wang and Lü, 2020), although it itself is one of the

main processes that are susceptible to adversities in plants. There

are several mechanisms that N metabolism involves in plant
FIGURE 7

Effects of DH-Fe on diterpene lactones contents in A. paniculata grown under low temperature. (A) Andrographolide (AG) content. (B) Neoandrographolide
(NAG) content. (C) 14-Deoxyandrographolide (DOAG) content. (D) 14-Deoxy-11,12-didehydroandrographolide (DHAG) content. Data represented as means
± SD (n = 4). Different letters on the bars indicates significant difference by the one-way ANOVA and Duncan’s multiple range method (P < 0.05).
TABLE 1 Correlation analysis of the contents of diterpenoid lactones
and N and carbohydrates.

Index AG NAG DOAG DHAG

Total N -0.623* (0.030) -0.541 (0.069) -0.319 (0.312) 0.162 (0.616)

Sucrose 0.333 (0.266) -0.046 (0.866) 0.027 (0.920) -0.070 (0.798)

Soluble
sugar

0.396 (0.181) 0.096 (0.723) 0.140 (0.606) -0.012 (0.965)

Starch 0.434 (0.139) 0.210 (0.436) 0.102 (0.706) -0.075 (0.783)
The correlation between two variables was expressed by the Pearson correlation coefficient.
The values in brackets were P values. Asterisk (*) indicates significant correlation at P < 0.05
level. AG, andrographolide; NAG, neoandrographolide; DOAG, 14-deoxyandrographolide;
DHAG, dehydroandrographolide.
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resistance to adverse circumstances, including dissipating excessive

energy by assimilation of inorganic N (Yi et al., 2014), stabilizing

protein and maintaining photosynthesis (Zhong et al., 2019),

providing osmolytes such as soluble protein, free amino acids and

proline (Ashraf and Foolad, 2007), and improving cell redox

homeostasis (Soualiou et al., 2023). We found that soluble protein

and proline contents were reduced by DH-Fe application under LT

stress, which was similar to the results those under optimal

temperature (30°C). The findings illustrated that the enhanced N

metabolism resulted from DH-Fe application is less likely to

alleviate the damage of LT stress to A. paniculata by enhancing

osmotic regulation. Alternatively, it could involve in dissipating

excessive energy and maintaining cell redox homeostasis.

Fundamentally, energy excess and redox imbalance are the main

issues that plants face under LT stress.

Secondary metabolites are important bioactive ingredients in

medicinal plants. They also act as defensive substances enhancing

plant stress resistance. Under well growth conditions, in which N

metabolism activity is vigorous and sugar accumulation is relatively

low, the accumulation of secondary metabolites is depressed

(Rühmann et al., 2002). It has been proposed that the synthesis of

protein and amino acids required for plant growth could attenuate

the allocation of C metabolic flow to the synthesis of secondary

metabolites (Larbat et al., 2016). Diterpene lactones are the major

bioactive secondary metabolites in A. paniculata. Their

accumulation is induced by several adversities such as drought
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(Chen et al., 2020), salt stress (Talei et al., 2015), and ultraviolet

radiation (Sun et al., 2022). Andrographolide content was decreased

with the increase of DH-Fe concentration, which was in line with

the decrease of sugar contents but opposite to the increase of N

content. The results reflected that DH-Fe ameliorated plant growth

under LT stress and therefore, diminished the allocation of

carbohydrates to andrographolide biosynthesis in A. paniculata.
5 Conclusion

A. paniculata is a low temperature sensitive plant with a

threshold of 25°C. Application of DH-Fe alleviated LT-induced

oxidative stress in A. paniculata plants by increasing antioxidant

capacity, with the most effective concentration at 20 mg·L-1. The role
of DH-Fe in inducing osmotic regulation was excluded due to

reduced soluble protein, proline and sugars contents. DH-Fe

promoted sugar catabolism via the enzymes of G6PDH, GAPDH,

PEPC, ME, and ICDH, which provided reductant for redox

homeostasis and C skeletons for downstream N assimilation

(Figure 8). Thus, C and N metabolisms play the center role in

DH-Fe attenuating LT stress induced oxidative stress. The results

indicated that application of DH-Fe is an effective strategy for A.

paniculata plants overcoming LT stress. However, a long-term

experiment is needed to evaluate the effect of DH-Fe on

improving the growth of A. paniculata under LT conditions.
FIGURE 8

Schematic diagram of the mechanism of DH-Fe enhancing the LT adaptability of A. paniculata. The brown box represents enhanced, and green box
represents decreased by DH-Fe. The thickness of the arrows indicates the relative magnitude of metabolic flux. Under LT conditions, DH-Fe reduced
the accumulation of sugars and anthocyanin, but increased the catabolism of sugars. The activities of G6PDH, GAPDH, PEPC, ME, and ICDH were
enhanced by DH-Fe, resulting in increased allocation of C metabolic flow towards to N assimilation and amino acids synthesis. Simultaneously,
andrographolide content was decreased. G6PDH, ME, and ICDH are NADPH-generating enzymes. The increase of their activities could lead to high
production of NADPH, which can prevent excessive accumulation of H2O2 and alleviate lipid peroxidation.
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