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Ferroptosis, an iron-dependent form of regulated cell death, has recently

emerged as a crucial process in the pathogenesis of Pyricularia oryzae, the

causal agent of the devastating rice blast disease, which causes billions of dollars

in annual losses. This mini review explores the potential of antioxidants in

suppressing ferroptosis in P. oryzae to promote sustainable rice production,

with significant implications for global food security and nutrition. We critically

analyze the current literature on the mechanisms of ferroptosis in P. oryzae,

including iron metabolism and lipid peroxidation, the role of different

antioxidants in inhibiting this cell death pathway, and the potential applications

of antioxidant-based strategies for the management of rice blast disease. Recent

discoveries, such as the efficacy of the natural flavonoid tangeretin in inhibiting

fungal ferroptosis by interfering with the accumulation of iron and reactive

oxygen species, highlight the promise of natural and nature-inspired

compounds for disease management. The use of antioxidants to modulate

ferroptosis in P. oryzae offers several advantages over traditional fungicide-

based approaches, including improved safety, sustainability, and potential

nutritional benefits through antioxidant-enriched rice varieties. However,

challenges such as optimizing delivery methods, managing potential

resistance, and ensuring efficacy under different environmental conditions

need to be addressed. To achieve these goals, future research should focus on

identifying the most effective antioxidant compounds, exploring synergistic

combinations, and developing sustainable application methods.
KEYWORDS

antioxidants, ferroptosis, Magnaporthe oryzae, peroxidation, plant-pathogen
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1 Introduction

Rice, the most important staple food for over half of the global

population, faces a major threat from blast disease caused by

Pyricularia oryzae (teleomorph Magnaporthe oryzae). This

ascomycete filamentous fungus significantly impacts global rice

production and food security (Islam et al., 2023), leading to 10–30%

yield losses (Dean et al., 2012), with severe outbreaks causing up to 50%

crop loss (Scheuermann et al., 2012; Nalley et al., 2016). P. oryzae

infects various parts of rice plants (leaves, stems, nodes, and panicles),

causing widespread damage. Different lineages are able to infect also

other important cereal crops like millet, barley, and wheat (Wilson,

2021). Of particular global concern is the P. oryzae pathotype Triticum,

which causes wheat blast—a devastating disease that impacts wheat,

another major staple crop (Castroagudin et al., 2016). Wheat blast has

already led to significant crop losses in South America and South Asia,

with the potential to spread further. This pathotype poses a serious

threat to global food security due to its adaptability and resistance to

common fungicides (Cruz and Valent, 2017; Ceresini et al., 2018).

Ongoing research focuses on early detection methods, molecular

markers for specific pathotype identification, and the development of

resistant wheat varieties to mitigate the impact of this dangerous

pathogen (Ikeda et al., 2024).

The economic impact of blast is substantial, with annual damage

estimated at $70 billion (Scheuermann et al., 2012; Valent, 2021).

Despite ongoing research, effective long-term solutions remain

elusive, and climate change alongside with increasing pathogen

resistance urge for innovative management approaches (Singh and

Maurya, 2021; Singh et al., 2023).

Recent advances in understanding the pathogenesis of P. oryzae

have revealed the role of ferroptosis, an iron-dependent regulated cell

death, in the infection process (Shen et al., 2020). Characterized by

lipid peroxide and iron-dependent reactive oxygen species (ROS)

accumulation, ferroptosis is crucial for the development of infection

structures and disease progression (Kou et al., 2019; Shen et al., 2020,

2023). Evidence suggests that iron and lipid peroxidation are

necessary for ferroptosis spread, and involve a signal that

propagates upstream of cell rupture (Riegman et al., 2020). This

discovery has prompted research into antioxidants as a novel disease

control strategy. Antioxidants have demonstrated the ability to

suppress ferroptosis in various biological systems (Ge et al., 2021;

Zhang et al., 2021; Rizzardi et al., 2022; Zhang et al., 2024), sparking

interest in their potential to interrupt the infection cycle of P. oryzae

and enhance rice plant resistance (Liu and Zhang, 2022).

This mini review summarizes current knowledge of ferroptosis

in pathogenesis of P. oryzae and the potential of antioxidants in

suppressing this process. Our focus is specifically on antioxidant-

based approaches to suppress ferroptosis in P. oryzae, rather than

strategies such as biological control, breeding for resistant cultivars,

or genetic engineering. We examine recent advances, discuss

antioxidant interventions, and explore implications for sustainable

management of rice blast. We also highlight controversies, identify

research gaps, and propose future directions, aiming to provide a

concise overview of how targeting ferroptosis through antioxidant

strategies could contribute to more effective and environmentally
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friendly approaches to manage rice blast disease, supporting global

food security and sustainable agriculture.
2 Ferroptosis: mechanisms and
significance in Pyricularia oryzae

The hallmarks of ferroptosis in P. oryzae are the accumulation

of lipid peroxides, elevated levels of intracellular ferric iron (Fe 3+),

and the consequent generation of ROS (Liu et al., 2024).

Researchers have identified key players in this process,

highlighting the critical role of iron metabolism regulated by the

transcription factor Fep1 (Kou et al., 2019; Liu and Zhang, 2022).

Abdul et al. (2018) showed that cell death is characterized by

membrane damage caused by the accumulation of lipid peroxides

to lethal concentrations due to the oxidation of polyunsaturated

fatty acids in membrane phospholipids, which is essential for

ferroptotic cell death, underlining the importance of membrane

integrity. Recent research has also highlighted the role of calcium

signaling with high Ca2+ levels in ROS-dependent cell death due to

an imbalance in cellular redox status, such as in ferroptosis

(Molina-Hernandez et al., 2022).

In P. oryzae, ROS regulation plays important roles in both

development and virulence. ROS generation has been linked to the

NADPH oxidase (NOX) complex. A pioneering work by Egan et al.

(2007) showed that NOX1 and NOX2 are important sources of ROS

during appressorium development and ferroptosis, thus

representing potential targets for possible control strategies.

Shen and colleagues (Shen et al., 2020; Shen and Naqvi, 2021;

Shen et al., 2023; Shen and Naqvi, 2024) have shown that ferroptosis

is essential for appressorium maturation, successful rice cell

penetration, and rice tissue colonization. Modulating ferroptosis

can significantly affect the virulence of P. oryzae, suggesting

potential disease control avenues.

Despite these advances, controversy remains. Stockwell et al.

(2017) highlighted the need for precise molecular markers to

differentiate ferroptosis from other cell death forms. The role of

ferroptosis in P. oryzae strains infecting non-rice hosts is still largely

unexplored (Shen and Naqvi, 2024).

Environmental influences on ferroptosis represent another area

of uncertainty. Studies have questioned how temperature (Onaga

et al., 2017), humidity (Qiu et al., 2022), and drought stress (Bidzinski

et al., 2016) might influence the pathogenic process and virulence

under changing climatic conditions. However, the direct effects of

these factors on ferroptosis in P. oryzae are not yet fully understood.
3 Natural and synthetic compounds
and their role in suppressing
ferroptosis in Pyricularia oryzae

Natural and synthetic compounds have shown effectiveness

in modulating ferroptosis, offering promising possibilities for

controlling P. oryzae infections (Sies et al., 2017). While the

role of ferroptosis in P. oryzae pathogenicity has been established
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(Shen et al., 2020), the specific effects of inhibitory compounds—

whether natural, nature-inspired, or synthetic—on this cell death

pathway remain under investigation. Figure 1 illustrates the key

molecular components involved and highlights potential

intervention targets. Natural antioxidants, particularly glutathione

and (poly)phenolics (PCs), along with nature-inspired and

synthetic inhibitors, have emerged as promising agents for

suppressing this pathogenic process in P. oryzae.
3.1 Glutathione and related systems

Glutathione (GSH), a crucial cellular antioxidant (Figure 2), plays

a vital role in regulating ferroptosis. Stockwell and colleagues (2017)

established that GSH is essential for maintaining cellular redox

balance and detoxifying lipid hydroperoxides through glutathione

peroxidase 4. Fernandez and Wilson (2014) demonstrated the

importance of glutathione-related systems for P. oryzae virulence in

rice blast disease. Huang et al. (2011) identified the MoHYR1 gene in

P. oryzae, encoding a protein with a GPX domain that utilizes GSH to

detoxify ROS. Deletion of MoHYR1 increased sensitivity to H2O2 and

reduced virulence, linking GSH-dependent mechanisms to the

pathogen’s ability to overcome host defenses.

Samalova et al. (2014) showed that P. oryzaemaintains a highly

reduced cytoplasmic glutathione pool during infection, with only

slight shifts in oxidation during development. This tight regulation

of GSH redox state, coupled with the fungus’s extreme resistance to

external H2O2 exposure, underscores robust antioxidant defenses of
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P. oryzae. In fact, more recent studies with P. oryzae have

demonstrated that rice produces H2O2 shortly after inoculation

with a virulent strain of P. oryzae (Chi et al., 2009; Kato et al., 2009).

Dangol et al. (2019) showed that glutathione depletion, induced by

erastin, a small antitumor agent, leads to iron- and ROS-dependent

ferroptotic cell death in rice cells during P. oryzae infection,

highlighting the interplay among glutathione, iron, and ROS in

plant-pathogen interactions.
3.2 Tangeretin and other (poly)phenolics

PCs have shown promise as antioxidants and potential

suppressors of oxidative stress in various biological systems

(Quideau et al., 2011). Curcumin (Figure 2), for instance,

demonstrated antifungal properties against plant pathogens (Hu

et al., 2017), suggesting potential for further investigation in P.

oryzae ferroptosis through suppression of iron accumulation.

Recent research has expanded our understanding of PCs’ role in

plant-fungal interactions. Moin et al. (2024) conducted an in silico

study suggesting that certain flavonoids may influence

pathogenicity of P. oryzae. These results support the potential of

PCs in plant-fungal interactions (Shalaby and Horwitz, 2015). In

2021, Liang et al. (2021) highlighted the potential of PCs in

suppressing ferroptosis in P. oryzae. Notably, tangeretin, a

flavonoid from citrus peels (Figure 2), effectively inhibits fungal

ferroptosis and suppresses rice blast disease by impairing iron and

ROS accumulation and suppressing lipid peroxidation in P. oryzae
FIGURE 1

Schematic representation of the ferroptosis pathway in Pyricularia oryzae and potential antioxidant intervention points. The figure shows key cellular
components involved in ferroptosis, including iron sources, NADPH oxidase, reactive oxygen species (ROS), lipid peroxides, and the glutathione
(GSH)/glutathione disulfide (GSSG), part of glutathione peroxidase 4 (GPX4) system. Created with BioRender.com.
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conidia, which are crucial for appressorium formation and

subsequent pathogenesis.

These findings on natural antioxidants, particularly flavonoids

like tangeretin and other PCs, not only demonstrate their direct

potential in suppressing ferroptosis in P. oryzae, but also provide

valuable structural and functional insights that could serve as

templates for the design and synthesis of novel, nature-inspired

molecules with enhanced efficacy and specificity against rice blast

disease. Additionally, other PCs in rice, such as hydroxybenzoic and

hydroxycinnamic acids, play a vital role in plant defense by

enhancing structural integrity, acting as direct antimicrobial

agents, and regulating hypersensitive responses during biotic

stress (see Supplementary Table 1).
3.3 Other ferroptosis inhibitors and
iron chelators

While ferroptosis inhibitors like ferrostatin-1 and liproxstatin-1,

whose structures are shown in Figure 2, have shown efficacy in

mammalian systems (Dixon et al., 2012; Friedmann Angeli et al.,

2014; Miotto et al., 2020; Scarpellini et al., 2023), their effects on P.

oryzae are only now being explored. In recent years, research has begun

to investigate the potential of other ferroptosis inhibitors (e.g.,

ferrostatin-1 and deferoxamine (DFO) - structures shown in

Figure 2) in plant-pathogen interactions (Dangol et al., 2019),

opening new possibilities for chemical control strategies of P. oryzae.

For example, Christodoulou et al. (2024) demonstrated that DFO

inhibits appressorium formation, likely through its chelating ability.

The authors speculate that fungal cells might uptake DFO via specific

transport systems such as proton symporters, actively transporting the

compound based on extracellular iron concentrations. This targeted

mechanism could significantly disrupt early conidial development,

thereby reducing the virulence of the rice blast fungus.
Frontiers in Plant Science 04
4 Implications of antioxidant-based
strategies in rice blast control for
human nutrition

The use of antioxidants to manage rice blast disease has a

significant impact on global nutrition and food security. Rice

provides essential nutrients for billions of people, especially in

developing countries (Muthayya et al., 2014). Ensuring

sustainable rice production and minimizing yield losses due to

diseases such as rice blast are critical to preventing hunger and

malnutrition worldwide (Nalley et al., 2016).

Agronomical approaches to enhance endogenous antioxidant

levels in rice could provide dual benefits for both disease resistance

and nutritional value. For GSH content, studies have shown that

appropriate timing of nitrogen fertilization and water management

practices can optimize GSH biosynthesis pathways and maintain

cellular redox homeostasis through regulation of the GSH/GSSG ratio

(Hasanuzzaman et al., 2017; Cimini et al., 2022). For PCs, several

agronomical practices have been shown to modulate their

accumulation in rice. For example, targeted stress conditions

during grain development can enhance phenylpropanoid pathway

activity and the resulting PC content (Yang et al., 2024). These

agronomic interventions could be integrated with new approaches

based on natural antioxidants, such as flavonoids like tangeretin

which effectively inhibits fungal ferroptosis (Liang et al., 2021), into

existing rice cultivation systems to enhance both disease resistance

and nutritional value of rice crops (Pang et al., 2018).

Recent clinical studies have demonstrated that consumption of

pigmented rice, particularly rich in PCs, mainly ferulic acid and

anthocyanins, can improve antioxidant status (Mendoza-Sarmiento

et al., 2023), while dietary supplements like curcumin can enhance

plasma GSH levels, leading to improved cardiometabolic

health through reduced oxidative stress and inflammation

(Dludla et al., 2023).
FIGURE 2

Molecular structures of antioxidants (glutathione, tangeretin and curcumin), synthetic inhibitors of ferroptosis (ferrostatin-1 and liproxstatin-1), and
iron chelators (deferoxamine) involved in modulating iron-dependent cell death in P. oryzae.
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5 Challenges and future directions

While antioxidants show great promise in suppressing ferroptosis

in P. oryzae, several challenges remain. The specificity of antifungal

action, potential off-target effects, and the development of fungal

resistance are concerns that need to be addressed (Fisher et al.,

2018). Moreover, the translation of laboratory findings to field

applications presents logistical and regulatory hurdles (Hollomon,

2015). Future research should focus on identifying natural

antioxidants that can effectively suppress ferroptosis in P. oryzae

while being safe and bioavailable for human consumption (Goufo

and Trindade, 2017), including optimizing delivery methods and

exploring synergistic combinations with other antifungals.

Investigating the potential of enhancing endogenous antioxidant

systems in rice plants represents an exciting avenue for increasing

resistance to P. oryzae infection (Yang et al., 2024). Additionally,

research should explore how chitin-derived signals from fungal cell

walls, which act as defense elicitors in rice (Kaku et al., 2006), might

interact with iron and ROS-dependent pathways during P. oryzae

infection. This multifaceted approach requires interdisciplinary

collaboration among plant pathologists, nutritionists, agronomists,

and food scientists to fully realize the potential of antioxidant-based

strategies in both rice blast control and nutrition enhancement.
6 Conclusion

The rice blast disease, caused by P. oryzae, remains a significant

threat to global rice production and food security. This mini review

has explored the promising strategy of using antioxidants to suppress

ferroptosis in P. oryzae for controlling this devastating disease. Recent

discoveries, such as the efficacy of tangeretin in inhibiting fungal

ferroptosis, highlight the potential of natural and nature-inspired

compounds in rice blast management. These findings offer

alternatives to traditional fungicides and opportunities to enhance

rice’s nutritional value through antioxidant enrichment.

Antioxidant-based approaches present several advantages,

including improved safety and environmental friendliness

compared to synthetic fungicides. However, challenges remain in

optimizing delivery methods, addressing potential resistance, and

ensuring efficacy in diverse conditions. Future research should focus

on identifying effective antioxidant compounds, exploring synergistic

combinations, and developing sustainable application methods. From

a nutritional perspective, this approach offers possibilities for

enhancing both rice resilience and its nutritional quality.
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