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Introduction: Timely and accurate recognition of tomato diseases is crucial for

improving tomato yield. While large deep learning models can achieve high-

precision disease recognition, these models often have a large number of

parameters, making them difficult to deploy on edge devices. To address this

issue, this study proposes an ensemble self-distillation method and applies it to

the lightweight model ShuffleNetV2.

Methods: Specifically, based on the architecture of ShuffleNetV2, multiple

shallow models at different depths are constructed to establish a distillation

framework. Based on the fused feature map that integrates the intermediate

feature maps of ShuffleNetV2 and shallow models, a depthwise separable

convolution layer is introduced to further extract more effective feature

information. This method ensures that the intermediate features from each

model are fully preserved to the ensemble model, thereby improving the

overall performance of the ensemble model. The ensemble model, acting as

the teacher, dynamically transfers knowledge to ShuffleNetV2 and the shallow

models during training, significantly enhancing the performance of ShuffleNetV2

without changing the original structure.

Results: Experimental results show that the optimized ShuffleNetV2 achieves an

accuracy of 95.08%, precision of 94.58%, recall of 94.55%, and an F1 score of

94.54% on the test set, surpassing large models such as VGG16 and ResNet18.

Among lightweight models, it has the smallest parameter count and the highest

recognition accuracy.

Discussion: The results demonstrate that the optimized ShuffleNetV2 is more

suitable for deployment on edge devices for real-time tomato disease detection.

Additionally, multiple shallow models achieve varying degrees of compression

for ShuffleNetV2, providing flexibility for model deployment.
KEYWORDS

tomato leaf diseases recognition, lightweight model, ShuffleNetV2, ensemble, self-
distillation, model compression
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1 Introduction

In 2022, the global tomato cultivation area was approximately

4.92 million hectares, yielding around 186.11 million tons of

produce. However, tomato yields continue to be adversely affected

by factors such as climate conditions and pest infestations (Wang

et al., 2024). Various diseases can affect tomato plants at different

growth stages, hindering their growth and ultimately leading to

reduced yield and lower quality (Liang and Jiang, 2023). Traditional

methods for identifying tomato diseases rely on manual inspection,

a process that is both time-consuming and labor-intensive

(Pandiyaraju et al., 2024). With the development of computer

vision and deep learning technologies, these manual approaches

have been increasingly replaced by automated solutions. However,

high-performance models often come with a large number of

parameters, which makes them difficult to deploy efficiently on

edge devices. This poses a significant challenge for large-scale, real-

time detection of tomato diseases (Zhou et al., 2024). Therefore,

developing a more compact model that delivers performance

comparable to larger models is essential for achieving both real-

time and accurate disease detection in tomatoes.

Methods for identifying leaf diseases based on computer vision

are divided into two categories: machine learning methods and deep

learning methods. In terms of machine learning (Qin et al., 2016),

applied a segmentation method combining the K-median clustering

algorithm with linear discriminant analysis to extract 129 features

from lesion images. They then compared the recognition accuracy

of three machine learning algorithms: support vector machine

(SVM), random forest (RF) and K-nearest neighbor methods.

Among them, the optimal SVM model achieved a recognition

accuracy of 94.74% on the test set (Patil et al., 2017). employed

two methods to extract features. The first method involved

calculating HSV color moments, including mean, variance,

skewness, energy, and entropy for each color channel. The second

method utilized 6th-order Exact Legendre Moments. The multi-

class SVM they proposed achieved an accuracy of 99.1% on a three-

class tomato dataset (Meenakshi et al., 2019). focused their research

on potato leaf images to evaluate the effectiveness of various

methods for recognizing potato diseases. They compared

traditional machine learning techniques with neural networks and

found that the artificial neural network achieved a 92% recognition

accuracy, significantly outperforming traditional methods like SVM

and RF. Despite the simplicity of these machine learning algorithms

themselves, manually extracting features is a highly complex

process that often requires domain expert knowledge and a

significant investment of time. The scale of data that can be

processed is very limited (Liu et al., 2024). In recent years, with

the continuous development of deep learning technology, research

on the application of deep learning in plant disease recognition has

been increasing (Rangarajan et al., 2018). used deep learning

models, AlexNet and VGG16, which were pre-trained on

ImageNet, to classify seven types of tomato leaf disease images in

the dataset, achieving accuracy rates of 97.29% and 97.49%,

respectively (Edna Chebet et al., 2019). compared state-of-the-art

deep learning models for plant disease detection, including VGG16,

ResNet50, and DenseNet. They observed that models with greater
Frontiers in Plant Science 02
depth achieved higher accuracy. Among these models, the

DenseNet model with 121 layers performed the best, achieving an

accuracy of 99.75%. Zhao et al. (2021) integrated the multi-scale

feature extraction module and SE module into ResNet50,

significantly enhancing its feature extraction capability and

achieving a recognition accuracy of 96.81% on the tomato leaf

dataset. Zhou et al. (2021) restructured RDN model for

classification task and achieve 95% recognition accuracy on

tomato dataset (Liang and Jiang, 2023). proposed the ResNet50-

DPA model, where cascaded atrous convolution and a dual-path

attention mechanism were introduced to obtain features with

different scales and to capture key features, respectively. However,

in these studies, the high recognition accuracy often depends on

deeper network structures, which usually have a large number of

parameters and significant memory consumption, making them

unsuitable for deployment on resource-constrained small edge

devices (Choudhary et al., 2020).

To address these challenges, We propose an ensemble self-

distillation method and apply it to the lightweight model

ShuffleNetV2, enabling its performance to reach the level of larger

models. Unlike traditional knowledge distillation methods (Hinton

et al., 2015), which rely on one-to-one knowledge transfer from a

pre-trained teacher model to a student model, the approach

proposed in this paper introduces a teacher model that is an

ensemble of multiple student models. The knowledge of this

teacher model is dynamically generated during the training

process, avoiding the introduction of additional training costs. In

contrast to traditional self-distillation methods, which typically use

the original model as the teacher in the framework (as shown in

Figure 1A), our method employs an ensemble of the original model

and several shallow models as the teacher. This ensemble model is

capable of fully integrating the information from each model,

thereby providing the student models with richer and more

comprehensive knowledge. Figure 1B illustrates a simple

ensemble strategy where the logits from the original model and

shallow models are averaged (Zhang et al., 2022) However, this

approach neglects the intermediate feature maps from the

individual models. Compared to deep feature maps, intermediate

feature maps often contain more comprehensive information.

Therefore, we further improve the ensemble strategy by

integrating the intermediate feature maps from each model and

performing deeper feature extraction (as shown in Figure 1C). In

this way, the intermediate feature information from all branches is

fully preserved for the ensemble model, allowing the ensemble

model to utilize it more effectively to enhance its performance.

Specifically, we select ShuffleNetV2 as the student model. Based

on its architecture, we build three shallow models at different depths

to establish distillation framework. Each shallow models is

equipped with unique structures and parameter sizes, mitigating

the branch homogeneity issue commonly observed in traditional

online knowledge distillation (Gong et al., 2023). After constructing

these shallow models, we fuse the intermediate feature maps from

each model. Based on this fused feature map, depthwise separable

convolution layers are incorporated to further extract features,

improving the performance of the ensemble model without a

significant increase in parameter count. Once the distillation
frontiersin.org
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framework is established, two regularization terms are introduced:

First, the Kullback-Leibler (KL) divergence is applied to constrain

the logits of the student models, aligning themmore closely with the

outputs of the teacher model. Second, the L2 norm (Euclidean

distance) is used to regulate the intermediate features of the student

models, ensuring greater consistency with those of the

teacher model.

The main contributions of this paper are summarized

as follows:
Fron
1. We propose an ensemble method that fuses intermediate

feature maps of all models within the distillation

framework and incorporates depthwise separable

convolution layers on the fused feature maps to further

extract features, thereby constructing a more effective

ensemble model.

2. We utilize the more effective ensemble model as a teacher

to dynamically transfer knowledge to each student model

during training. As a student model, the optimized

ShuffleNetV2, namely KD-ShuffleNetV2, achieves

performance comparable to larger models such as

VGG16 and ResNet18, without altering the original

architecture, making it more suitable for real-time tomato

disease recognition on edge devices.

3. The shallow models within the framework can be treated as

compressed versions of ShuffleNetV2, achieving different

levels of compression in terms of parameter count and

floating-point operations, providing flexibility for

model deployment.
The rest of this paper is organized as follows: Section 2

introduces the dataset used and the data processing procedure,

and provides a detailed description of the proposed distillation

method. Section 3 presents various experiments conducted on the

proposed method, analyzes the experimental results, and visualizes

the model. Section 4 provides a summary of the paper and a

discussion on its limitations.
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2 Materials and methods

2.1 Data processing

2.1.1 Image datasets
The dataset used in this study is aggregated from four sources.

The first source, Plant Village (SpMohanty, 2018), provides data

samples on tomato leaf diseases from the following 10 categories:

healthy(1591), bacterial spot(2127), early blight(1000), late blight

(1909), leaf mold(952), septoria leaf spot(1771), yellow leaf curl

virus(5357), mosaic virus(373), two-spotted spider mite(1676), and

target spot(1404). The second source, Ai Challenger 2018 Crop Leaf

Disease Challenge (Dataset AI Challenger, 2018), contains rich data

samples on crop leaf diseases. However, we only use 1,469 samples

of the powdery mildew category to fill the missing category in the

Plant Village. The third source is PlantDoc (Singh et al., 2020),

containing data samples of the following categories: healthy(62),

bacterial spot(106), early blight(88), late blight(111), leaf mold(90),

septoria leaf spot(155), yellow leaf curl virus(84), mosaic virus(54).

The fourth source is Taiwan Tomato Disease (Huang and Chang,

2020), which contains data samples categorized as healthy(106),

bacterial spot(110), late blight(98), leaf mold(67), powdery mildew

(157), gray spot(84). The third and fourth sources contain abund

rich ant outdoor samples, which further enhance the diversity of the

our dataset. Figure 2 shows examples of different tomato

leaf diseases.

2.1.2 Image preprocessing
The number of samples in the "gray spot" category within the

Taiwan Tomato Disease is only 84, which is significantly lower than

the number of samples in other categories in the aggregated dataset.

Therefore, we excluded the "gray spot" category to achieve a more

balanced distribution across categories. On one hand, there is a

considerable imbalance in the number of samples across indoor

categories. For instance, the mosaic virus, which has the fewest

samples, consists of 373 instances, while the yellow leaf curl virus,

the category with the most samples, contains 5,357 instances. On the
FIGURE 1

Schematic framework of distillation. (A) Self-distillation. (B) Averaged logits in self-distillation. (C) Ensemble self-distillation.
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other hand, the total number of indoor samples significantly exceeds

that of outdoor samples. To mitigate this imbalance, random

sampling was employed for the indoor categories with larger

sample sizes, aiming to better balance the distribution both within

the indoor categories and between indoor and outdoor data. Table 1

summarizes the detailed information of the processed dataset used in

this study. It should be noted that there are no outdoor samples

available for two-spotted spider mite and target spot categories.

The data is resized to 64×64, and the entire dataset is split into

training and testing sets in a 7:3 ratio. To enhance the diversity of

the dataset, improving the model's generalization ability, data

augmentation techniques, such as horizontal flipping, random

rotation, brightness enhancement, contrast enhancement, etc., are

applied exclusively to the training set during the model training

phase. The effects of data augmentation are illustrated in Figure 3.

The impact of data augmentation on the model's performance on

the test set will be discussed in section 3.4.
Frontiers in Plant Science 04
2.2 The proposed method

2.2.1 ShuffleNetV2 model
Ma et al. (2018) introduced a more lightweight ShuffleNetV2

unit, building on the ShuffleNetV1 architecture (Zhang et al., 2018),

as depicted in Figure 4. The ShuffleNetV2 unit encompasses two

variants: the ShuffleNet Unit (SNU) and the Downsample

ShuffleNet Unit (D-SNU). The SNU, illustrated in Figure 4A,

divides the input feature map channels into two branches, where

the left branch remains unaltered, and the right branch employs a

1×1 standard convolution followed by a 3×3 depthwise convolution,

concluding with another 1×1 standard convolution. In contrast, the

D-SNU, shown in Figure 4B, directly partitions the input feature

map channels into two branches, with the left branch incorporating

a 3×3 depthwise convolution with a stride of 2, succeeded by a 1×1

standard convolution; the right branch mirrors this stride

adjustment for its 3×3 depthwise convolution. This architecture
TABLE 1 Summary of main datasets used in the study.

Dataset Plant Village AI Challenger 2018 PlantDoc Taiwan Total

Class Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

bacterial spot 1400 14 96 94 16 1620

early blight 1000 6 82 1088

healthy 1100 24 28 106 1258

late blight 1200 20 91 40 58 1409

leaf mold 952 6 85 63 4 1110

powdery dildew 1200 18 139 1357

septoria leaf spot 1150 29 128 1307

two-spotted spider mite 1676 1676

target spot 1404 1404

mosaic virus 373 6 48 427

yellow leaf curl virus 1900 7 231 2138

Total 12155 1200 112 789 215 323 14794
fr
FIGURE 2

Examples of tomato diseases from the datasets.
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effectively leverages the device's parallel processing capabilities and

greatly minimizes computational costs. By shuffling the feature

channels, it enables interaction between different channels, thereby

improving the model's feature representation and reducing its

overall complexity.
2.2.2 Ensemble self-distillation framework
The framework of ensemble self-distillation based on

ShuffleNetV2 1.0x is constructed as illustrated in Figure 5. Conv1,

positioned at the start of the ShuffleNetV2 and served to extract

initial features from the input data, consists of 3×3 standard

convolution and BN, while Conv2, positioned at the end of the

ShuffleNetV2, consists of 1×1 standard convolution, BN, and ReLU.

The ShuffleNetV2 is composed of Conv1, Stage 1, Stage 2, Stage 3,

Conv2, and FC Layer 4. Each Stage is composed of one D-SNU and

multiple SNUs.

Based on the structure and depth of the ShuffleNetV2, shallow

models 1, 2, and 3 are constructed after Conv1, Stage 1, and Stage 2,

respectively. The structure of shallow model 1 consists of Conv1,

Attention Module 1, Shallow Module 1, and FC Layer 1. The

structure of shallow model 2 consists of Conv1, Stage 1, Attention

Module 2, Shallow Module 2, and FC Layer 2. The structure of

shallow model 3 consists of Conv1, Stage 1, Stage 2, Attention

Module 3, Shallow Module 3, and FC Layer 3. The deep feature

maps from ShuffleNetV2 and the three shallow models are fused to

construct the ensemble model. The ensemble model consists of an

Ensemble Module and FC Layer 5. Before each FC Layer, an average

pooling layer is placed to pool the input feature map to a size of 1×1.
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Subsequently, the output of each FC Layer is processed by the

softmax function.

2.2.3 Lightweight convolution structure
The architecture of the shallow model impacts not only the

number of parameters in the ensemble self-distillation framework,

which subsequently influences the overall training time, but also the

efficiency of knowledge transfer. By treating the Attention Module

and Shallow Module collectively as a projector that aligns shallow

features with deep features, the parameter count of this projector

plays a crucial role in determining the effectiveness of knowledge

distillation (Chen et al., 2022). For the sake of lightweight design,

both the Attention Module and the Shallow Module within the

shallow model are built based on a Lightweight Convolution

Structure (LCS) (Zhang et al., 2022). In this structure, the input

feature map has a channel count of in_c, the output feature map has

a channel count of out_c, and the stride is denoted as s. This is

represented as LCS(in_c, out_c, s).

As shown in Figure 6, the LCS(in_c, out_c, s) structure consists

of two groups of depthwise separable convolutions. Each group of

depthwise separable convolutions is composed of a 3×3 depthwise

convolution and a 1×1 pointwise convolution. The depthwise

convolution in the first group has a stride of s, while the stride for

all other convolution operations is set to 1 by default.

2.2.4 Attention module
To decide which shallow features are distilled, the Attention

Module, as illustrated in Figure 7, is introduced. The input feature
FIGURE 3

Data augmentation for training set (A) Original image. (B) Horizontal flip. (C) Random Rotate. (D) Brightness change. (E) Contrast change. (F) Add noise.
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map is first processed by a LCS with a stride of 2, reducing the spatial

resolution through downsampling. Subsequently, an upsampling layer

using bilinear interpolation with a scaling factor of 2 is applied to

restore the original resolution. A sigmoid activation function is then

used to generate the attention mask. Finally, the attention mask is

element-wise multiplied with the input feature map to obtain the

output feature map (Zhang et al., 2022). In detail, the LCS

configurations corresponding to Attention Modules i (where i=1, 2,

3) are LCS(24,24,2), LCS(116,116,2), and LCS(232,232,2), respectively.

2.2.5 Shallow module
The architecture of the Shallow Module is constructed by stacking

multiple LCS in sequence (Zhang et al., 2022). When designing the

Shallow Module, the number of stacked LCSs and the size of (in_c,

out_c) can be adjusted to ensure that, in terms of the number of

parameters, the shallow model 1 is less than shallow model 2, and

shallow model 2 is less than shallow model 3 (i.e., shallow model 1<

shallow model 2< shallow model 3), so as to build a hierarchical

structure and avoid the problem of homogenization of the models
Frontiers in Plant Science 06
(Gong et al., 2023). Specifically, Shallow Module 1 consists of LCS(24,

116, 2), LCS(116, 464, 2), and LCS(464, 1024, 2); Shallow Module 2 is

formed by stacking LCS(116, 464, 2) and LCS(464, 1024, 2); and

Shallow Module 3 is composed of LCS(232, 464, 2) followed by LCS

(464, 1024, 1).

2.2.6 Ensemble module
The shape of feature maps in the original model and shallow

model are shown in Table 2. It can be observed that the output

feature maps of ShallowModules i (where i=1, 2, 3) and Conv2 have

the same shape, all being 8×8×1024. Consequently, the four feature

maps are fused into a single feature map through averaging, which

serves as the input feature map for the ensemble module. The fused

feature maps exhibit a higher level of redundancy, leading to

insufficient feature extraction. At the same time, employing

average pooling followed by classification with fully connected

layers results in significant information loss. To address these

issues, we apply further convolution to the fused feature maps to

construct a more robust ensemble model. As illustrated in the
FIGURE 4

Basic feature extraction module for the ShuffleNetV2 model. "Conv" denotes standard convolution; "BN" denotes batch normalization; "ReLU"
denotes activation function. (A) ShuffleNet Unit (SNU). (B) Downsample ShuffleNet Unit (D-SNU).
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Figure 8, the ensemble module is composed of 3×3 depthwise

convolution, 1×1 standard convolution, and BN, which further

extracts features based on the fused feature maps. The decision to

omit the ReLU activation function is based on the fact that

nonlinearity has already been introduced in each branch, and

since the ensemble module is positioned deeper in the model, the

use of ReLU could lead to further information loss. Other ensemble

methods will be discussed in Section 3.3.1.
2.2.7 Loss function
Given a training sample x and an one-hot true label y, we can

get the logit output zi ∈ R1�C (where i = 1, 2, 3, 4, 5), where each zi
represents the outputs of corresponding FC Layers mentioned

above, C is the number of classes. By knowledge distillation

method, we can acquire the final prediction after a softmax layer:

pi,j,T =
exp (

zi,j
T )

oC
c=1 exp (

zi,c
T )

(1)

where T denotes the hyperparameter temperature, zi,j represents

the logit of the j-th class of the i-th logit, pi,j,T represents the

probability of the j-th class of the i-th logit at temperature T. In a

certain range, as T increases, the model's predictions become

smoother, and the inherent 'dark knowledge' (Hinton et al., 2015)

becomes richer. When T = 1.0, the output will become to vanilla

softmax output. By introducing KL divergence loss during

distillation training, the student model can learn the 'dark

knowledge' from the teacher model, thereby enhancing the overall

performance of the student model.

The proposed method employs an ensemble model as the

teacher, while ShuffleNetV2 and each shallow model serving as
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students for distillation training. This approach incorporates three

losses: Lce, Lkd, and Lfkd. Thus, the overall objective Ltotal is

formulated as:

Ltotal = Lce + Lkd + Lfkd (2)

Lce represents the cross-entropy loss between the ensemble

model, the ShuffleNetV2 model, each shallow model, and the

ground truth labels of the dataset, as defined in Equation 3. This

loss function ensures that the ensemble model, the ShuffleNetV2

model, and each shallow model are all trained under the supervision

of the ground truth labels from the dataset.

Lce = CE(pi=5,T=1, y) + (1 − a) ·o4
i=1CE(pi,T=1, y) (3)

where CE represents the cross-entropy loss function, and a is a

hyperparameter to balance the weight of the student models' cross-

entropy loss and the logit distillation loss.

Lkd represents the KL divergence loss between the ShuffleNetV2

model, each shallow model, and the ensemble model, as shown in

Equation 4. This loss allows the output of the ensemble model to

serve as the learning target for both the ShuffleNetV2 model and the

shallow model.

Lkd = a ·o4
i=1KL(pi,T=3, pi=5,T=3) (4)

Lfkd represents the L2 loss calculated between the feature

outputs of the ensemble model and those of shallow models 1

and 2, as shown in Equation 5. This loss aims to align the features of

shallow models 1 and 2 with those of the ensemble model, enabling

the shallower models to directly learn the features of the deeper

model, thereby enhancing the effectiveness of the distillation

training.
FIGURE 5

Ensemble self-distillation framework based on ShuffleNetV2. "AvgPool" denotes average pooling layer; "FC Layer" denotes fully connected layer;
"Softmax" denotes softmax activation function.
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Lfkd = b ·o2
i=1jjHi − H5 jj22 (5)

where each Hi (for i = 1, 2, 3, 4, 5) represents the outputs of

corresponding AvgPool layers mentioned above, and b is a scaling

factor to control the magnitude of the feature distillation loss.
3 Results and discussion

In this section, we provide a detailed description of the

experimental setup, evaluation metrics, and results. Additionally,

we discuss various ensemble methods, the selection of

hyperparameters, and comparisons with other models. It should

be noted that, to distinguish the version integrated into the

ensemble self-distillation framework from the original

ShuffleNetV2, we refer to it as KD-ShuffleNetV2. The architecture

of KD-ShuffleNetV2 is identical to the original ShuffleNetV2, which

means that they have the same number of parameters and floating-

point operations (FLOPs). The only difference is that KD-

ShuffleNetV2 is optimized by the proposed distillation method to

have higher recognition accuracy without changing its architecture.
3.1 Experimental setup

The hardware used in this experiment includes an Intel® Xeon®

CPU and an Nvidia Tesla P100 16G GPU. The operating system is

Linux 5.15.133+, and the required tool versions are Python 3.10.13,

PyTorch 2.1.2, and CUDA 12.1. The scikit-learn library was used to

calculate the evaluation indictors mentioned in section 3.2. The

ptflops library is utilized to compute the number of parameters and

floating-point operations (FLOPs).

The parameters used in the experiment will affect the

experimental results, and the values of each parameter are

summarized in Table 3. The model is trained for 100 epochs with

a batch size of 128. The initial learning rate is set to 0.01 and
FIGURE 6

Lightweight convolution structure.
FIGURE 7

Attention module.
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decayed by 30% every 10 epochs. The parameters are updated using

the stochastic gradient descent (SGD) optimizer with a weight decay

of 5×10-4 and a momentum of 0.9. The hyperparameters a and b
are set to 0.1 and 5×10-4, respectively. Distillation temperature T is

set to 3.0.
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3.2 Evaluation indictors

To evaluate the performance of the models, this paper considers

and number of parameters and computer as the evaluation criteria

for model complexity. For evaluating model performance, accuracy,

precision, recall, and F1 score on the test set are used as the primary

indicators. The calculation methods for these four performance

metrics are shown in Equations 6–9.

Accuracy  ¼  
TPþ TN

TPþ TNþ FPþ FN
(6)
TABLE 2 Layer structure and corresponding feature map shape.

Layer

Feature map shape

shallow model 1
(i=1)

shallow model 2
(i=2)

shallow model 3
(i=3)

ShuffleNetV2
(i=4)

Input 64×64×3 64×64×3 64×64×3 64×64×3

Conv1 64×64×24 64×64×24 64×64×24 64×64×24

Attention Module1 64×64×24 – – –

Shallow
Module1

LCS(24,116,2) 32×32×116 – – –

LCS(116,464,2) 16×16×464 – – –

LCS(464,1024,2) 8×8×1024 – – –

Stage1 – 32×32×116 32×32×116 32×32×116

Attention Module2 – 32×32×116 – –

Shallow
Module2

LCS(116,464,2) – 16×16×464 – –

LCS(464,1024,2) – 8×8×1024 – –

Stage2 – – 16×16×232 16×16×232

Attention Module3 – – 16×16×232 –

Shallow
Module3

LCS(232,464,2) – – 8×8×464 –

LCS(464,1024,1) – – 8×8×1024 –

Stage3 – – – 8×8×464

Conv2 – – – 8×8×1024

AvgPool i 1×1×1024 1×1×1024 1×1×1024 1×1×1024
FIGURE 8

Ensemble module.
TABLE 3 Parameter value.

Parameter Value

Batch size 128

Image size 64×64

Optimization algorithm SGD

Initial learning rate 0.01

Number of epochs 100

a 0.1

b 5×10-4

T 3.0
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Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2� Precision� Recall
Precision + Recall

(9)

Where TP is the result of correctly predicting positive

classification; FP is the result of incorrectly prediction of positive

classification; TN is the result of correctly predicting negative

classification; FN is the result of incorrectly predicting

negative classification.

After data preprocessing, the dataset in this study exhibits a

relatively balanced distribution across categories, but there are still

some categories with fewer samples compared to others. In cases of

class imbalance, directly using unweighted metrics can lead to

evaluation results that are biased toward the categories with larger

sample sizes, potentially neglecting the performance of those

categories with fewer samples. To provide a more comprehensive

assessment of the model's performance, we used the scikit-learn

library to compute precision, recall, and F1 score in a weighted

average manner.
3.3 Model performance comparison

3.3.1 Discussion of different ensemble modules
In this section, we introduce four additional ensemble methods:

Avg (Zhang et al., 2018), Concat (Wu and Gong, 2021), Naive (Guo

et al., 2020), and MinLogit (Guo et al., 2020). We only adopt the

ensemble ideas from these methods and use them as benchmarks to

evaluate the effectiveness of the proposed approach.
Fron
1. Avg method: A widely adopted standard, this method

computes the average of the logits from all branches to

form the ensemble model's logits.

2. Concat method: This method concatenates the logits from

all branches along the channel dimension, preserving the

information from each branch. Then, a fully connected

layer is applied for training ensemble model.

3. Naive method: In this method, the logit with the lowest

cross-entropy loss with respect to the true label is selected

from all logits across branches. This selected logit serves as

the teacher for all students.

4. MinLogit method: The MinLogit method selects the

minimum value at each corresponding position across the

logits to form the ensemble model's logits, aiming to

minimize the cross-entropy loss between the ensemble's

predictions and the true labels.
To improve the clarity of our experimental results, we focus

exclusively on the accuracy of KD-ShuffleNetV2 and the ensemble

model on the test set. The experimental results are shown in Table 4.

In both the Avg and MinLogit methods, the accuracy of the

ensemble model did not exhibit a significantly higher level
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compared to the accuracy of the KD-ShuffleNetV2, which limits

the teacher's capacity to transfer generalized knowledge to the

student, thereby hindering the effective improvement of the

student's model performance. In the Naive and Concat methods,

the accuracy of the ensemble model is significantly higher than that

of KD-ShuffleNetV2, but it still fails to effectively improve the

accuracy of KD-ShuffleNetV2. In contrast, compared to all other

ensemble schemes, the proposed approach offers a superior

ensemble model, achieving an accuracy of 95.15% on the test set.

This high-performance ensemble model also effectively transfers

knowledge to KD-ShuffleNetV2. As a result, the KD-ShuffleNetV2

optimized by the proposed method achieves an accuracy of 95.08%,

surpassing other approaches.

3.3.2 Comparison of results for different models
To further verify the effectiveness of the KD-ShuffleNetV2 and

other models within the ensemble self-distillation framework, this

paper compared them with the Vgg16 (Simonyan and Zisserman,

2014), ResNet18 (He et al., 2016), MobileNetV1 (Howard et al.,

2017), MobileNetV2 (Sandler et al., 2018), MobileNetV3 (Howard

et al., 2019) and MobileVit (Mehta and Rastegari, 2021) models

under the same test conditions. The experimental results are

presented in Table 5. Compared to the original ShuffleNetV2,

KD-ShuffleNetV2 achieves significant improvements in accuracy,

precision, recall, and F1-score, with respective gains of 1.35%,

1.36%, 1.37%, and 1.37%; Shallow Model 3 reaches an accuracy of

95.04%, representing a 1.31% increase, while maintaining a

negligible change in parameter count and reducing FLOPs by

6.01%; Shallow Model 2 achieves an accuracy of 94.30%,

demonstrating a 0.57% improvement, while reducing parameters

by 33.71% and FLOPs by 42.08%, making it a promising choice for

resource-limited environments; Shallow Model 1 achieves an

accuracy of 93.21%, with a slight decrease of 0.52%, but offers

substantial reductions of 37.77% in parameters and 60.11% in

FLOPs. The ensemble model achieves the highest accuracy of

95.15%, with a 1.42% improvement, making it more suitable for

scenarios where accuracy is prioritized, and deployment resources

are abundant.

Compared to VGG16, the ensemble model and KD-

ShuffleNetV2 improve accuracy by 0.88% and 0.81%, respectively,

while reducing parameters by 85.33% and 96.23%, and FLOPs by

66.64% and 85.70%, respectively. Similarly, compared to ResNet18,

the ensemble model and KD-ShuffleNetV2 achieve accuracy

improvements of 0.58% and 0.51%, respectively, while reducing

parameters by 56.20% and 88.74%, and FLOPs by 80.85%

and 91.79%.

When compared to other listed lightweight models, KD-

ShuffleNetV2 and shallow models demonstrate superior accuracy
TABLE 4 Results of different ensemble methods for KD-ShuffleNetV2
and Ensemble model.

Model Avg Concat Naive MinLogit Ours

KD-ShuffleNetV2 94.52 94.59 94.57 94.63 95.08

Ensemble model 94.61 94.86 95.04 94.63 95.15
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with relatively lower parameter counts. Specifically, compared to

MobileNetV2, which achieves the highest accuracy among the listed

lightweight models, KD-ShuffleNetV2, Shallow Model 3, and

Shallow Model 2 achieve accuracy improvements of 0.94%, 0.90%,

and 0.16%, respectively, while reducing parameter counts by

43.70%, 43.73%, and 62.68%, and FLOPs by 19.74%, 24.56%, and

53.51%, respectively. Compared to MobileViT_S, which has the

largest parameter count among the lightweight models, KD-

ShuffleNetV2 reduces parameters by 74.63% while improving

accuracy by 2.05%. Similarly, Shallow Model 1 reduces

parameters by 84.21% and improves accuracy by 0.18%.

The classification results, as visualized in the confusion matrix

in Figure 9, demonstrate the performance of the model. The vertical

axis represents the 11 categories of tomato leaf diseases in the

dataset, while the horizontal axis corresponds to the categories

predicted by the model. Compared to the original ShuffleNetV2,

except for the healthy category, KD-ShuffleNetV2 achieved a

notable improvement in the number of correctly predicted

samples across all categories. The most significant enhancement

was observed in the late blight category, where an additional 13

samples were accurately classified.
3.4 Discussion on data augmentation

To investigate the impact of data augmentation on the

generalization ability of models, we conducted experiments to

evaluate the accuracy of each model on the test set without data

augmentation and compared them with those using data

augmentation. The experimental results are shown in Table 6. It

can be observed that after data augmentation, the accuracy of all

models on the test set improved. Without data augmentation,
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although the accuracy of KD-ShuffleNetV2 does not reach the

level of larger models such as Vgg16 and ResNet18, it still

surpasses all the lightweight models listed. Specifically, the

accuracy of KD-ShuffleNetV2 (92.15%) is 1.44% higher than that

of MobileNetV2 (90.71%). Additionally, compared to the original

ShuffleNetV2, the accuracy of KD-ShuffleNetV2 improved by 3.29%

without data augmentation and by 1.35% with data augmentation,

demonstrating that the proposed method effectively enhances

model performance regardless of the use of data augmentation.
3.5 Discussion on the hyperparameter

To verify the effectiveness of logit distillation and feature

distillation, we conducted experiments with different values of a
and b at a temperature of 3.0. First, by fixing the initial value of b at

1×10-4, we explored the impact of different a on the experimental

results, as shown in Table 7. As a increased, the accuracy of both

KD-ShuffleNetV2 and the ensemble model reached its peak at a =

0.1. Other models reached their peak slightly later, but also

exhibited an increasing trend followed by a decrease.

Subsequently, we fixed a at 0.1 and investigated the impact of

different b on the experimental results. As shown in Table 8, as b
increased, there was no clear trend in the accuracy of the models.

However, except for the shallow model 2, the accuracy of all other

models reached peak accuracy at b = 5×10-4.

When a = 0, the experiment corresponded to training without

logit distillation, leading to a 0.45% decrease in accuracy compared

to the optimal case with logit distillation for KD-ShuffleNetV2.

Similarly, when b = 0, the experiment corresponded to training

without feature distillation, resulting in a 0.36% accuracy drop

compared to the optimal case with feature distillation for KD-
TABLE 5 Results of different models on the test set.

Model Accuracy/% Precision/% Recall/% F1 score/% Params FLOPs

Vgg16 94.27 93.79 93.76 93.75 33650763 1.28×109

ResNet18 94.57 94.14 94.007 94.07 11271432 2.23×109

MobileNetV3_Small 92.29 91.74 91.68 91.67 1529131 5.84×106

MobileNetV3_Large 92.51 92.00 91.92 91.91 4216123 2.13×107

MobileVit_XS 93.01 92.57 92.55 92.53 2003168 5.72×107

MobileVit_S 93.03 92.47 92.41 92.40 5003760 1.10×108

MobileNetV1 92.33 91.92 91.85 91.83 3224203 1.93×108

MobileNetV2 94.14 93.65 93.55 93.51 2255371 2.28×108

ShuffleNetV2 93.73 93.22 93.18 93.17 1269671 1.83×108

KD-ShuffleNetV2 95.08 94.58 94.55 94.54 1269671 1.83×108

Shallow model3 95.04 94.44 94.38 94.38 1268890 1.72×108

Shallow model2 94.30 93.75 93.71 93.70 841660 1.06×108

Shallow model1 93.21 92.61 92.50 92.49 790090 7.31×107

Ensemble model 95.15 94.65 94.63 94.61 4936699 4.27×108
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ShuffleNetV2. This demonstrates that both distillation methods

effectively transfer knowledge from the teacher model, and their

combined use is essential for maintaining or enhancing the model's

generalization ability.
3.6 Visualization of experimental results

The three shallow models in the ensemble self-distillation

framework are built based on KD-ShuffleNetV2. KD-

ShuffleNetV2 along with each shallow model can be viewed as

different branches of the overall structure. To investigate the regions

each branch focuses on during training, Grad-CAM is applied to

visualize the heatmap for each branch's attention to the input data.

As shown in Figure 10, it is easy to observe that, from the first to the

third shallow model, the regions highlighted by Grad-CAM

gradually expand, and the areas of focus for each branch differ

significantly. This diversity in attention regions may contribute to

the improvement of the ensemble model's performance. The

ensemble model integrates information from all branches,

resulting in a broader area of attention. Therefore, the ensemble

model, as the teacher model, can provide more generalized

knowledge to each branch. By analyzing the heatmaps of the

powdery mildew samples, it can be observed that KD-
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ShuffleNetV2 accurately focuses on the disease-affected regions of

the leaves, even though they are dispersed across different locations.
4 Conclusions

In order to address the challenge of deploying high-precision

large models on edge devices for real-time tomato disease detection,

we propose a method based on enesmble self-distillation. This

method successfully improves the accuracy of KD-ShuffleNetV2,

achieving not only the lowest parameter count among all the listed

lightweight models but also the highest accuracy. Furthermore, its

accuracy surpasses that of larger models like VGG16 and ResNet18,

demonstrating the successful transfer of knowledge from the large

model to the small model. The entire training process requires only

one stage, significantly reducing the training cost compared to the

two stages required by traditional knowledge distillation methods.

In terms of creating the ensemble model, our proposed enesmble

method effectively transfers knowledge to the student model,

outperforming other methods, such as averaging logits. Moreover,

heatmap results show that the multiple shallow models used to

assist online knowledge distillation, as well as the KD-ShuffleNetV2,

focus on different regions of the tomato leaf disease, enhancing the

diversity of the branches and contributing to the improved
TABLE 6 The impact of data augmentation on experimental results.

Model Vgg16 ResNet18 MobileNetV3_Large MobileVit_S
MobileNet

V2
ShuffleNet

V2
KD-ShuffleNetV2

without
data augment

93.12 92.92 89.63 87.62 90.71 88.86 92.15

with
data augment

94.27 94.57 92.51 93.03 94.14 93.73 95.08
FIGURE 9

Confusion matrices of different models.
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performance of the ensemble model. Additionally, the multiple

shallow models achieve varying levels of compression of original

ShuffleNetV2. Compared to the original ShuffleNetV2,

shallow model 2 improves accuracy by 0.57%, while reducing

the parameter count and FLOPs by 33.71% and 42.08%,

respectively. Despite these promising results, there are some

limitations to our current framework. Although the proposed

approach can be applied to any deep learning model, it requires

customization for each specific model, which is often a complex

process. Moreover, when applied to CNN models integrated with

Transformers, such as MobileNetV3 and MobileVit, it often yields

suboptimal results.
TABLE 8 Comparison of models' accuracy under varying b values with fixed a =1×10-4.

Model
b

0 1×10-4 3×10-4 5×10-4 7×10-4 9×10-4

KD-ShuffleNetV2 94.72 94.90 94.66 95.08 94.66 94.45

Shallow model3 94.72 94.86 94.72 95.04 94.79 94.54

Shallow model2 94.25 94.30 94.50 94.30 94.48 94.30

Shallow model1 92.99 92.69 93.12 93.21 93.08 93.19

Ensemble model 95.08 94.97 95.04 95.15 94.84 94.88
FIGURE 10

Heatmaps of all branches within the distillation framework.
TABLE 7 Comparison of models' accuracy under varying a values with
fixed b =1×10-4.

Model
a

0 0.1 0.2 0.3 0.4 0.5

KD-ShuffleNetV2 94.63 94.90 94.86 94.61 94.63 94.50

Shallow model3 94.45 94.86 94.81 94.63 94.50 94.36

Shallow model2 94.36 94.30 94.43 94.32 94.18 93.98

Shallow model1 92.69 92.69 92.76 93.08 92.58 92.27

Ensemble model 94.93 94.97 95.04 94.81 94.84 94.68
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