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Genome skimming provides
evidence to accept two new
genera (Apiaceae) separated
from the Peucedanum s.l.
Bo-Ni Song1†, Chang-Kun Liu1,2†, Jiao-Jiao Deng1,
Wei-Yan Tan1, Song-Dong Zhou1* and Xing-Jin He1

1Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life
Sciences, Sichuan University, Chengdu, China, 2College of Resources Environment and Chemistry,
Chuxiong Normal University, Chuxiong, China
Background: The Peucedanum s.l. genus, the backbone member of subfamily

Apioideae, includes many medically and economically important plants.

Although previous studies have proved that the genus was not a natural

taxonomic unit and taxonomists also conducted several taxonomic revisions

for taxa of this genus, classifications of numerous taxa of the genus still have not

been satisfactorily resolved, especially for those endemic to China. Therefore, we

conducted a comprehensive taxonomic revision of taxa within the polyphyletic

Peucedanum s.l. genus in this study.

Methods: We used two molecular datasets (103 plastomes and 43 nrDNA

sequences) generated by genome skimming to reconstructed a reliable

phylogenetic framework with high support and resolution. In addition, we also

investigated the divergence time of core clade of endemic taxa.

Results and Discussion: Both analyses failed to recover Peucedanum s.l. as a

monophyletic group and robustly supported that P. morisonii, the representative

of Peucedanum s.s., was distantly related to other Peucedanum s.l. members,

which implied that these Peucedanum s.l. taxa were not “truly Peucedanum

plants”. Among these Peucedanum s.l. members, plastid-based phylogenies

recognized two monophyletic clades, clade A (four species) and clade B (10

taxa). Meanwhile, obvious recognized features for morphology, plastome, and

chromosome number for each clade were detected: dorsally compressed and

glabrous mericarps with filiform dorsal ribs, winged lateral ribs, numerous vittae

in commissure and each furrow, IRa/LSC border falling into rpl23 gene, an overall

plastome size of 152,288-154,686 bp, and chromosome numbers of 2n=20 were

found in clade A; whereas dorsally compressed and pubescent mericarps with

filiform dorsal ribs, winged lateral ribs, numerous vittae in commissure and each

furrow, IRa/LSC border falling into the ycf2 gene, an overall plastome size of

146,718-147,592 bp, and chromosome numbers of 2n=22 were discovered in

clade B. Therefore, we established two new genera (Shanopeucedanum gen.

nov. and Sinopeucedanum gen. nov.) to respectively accommodate the taxa of

clades A and B. Furthermore, molecular dating analysis showed that the

diversification of clades A and B occurred in the early Pleistocene and late
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Pliocene, respectively, which may have been driven by the complex geological

and climate shifts of these periods. In summary, our study impelled a revision of

Peucedanum s.l. members and improved the taxonomic system of the

Apiaceae family.
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1 Introduction

With the advancements of molecular phylogenetics,

taxonomists conducted extensively taxonomic revisions in

angiosperms and obtained the relatively stable system for orders

and families, (Angiosperm Phylogeny Group, 2003, 2009, 2016;

Bremer et al., 1998), as well as for those large genera with economic,

medicinal and horticultural value (Miller et al., 2014; Li et al., 2012;

Razafimandimbison et al., 2014; Drew et al., 2017; Xu and Hong,

2021; Fu et al., 2022; Scatigna et al., 2022). Therefore, molecular

phylogenetics provides strong evidence for taxa that are difficult to

morphologically identify.

Peucedanum s.l., the backbone member of the subfamily

Apioideae, includes 100-120 species. Of these, forty species are

distributed in China with 33 of them endemic (Sheh and Watson,

2005). The genus is widely distributed across Europe, Asia, and South

Africa, with Europe and East Asia as the distribution centers (Wu

et al., 2003; Spalik et al., 2004; Sheh and Watson, 2005; Zhang, 2011).

Peucedanum s.l. can be identified by dorsally compressed mericarps

with slightly prominent dorsal ribs, narrowly winged lateral ribs, and

a broad commissure (Spalik et al., 2004; Sheh and Watson, 2005).

However, members of this genus are heterogenous and always exhibit

great variability in life-forms, leaf and fruit, and chemical constituents

(Shneyer et al., 2003; Zhou et al., 2014; Wang et al., 2015;

Ostroumova, 2018). For example, during our field botanical

surveys, we found that four species (P. dissolutum, P. guangxiense,

P. mashanense and P. medicum) have solitary or numerous stems that

are solid, glabrous, and basally usually clothed with fibrous remnant

sheaths, branched above; the leaves are basal and cauline, ternate or

pinnate, and terminal leaflet diverse; the basal leaves are petiolate

with petiole sheathing; the cauline leaves are reduced upwards with

the leaf sheath expanded; inflorescences compound umbels, terminal

and latera; the bracts are few or absent; the bracteoles are numerous

and rarely few; the rays are numerous, unequal, and pubescent; the

calyx teeth are conspicuous; and the petals are white and inflexed.

Ten species (P. ampliatum, P. formosanum, P. harry-smithii, P. harry-

smithii var. grande, P. harry-smithii var. subglabrum, P.

huangshanense, P. japonicum, P. praeruptorum, P. turgeniifolium

and P. wawrae) possessed stout rootstock, the crown of which was

usually clothed with fibrous remnant sheaths; the stems were solitary

and branched above; leaves were basal and cauline, ternate or pinnate,
02
and the terminal leaflet was diverse; the basal leaves petiolate with

petiole sheathing; the cauline leaves were reduced upwards and the

leaf sheath expanded; inflorescences compound umbels, terminal and

latera; the bracts were few or absent; the bracteoles were numerous,

rarely few; the rays were unequal and pubescent; the calyx teeth were

short or obsolete; and the petals were usually white, occasionally

purple, and inflexed. Therefore, it noticed that the genus is a

taxonomically confused group (Downie et al., 2010).

In addition, all molecular phylogenetic studies on Peucedanum s.l.

have failed to recover this genus as a monophyletic group, of which

only a few European species, with one species (P. morisonii Besser ex

Schult.) extended to East Asia, were consistently clustered with P.

officinale L., the type species of this genus (Downie et al., 2000; Spalik

et al., 2004; Valiejo-Roman et al., 2006; Feng et al., 2009; Zhou et al.,

2009, 2020; Lei et al., 2022; Liu et al., 2022). Therefore, Peucedanum

s.s. was adopted (Kadereit and Bittrich, 2018) and several genera were

restored or established to accommodate other European taxa, such as

CervariaWolf, Imperatoria L.,OreoselinumMill., Pteroselinum Rchb.,

Thysselinum Adans., Xanthoselinum Schur, Holandrea Reduron,

Charpin & Pimenov, and Taeniopetalum Vis (Reduron et al., 1997;

Ostroumova et al., 2016). Winter et al. (2008) also revised the African

taxa of Peucedanum s.l. by establishing three new genera

(Afrosciadium P.J.D. Winter, Nanobubon Magee, and Notobubon

B.-E. van Wyk) and transferring 24 species into the Afroligusticum

C. Norman, Cynorhiza Eckl. & Zeyh., and Lefebvrea A. Rich. genera

based on morphological characteristics and molecular evidence. For

Asian taxa previously residing in the Peucedanum s.l.,

generaKitagawia Pimenov (Pimenov, 1986), Haloselinum Pimenov

(Pimenov and Ostroumova, 2012), and Sillaphyton Pimenov

(Pimenov et al., 2016) were separated and several transfers have

been performed (Pimenov, 2017; Xiao et al., 2017; Gou et al., 2020; Liu

et al., 2023; Song et al., 2023). However, classifications of numerous

taxa have still not been satisfactorily resolved, especially for those

endemic to China, such as P. dissolutum, P. guangxiense, P.

mashanense, P. medicum, P. ampliatum, P. formosanum, P. harry-

smithii, P. harry-smithii var. grande, P. harry-smithii var. subglabrum,

P. huangshanense, P. japonicum, P. praeruptorum, P. turgeniifolium,

and P. wawrae. Therefore, it is necessary and urgent to obtain a robust

phylogenetic framework to investigate their classifications.

Currently, genomic-level data have begun to replace one or a

few fragments for the phylogenetic analyses of plants (Ji et al., 2022).
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Genome skimming is an effective approach to obtain complete

plastome and nrDNA sequences (Straub et al., 2012) and has been

extensively and successfully used to solve the phylogeny of plants,

especially for the taxonomically difficult and controversial taxa

(Ruhsam et al., 2015; Ji et al., 2019, 2022; Li et al., 2019; Liu et al.,

2021; Schneider et al., 2021; Choi et al., 2022; Sielemann et al., 2022;

Cao et al., 2023; Cui et al., 2023; Lima et al., 2023; Peng et al., 2023;

Song et al., 2023; Song et al., 2024a, 2024b). In previously published

study (Liu et al., 2022), we also employed the genome skimming

approach to generate plastome data to investigate the phylogenetic

positions of Peucedanum s.l. members, which significantly

improved the taxonomic understanding of this group. However,

sampling of this genus was too small to completely aid the

taxonomic revision of Peucedanum s.l.

Here, we newly generated nine high-quality plastomes and 43

nrDNA sequences of Peucedanum s.l. using the genome skimming

approach. Together with molecular data previously reported by us,

103 plastomes and 43 nrDNA sequences were used in the

phylogenetic analyses, including 21 out of the 33 Peucedanum s.l

taxa endemic to China. Based on the phylogeny of large data sets,

we aim to (1) test whether the previous taxonomic revisions of

Peucedanum s.l species were reasonably given; (2) uncover the

phylogenetic positions of taxa endemic to China, and combine

evidence from plastome features, chromosome number, and

morphological features to conduct taxonomic revisions; (3)

explore historical diversification for core clades of endemic taxa.
2 Materials and methods

2.1 Taxa sampling, DNA extracting, and
genome skimming

In this study, we collected nine Peucedanum s.l. taxa in the wild,

including eight taxa endemic to China and one representative of

Peucedanum s.s., P. morisonii. Then, the fresh young basal leaves

were immediately stored in silica gel and dried for further DNA

extraction. Vouchers were deposited in the herbarium of Sichuan

University (Chengdu, China) (Supplementary Table S1). In

addition, we also obtained root tips from the living plants to

count chromosome number, except for P. guangxiense R.H. Shan

& M.L. Sheh, P. morisonii, and Semenovia malcolmii (Hemsl. & H.

Pearson) Pimenov (P. torilifolium H. Boissieu). Furthermore, the

root tips of P. mashanense R.H. Shan & M.L. Sheh and P. medicum

Dunn were obtained from our previous collection (Liu et al., 2022).

Finally, we collected raw data from genome skimming within the

Apiaceae subfamily Apioideae to recover 34 nrDNA sequences

(Supplementary Table S2).

The total DNA of the newly collected samples was isolated from

the silica-gel-dried leaves using the modified CTAB method (Doyle

and Doyle, 1987). Subsequently, pair-end libraries with an average

insert size of 300-400 bp were constructed according to the

manufacturer’s protocol (Illumina, San Diego, CA, USA).

Prepared libraries were sequenced on the Illumina NovaSeq

platform at Personalbio (Shanghai, China). About 10 Gb of raw
Frontiers in Plant Science 03
data for each sample were generated by genome skimming and then

the raw data were filtered by software fastP v0.15.0 (-n 10 and -q 15)

(Chen et al., 2018) to obtain high-quality reads.
2.2 Assembly and annotation of plastome
and nrDNA

Based on the high-quality reads, we used GetOrganelle pipeline

v1.7.5.0 (Jin et al., 2020) to assemble the complete plastomes with

the default parameters and the rbcL sequence of P. japonicum

(JF943288) as the seed. Furthermore, GetOrganelle pipeline v1.7.5.0

(Jin et al., 2020) was also employed to recover nrDNA sequences,

setting the published nrDNA sequence of P. japonicum (KX757777)

as reference. The assembled plastomes were initially annotated

using the web server CPGAVAS2 (http://www.herbalgenomics

.org/cpgavas2) (Shi et al., 2019). Then, the start and stop codons

and intron positions were manually corrected in Geneious v9.0.2

(Kearse et al., 2012). For the annotation of the nrDNA, newly

recovered sequences were compared with the reference in Geneious

v9.0.2 (Kearse et al., 2012) to determine the borders of the

ribosomal RNA genes (18S, 5.8S, and 26S ribosomal RNA genes).
2.3 Phylogenetic analyses

A total of 103 plastomes (40 Peucedanum species are distributed

in China with 33 sampled in this study, the coverage of the current

samplings accounting for 75%) and 43 nrDNA sequences of the

Apiaceae subfamily Apioideae were used to reconstruct the

phylogenetic trees (Supplementary Table S3). Of these sequences,

nine plastomes were newly sequenced and 94 were downloaded

from the National Center for Biotechnology Information (NCBI)

that were previously reported by our team, and all 43 nrDNA

sequences were newly generated. Among them, Chamaesium

mallaeanum Farille & S.B. Malla and Chamaesium viridiflorum

(Franch.) H. Wolff ex R.H. Shan were chosen as the outgroup

according to the phylogenetic result of Wen et al. (2021). The 43

nrDNA sequences were aligned using MAFFT v7.221 (Katoh and

Standley, 2013) to generate the matrix. For the plastome data, 79

commonly shared plastid protein-coding genes (PCGs) were

manually extracted in Geneious v9.0.2 (Kearse et al., 2012) and

respectively aligned using MAFFT v7.221 (Katoh and Standley,

2013), trimmed by trimAI (Capella-Gutierrez et al., 2009) and then

the alignments were concatenated into a super matrix using

PhyloSuite v1.2.2 (Zhang et al., 2020).

Two matrixes were subjected to maximum likelihood (ML) and

Bayesian inference (BI) analyses. The ML analyses were performed

using RAxML v8.2.8 (Stamatakis, 2014) with the GTRGAMMA

model, and 1000 bootstrap replicates were used to estimate the

support value (BS) for each node. For the BI analyses, phylogenetic

trees were generated with MrBayes v3.2.7 (Ronquist et al., 2012).

The best-fit substitution model (GTR+I+G) for the matrixes of the

concatenated plastid protein-coding genes and nrDNA was

determined using Modeltest v3.7 (Posada and Crandall, 1998).
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Two simultaneous and independent Markov chain Monte Carlo

(MCMC) runs with 10 million generations were performed,

sampling every 1000 generations. The runs were finished when

the average standard deviation of the split frequencies was below

0.01. The first 25% of the trees were abandoned as burn-in and the

remainders were used to generate the consensus tree and calculate

posterior probabilities (PP). Finally, the phylogenetic trees were

edited using FigTree v1.4.2 (Rambaut and Drummond, 2015).
2.4 Molecular dating

According to two pollen fossils within Apiaceae and the strategy

adopted by Banasiak et al. (2013) and Wen et al. (2020, 2021), two

calibration points constrained to a lognormal distribution were used

to constrain the phylogenetic treeL (i) The stem node of Bupleureae

was constrained with the lower bound of 33.90 Mya and the upper

bound of 58.71 Mya; (ii) whereas the stem node of Pleurospermeae

was calibrated with the lower bound of 33.90 Mya and the upper

bound of 55.80 Mya. The standard deviation of the lognormal

distribution was set to 0.5 for both calibration points. Based on the

concatenated data set of 79 plastid protein-coding genes, the

divergence times were estimated using BEAST v1.10.4 (Suchard

et al., 2018) under the uncorrelated lognormal relaxed clock model,

with a Yule speciation process and the best-fit nucleotide

substitution model (GTR+I+G) detected using Modeltest v3.7

(Posada and Crandall, 1998). The ML tree inferred from the

matrix of concatenated plastid protein-coding genes was used to

fix topology. Two MCMC runs of 200,000,000 generations were

performed, sampling every 20,000 generations. The convergence of

running was checked using Tracer v1.7 (Rambaut et al., 2018), with

an effective sample size (ESS) of all parameters not less than 200.

The trees generated by the two runs were combined using

LogCombiner v1.10.4 (Suchard et al., 2018) after discarding the

first 20% of trees as burn-in, and then used to produce the

maximum clade credibility tree with median ages and 95%

highest posterior density (HPD) intervals with TreeAnotator

v2.1.2 (Suchard et al., 2018). The result was exhibited in FigTree

v1.4.2 (Rambaut and Drummond, 2015).
2.5 Chromosome counting

The chromosome number varies greatly between genera and

species in the Apiaceae family, which is often used as one of the

main evidences for exploring the intergeneric relationships,

interspecific relationships, and species evolution of Apiaceae

plants (Pan and Qin, 1981; Solov’eva et al., 1985; Ci, 1994; Jiang

et al., 2002; Marhold, 2006; Pu et al., 2006; Zhang et al., 2006;

Marhold et al., 2009; Kumar and Singhal, 2011; Sun et al., 2020; Liu

et al., 2023). For example, previous studies reported that the basic

chromosome number of the genus Bupleurum L. in China was 4, 6,

7, and 8, indicating that Bupleurum L. is a multi-base genus (Pan

and Qin, 1981; Jiang et al., 2002; Liang et al., 2013). Researchers

have shown that the chromosome number was different between

species in the genus Pleurospermum Hoffm. in the Hengduan
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Mountains (HDM), with basic chromosome numbers of 9 and 11,

which provided vital evidence for interspecific classification within

the genus (Pan and Qin, 1981; Marhold, 2006; Pu et al., 2006;

Kumar and Singhal, 2011; Sun et al., 2020). Zhang et al. (2006)

analyzed the chromosome numbers and karyotypes of three

populations of Hansenia forbesii (H. Boissieu) Pimenov &

Kljuykov and found significant differences in the karyotype

composition of the three populations, indicating that the

polymorphism of karyotype composition among the H. forbesii

populations was quite obvious, which was likely the result of

adaptation to different environments. Ci (1994) found that the

karyotype of Saposhnikovia divaricata was 2n=16, which can easily

distinguish it from its related genera. Therefore, we collected the

root tips of eight Peucedanum s.l. taxa in the current study. All the

root tips were pre-treated with a solution of 2mM 8-

hydroxyquinoline - 0.2% colchicine (1:1) for 4 h, fixed in Carnoy

I (glacial acetic acid–absolute ethanol = 1:3) for 2 h, macerated in 1

N HCl at 60°C for 10 min, and squashed in carbol fuchsin. Finally,

we counted the chromosome number under a light microscope

(Olympus-BX51).
3 Results

3.1 Features of the plastomes and nrDNA

A total of nine high-quality plastomes were newly assembled in

the current study. All of them exhibited a typical quadripartite

structure, including a pair of inverted repeat regions (IRs: 12,455-

25,821 bp) separated by a large single copy region (LSC: 86,721-

100,043 bp) and a small single copy region (SSC: 16,080-17,728 bp).

The overall sizes of the nine plastomes varied from 142,433 bp to

154,686 bp and the total GC content of which was 37.4%-37.6%.

These plastomes encoded 112-113 unique genes, including 79

protein-coding genes, 29-30 tRNA genes, and 4 rRNA genes

(Table 1). The trnT-GGU gene was lost in P. praeruptorum Dunn

and P. wawrae (H. Wolff) S.W. Su ex M.L. Sheh. In addition, we also

recovered 43 nrDNA sequences, including 18S, ITS1, 5.8S, ITS2, and

26S regions, with sequence length varied from 5,195 bp to 5,822 bp.
3.2 Phylogenetic analyses and divergence
time estimation

The phylogenetic topologies from the ML and BI analyses based

on concatenated plastid protein-coding genes were identical. All the

tribes or clades involved in the current study with more than one

sample were recovered as a well-supported monophyletic group.

However, the monophyly of Peucedanum s.l. failed to recover and

members of this genus scattered in four tribes (or clades): (1)

Sillaphyton podagraria (H. Boissieu) Pimenov (P. insolens Kitag.)

was located in the Arcuatopterus clade (PP = 1.00, BS = 100). (2)

Meeboldia delavayi (Franch.) W. Gou & X.J. He (P. delavayi Franch.)

was nested in the Meeboldia H. Wolff genus belonging to the

Acronema clade (PP = 1.00, BS = 100). (3) Semenovia malcolmii

(Hemsl. & H Pearson) Pimenov (P. torilifolium H. Boissieu) was
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placed in Semenovia Regel & Herder, while Tetrataenium bivittatum

(H. Boissieu) Manden. (P. angelicoides H. Wolff ex Kretschmer) was

sister to Tetrataenium yunnanense (Franch.) Manden. ex Q.Y. Xiao &

X.J. He, belonging to Tordylieae (PP = 1.00, BS = 100). (4) The

remainders were included in Selineae (PP = 1.00, BS = 100). Although

most of the members of Peucedanum s.l. fell into the Selineae tribe,

these taxa have not been grouped in a unit instead of five clades: (i) P.

morisonii Besser ex Schult., the representative of Peucedanum s.s.,

solely represented a clade and was sister to the clade formed by

Cortiella hookeri (C.B. Clarke) C. Norman and Ligusticopsis Leute

genus (PP = 1.00, BS = 100); (ii) five species, Ligusticopsis acaulis

(R.H. Shan & M.L. Sheh) Pimenov (P. acaule R.H. Shan & M.L.

Sheh), Ligusticopsis franchetii (C.Y. Wu & F.T. Pu) B.N. Song, C.K.

Liu & X.J. He (P. franchetii C.Y. Wu & F.T. Pu), Ligusticopsis nana

(R.H. Shan & M.L. Sheh) C.K. Liu & X.J. He (P. nanum R.H. Shan &

M.L. Sheh), Ligusticopsis pubescens (Hand.-Mazz.) J.J. Deng, C.K. Liu

& X.J. He (P. pubescens Hand.-Mazz.), and Ligusticopsis violacea

(R.H. Shan and M.L. Sheh) C.K. Liu & X.J. He (P. violaceum R.H.

Shan & M.L. Sheh) were nested in the Ligusticopsis genus with high

support (PP = 1.00, BS = 100); (iii) Kitagawia baicalensis (Redowsky

ex Willd.) Pimenov (P. baicalense (Redowsky ex Willd.) W.D.J.

Koch), Kitagawia komarovii Pimenov (P. elegans Kom.), Kitagawia

stepposa (Y.H. Huang) Pimenov (P. stepposum Y.H. Huang),

Kitagawia terebinthacea (Fisch. ex Trevir . ) Pimenov

(P. terebinthaceum (Fisch. ex Trevir.) Turcz.), P. chujaense K. Kim,

S.H. Oh, Chan S. Kim & C.W. Park, and P. hakuunense Nakai were

clustered into a clade (PP = 1.00, BS = 100); (iv) four species

[P. dissolutum (Diels) H. Wolff, P. guangxiense R.H. Shan & M.L.

Sheh, P. mashanense R.H. Shan &M.L. Sheh, and P. medicum Dunn]

formed clade A (PP = 1.00, BS = 100); (v) the remaining ten taxa

(P. ampliatum, P. formosanum, P. harry-smithii, P. harry-smithii var.

grande, P. harry-smithii var. subglabrum, P. huangshanense,

P. japonicum, P. praeruptorum, P. turgeniifolium, and P. wawrae)

constituted clade B with strong support (PP = 1.00, BS = 100)

(Figure 1). These five clades were also recovered in the nrDNA

tree, whereas P. huangshanense Lu Q.Huang, H.S. Peng & S.S.
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Chu was not located in clade B but was sister to Pachypleurum

alpinum Ledeb. and then nested into Kitagawia Pimenov

(Supplementary Figure S1).

In addition, molecular dating analysis based on the ML tree of

concatenated plastid protein-coding genes was performed

(Figure 2). The molecular dating results indicated that the crown

age of the Selineae tribe was estimated to be 9.75 Mya (95% HPD:

12.07-7.58 Mya). Within this tribe, the diversification of clades A

and B occurred at 2.30 Mya (95% HPD: 3.47-1.38 Mya) in the early

Pleistocene period and 2.73 Mya (95% HPD: 3.76-1.92 Mya) in the

late Pliocene period, respectively.
3.3 Chromosome numbers

The chromosome numbers of eight Peucedanum s.l. taxa were

counted. Among them, the chromosome numbers of three species,

P. dissolutum (Diels) H. Wolff, P. mashanense R.H. Shan & M.L.

Sheh, and P. medicum Dunn, were 2n=20, while the chromosome

numbers of the remainders were 2n=22 (Supplementary Figure S2).
4 Discussion

4.1 Phylogenetic framework and
taxonomic implications

The phenomenon of incongruences between plastome-based

and nrDNA-based phylogenies is common in Apiaceae (Xiao et al.,

2017; Lei et al., 2022; Song et al., 2024a, b), and our study was no

exception. In our study, the topologies generated from the PCGs

and nrDNA were largely similar, except for the discordance

regarding the position of P. huangshanense, which may be caused

by incomplete lineage sorting due to the young evolutionary history

(Wen et al., 2020, 2021). Same as all previous phylogenetic studies

(Downie et al., 2000; Spalik et al., 2004; Valiejo-Roman et al., 2006;
TABLE 1 Plastome features of nine Peucedaum s.l. taxa.

Taxon Total
length
(bp)

LSC
(bp)

SSC
(bp)

IR
(bp)

Total GC
content

(%)

Total
genes

(unique)

Protein coding
genes (unique)

rRNA
genes

(unique)

tRNA
genes

(unique)

P. dissolutum 154,686 86,964 16,080 25,821 37.4 113 79 4 30

P. guangxiense 152,969 86,721 17,728 24,260 37.5 113 79 4 30

P. harry-smithii 147,197 92,400 17,521 18,638 37.6 113 79 4 30

P. harry-smithii
var. subglabrum

147,143 92,469 17,522 18,576 37.6 113 79 4 30

P. huangshanense 147,437 92,501 17,580 18,678 37.6 113 79 4 30

P. morisonii 147,105 93,594 17,537 17,987 37.6 113 79 4 30

P. praeruptorum 146,954 92,011 17,521 18,711 37.6 112 79 4 29

P. wawrae 147,179 92,121 17,522 18,768 37.6 112 79 4 29

Semenovia malcolmii
(P. torilifolium)

142,433 100,043 17,480 12,455 37.4 113 79 4 30
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Feng et al., 2009; Zhou et al., 2009, 2020; Lei et al., 2022; Liu et al.,

2022), phylogenetic analyses respectively based on concatenated

plastid protein-coding genes and nrDNA sequences in the current

study failed to recover Peucedanum s.l. as a monophyletic group.

Specifically, both analyses robustly supported that P. morisonii, the

representative of Peucedanum s.s., was distantly related to other
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Peucedanum s.l. members. The distant relationship was further

justified by the morphological features: ternate leaves, linear leaflets,

yellow petals, and dorsally compressed and glabrous mericarps with

1 vittae in each furrow and 2 on commissure, which were the

recognized features of Peucedanum s.s (Kadereit and Bittrich,

2018), and significantly distinguished P. morisonii from other
FIGURE 1

Phylogenetic topologies based on concatenated plastid protein-coding genes inferred by the Bayesian inference (BI) and maximum likelihood (ML)
methods. The numbers represent Bayesian posterior probabilities (PP) and maximum likelihood bootstrap values (BS). Nodes with PP=1.00/BS=100
were not displayed. – denotes values < 0.50/50.
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Peucedanum s.l. members. Hence, all these Peucedanum s.l. taxa

were not “truly Peucedanum plants” and the taxonomic positions of

them need to be re-explored.

In addition, the PCG-based phylogenetic analyses showed that

14 Peucedanum s.l. taxa were divided into two monophyletic clades

(clade A and clade B) by Saposhnikovia divaricata (Turcz.)

Schischk., Seseli glabratum Willd. ex Schult., Libanotis

buchtormensis (Fisch.) DC., and L. spodotrichoma K.T. Fu with

robust supports. Furthermore, obvious morphological differences

between 14 Peucedanum s.l. taxa and these species were also

observed: mericarps with filiform dorsal ribs, winged lateral ribs,

and numerous vittae in each furrow and commissure, easily

distinguished the 14 Peucedanum s.l. taxa from the mericarps

with fake vittae in each rib, and 1 vittae in each furrow and 2 on
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commissure of Saposhnikovia divaricata, from mericarps with

equally filiform or keeled ribs, and 1 vittae in each furrow and 2

on commissure of S. glabratum, L. buchtormensis and L.

spodotrichoma (Sheh, 1992; Sheh and Watson, 2005). Thus, it was

clearly inappropriate to regard all these taxa as a unit, whether based

on morphological features or phylogenetic analyses. Furthermore,

we also detected that clades A and B had significant morphological

differences, but the morphological characteristics within each clade

were unified. In detail, four members of clade A were perennial

herbs; stem solitary or numerous, solid, glabrous, basal usually

clothed with fibrous remnant sheaths, branched above; leaves basal

and cauline, ternate or pinnate, terminal leaflet diverse; basal leaves

petiolate, petioles sheathing; cauline leaves reduced upwards, leaf

sheath expand; inflorescences compound umbels, terminal and
FIGURE 2

Divergence time estimation based on concatenated plastid protein-coding genes. Numbers above/under branches represent mean divergent age
and 95% highest posterior density interval. Red stars indicate the calibration points for the molecular dating.
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latera; bracts few or absent; bracteoles numerous, rarely few; rays

numerous, unequal, pubescent; calyx teeth conspicuous; petals

white, inflexed; mericarp dorsally compressed, glabrous; dorsal

ribs filiform, lateral ribs narrowly winged; numerous vittae in

commissure and each furrow. Ten members of clade B were

perennial herbs; rootstock stout, crown usually clothed with

fibrous remnant sheaths; stem solitary, branched above; leaves

basal and cauline, ternate or pinnate, terminal leaflet diverse;

basal leaves petiolate, petioles sheathing; cauline leaves reduced

upwards, leaf sheath expand; inflorescences compound umbels,

terminal and latera; bracts few or absent; bracteoles numerous,

rarely few; rays unequal, pubescent; calyx teeth short or obsolete;

petals usually white, occasionally purple, inflexed; mericarp dorsally

compressed, pubescent; dorsal ribs filiform, lateral ribs narrowly

winged; numerous vittae in commissure and each furrow. These
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unique features of clades A and B can also easily distinguish them

from other related genera. Meanwhile, the plastome structure and

chromosome numbers of clades A and B were also different, such as

the IRa/LSC border falling into the rpl23 gene, an overall plastome

size of 152,288-154,686 bp, and chromosome numbers of 2n=20 in

clade A, and the IRa/LSC border falling into the ycf2 gene, an overall

plastome size of 146,718-147,592 bp, and chromosome numbers of

2n=22 in clade B (Figure 3). Therefore, we established two new

genera (Shanopeucedanum gen. nov. and Sinopeucedanum gen.

nov.) to respectively accommodate the taxa of clades A and B and

the treatment was accepted based on morphology, plastomes,

chromosome number, and phylogeny.

Our PCG-based phylogenies also resolved the positions of the

remaining Peucedanum s.l. species with high support. Six species

formed a monophyletic clade, in which four species (P. baicalense, P.
FIGURE 3

Comparisons of mericarps, plastomes, and chromosome number between clade A and clade B. The chromosome numbers for P. turgeniifolium and
P. japonicum marked with a * were obtained from the results of Zhang et al. (2006) and Sun et al. (1996), respectively.
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elegans, P. stepposum, and P. terebinthaceum) have been transferred

into the Kitagawia genus (Pimenov, 1986, 2017) and we suggested

that the remaining two species (P. chujaense and P. hakuunense) also

should be transferred into the Kitagawia genus. Five species (P.

acaule, P. franchetii, P. nanum, P. pubescens, and P. violaceum) were

nested in Ligusticopsis and have been merged into this genus

(Pimenov, 2017; Deng et al., 2022; Liu et al., 2023; Song et al.,

2023). P. insolens formed a separate clade and a monotypic genus,

Sillaphyton, was established by Pimenov to accommodate this species

(Pimenov et al., 2016). P. delavayii and P. torilifolium respectively

nested inMeeboldia and Semenovia, while P. angelicoideswas sister to

Tetrataenium yunnanense, and they have been transferred into

Meeboldia, Semenovia, and Tetrataenium, respectively (Xiao, 2017;

Xiao et al., 2017; Gou et al., 2020). Hence, with high support and

extended samples, our results strongly supported the previous

taxonomic revisions for the above species and provide new

additional evidence to accept these treatments.
4.2 Estimation divergence time

The diversification of tribes within the Apiaceae family has been

inferred based on robust phylogenetic frameworks obtained from

transcriptome and plastome datasets by Wen et al. (2020, 2021).

However, limited samples for each tribe were employed in both

studies, such as only five species of the Selineae tribe in

transcriptome datasets and fourteen species of the Selineae tribe in

plastome datasets, whichmay have led to inaccurate results. Due to the

majority of the Peucedanum s.l. taxa falling into Selineae, we extended

the samples of this tribe to explore the molecular dating analysis in the

current study. Our result showed that the diversification of the

Selineae tribe occurred at 9.75 Mya (95% HPD: 12.07-7.58 Mya),

which was slightly earlier than 5.32 Mya (95% HPD: 7.25-3.60 Mya)

and 7.70 Mya (95% HPD: 10.09-5.74 Mya) inferred by Wen et al.

(2020, 2021). With more samples, and therefore, more accurate

results, we justified that the Selineae tribe was a young lineage and

the members of this tribe were the results of recent diversification.

Within the Selineae tribe, the diversification of clades A and B

occurred at 2.30 Mya (95% HPD: 3.47-1.38 Mya) (around the early

Pleistocene) and 2.73 Mya (95% HPD: 3.76-1.92 Mya) (around the

late Pliocene), respectively. Previous studies have proven that the

dramatic uplift of Qinhai-Tibet Plateau (QTP) occurred from the late

Miocene to the early Pliocene (Harrison et al., 2001; Royden et al.,

2008), which significantly modified the global climate (An et al., 2001;

Shi et al., 2005), and at least four major glaciations took place in East

Asia during the Pleistocene (Shi, 1998). These complex geological and

climate shifts drove the expansion/contraction of the species range

and isolation in East Asia and thereby facilitated species radiation

(Axelrod et al., 1998; Li and Fang, 1999; Qiu et al., 2011), which is

thought to have facilitated the diversification of wide spectrum of East

Asia plants (Qian and Ricklefs, 2000;Wu et al., 2007;Wen et al., 2014;

Favre et al., 2015; Ji et al., 2019) and thus could also have caused

isolation and drove species diversification in clades A and B. Thus, we

speculate that the diversification in clades A and B may have been

driven by complex geological and climate shifts.
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4.3 Taxonomic treatments

Shanopeucedanum B.N.Song, C.K. Liu & X.J. He, gen. nov.

Type: Shanopeucedanum medicum (Dunn) C.K. Liu & X.J. He.

Diagnosis: The genus can be easily distinguished from

Peucedanum s.s. and related genera by white petals, dorsally

compressed and glabrous mericarps with filiform dorsal ribs,

winged lateral ribs, and numerous vittae in commissure and

each furrow.

Description: Perennial herbs. Stem solitary or numerous, solid,

glabrous, basal usually clothed with fibrous remnant sheaths,

branched above. Leaves basal and cauline, ternate or pinnate,

terminal leaflet diverse; basal leaves petiolate, petioles sheathing;

cauline leaves reduced upwards, leaf sheath expanded.

Inflorescences compound umbels, terminal and latera; bracts few

or absent; bracteoles numerous, rarely few; rays numerous, unequal,

pubescent; calyx teeth conspicuous; petals white, inflexed. Mericarp

dorsally compressed, glabrous; dorsal ribs filiform, lateral ribs

narrowly winged; numerous vittae in commissure and each

furrow. 2n=20.

Diversity: Four species.

Distribution: Endemic to China.

Key to species of Shanopeucedanum.

1. Stem solitary; leaves ternate, rarely pinnate……………………

……………………………………..Shanopeucedanum medicum.

1. Stem numerous, leaves pinnate.

2. Terminal leaflet rhombic.......…………….…………………

……………………….…….Shanopeucedanum mashanense.

2. Terminal leaflet ovate.

3. Mericarp large; leaves 3-pinnate.…………………….…

…………………………….Shanopeucedanum dissolutum.

3. Mericarp small; leaves 2-pinnate……………….….……

……………………………Shanopeucedanum guangxiense.

Shanopeucedanum dissolutum (Diels) C.K. Liu & X.J. He,

comb. nov.

≡Peucedanum dissolutum (Diels) H. Wolff, Repert. Spec. Nov.

Regni Veg. 21: 247. 1925.

≡Angelica dissoluta Diels, Bot. Jahrb. Syst. 29: 499. 1900.

Type: CHINA. Sichuan, Nanchuan, Kên ao p’ing, Abhänge, von

Rosthorn 659 (syntype: O 2014068).

Shanopeucedanum guangxiense (R.H. Shan & M.L. Sheh) C.K.

Liu & X.J. He, comb. nov.

≡Peucedanum guangxiense R.H. Shan & M.L. Sheh, Acta

Phytotax. Sin. 24: 308. 1986.

Type: CHINA. Guangxi, Jingxi, 300 m alt., 8 November 1961,

Wu Xinfang 23493 (holotpye: NAS 00082770).

Shanopeucedanum mashanense (R.H. Shan & M.L. Sheh) C.K.

Liu & X.J. He, comb. nov.

≡Peucedanum mashanense R.H. Shan & M.L. Sheh, Acta

Phytotax. Sin. 24: 304. 1986.

Type: CHINA. Guangxi, Mashan, 300 m alt., 7 September 1958,

Zhong Shuquan 301547 (holotype: IBSC; isotype: KUN 0566764).

Shanopeucedanum medicum (Dunn) C.K. Liu & X.J. He,

comb. nov.

≡Peucedanum medicum Dunn, J. Linn. Soc. Bot. 35: 496.1903.
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Type: CHINA. Hupeh, Ichang and intermediate neighborhood,

February 1887, Henry 15462006 (lectotpye, designated by Pimenov

(2017): K 000685413, 000685414; isolectotype: BM, E, K 000685416,

NY 00406177, P 00752971); Hupeh, Nam-To, 1887, Henry 1906

(syntype: K 000685415); Hupeh, Fang, Henry 5868A (syntypes: K

000685417, LE, NY 00406176, P 00752968); Szechuen, South

Wushan, Henry 7473 (syntypes: LE, P 02272028).

Sinopeucedanum B.N.Song, C.K. Liu & X.J. He, gen. nov.

Type: Sinopeucedanum harry-smithii (Fedde ex H. Wolff) C.K.

Liu & X.J. He.

Diagnosis: The new genus can be easily recognized from

Peucedanum s.s. and related genera by white or purple petals,

dorsally compressed and pubescent mericarps with filiform dorsal

ribs, winged lateral ribs, and numerous vittae in commissure and

each furrow.

Description: Perennial herbs. Rootstock stout, crown usually

clothed with fibrous remnant sheaths. Stem solitary, branched

above. Leaves basal and cauline, ternate or pinnate, terminal

leaflet diverse; basal leaves petiolate, petioles sheathing; cauline

leaves reduced upwards, leaf sheath expanded. Inflorescences

compound umbels, terminal and latera; bracts few or absent;

bracteoles numerous, rarely few; rays unequal, pubescent; calyx

teeth short or obsolete; petals usually white, occasionally purple,

inflexed. Mericarp dorsally compressed, pubescent; dorsal ribs

filiform, lateral ribs narrowly winged; numerous vittae in

commissure and each furrow. 2n=22.

Diversity: Ten species.

Distribution: China, Japan, Korea, and Philippines.

Key to species of Sinopeucedanum.

1. Leaves ternate.

2. Calyx teeth inconspicuous.

3. Umbels small; bracteoles linear…………………….……

.………………………………….Sinopeucedanum wawrae.

3. Umbels large; bracteoles pinnate and linear coexisted.…

………………………………Sinopeucedanum ampliatum.

2. Calyx teeth conspicuous.

4. Anthers purple...…………………………………………

……………………….….Sinopeucedanum huangshanense.

4. Anthers white.

5. Stem glabrous…………………………….……………

…………………………….Sinopeucedanum japonicum.

5. Stem tomentose in upper parts.

6. Bracteoles longer than flowers; fruit densely hispid

………………………..Sinopeucedanum formosanum.

6. Bracteoles shorter than flowers; fruit sparsely

puberulent……..Sinopeucedanum praeruptorum.

1. Leaves pinnate.

7. Calyx teeth inconspicuous……………….…………………

Sinopeucedanum turgeniifolium.

7. Calyx teeth conspicuous.

8. Stem and leaves densely pubescent………………………..

……………………………....Sinopeucedanum harry-smithii.

8. Stem and leaves glabrous or sparsely pubescent.

9. Umbels small; mericarp suborbicular….……………….

……………………………...Sinopeucedanum subglabrum.
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9. Umbels large; mericarp obovate..………….……………

…………………………………...Sinopeucedanum grande.

Sinopeucedanum ampliatum (K.T. Fu) C.K. Liu & X.J. He,

comb. nov.

≡Peucedanum ampliatum K.T. Fu, Fl. Tsinling. 1(3): 462. 1981.

Type: CHINA. Shaanxi, Shanyang, Tianzhushan, 1660 m alt., 3

July 1964, Liang Yiming, Yang Jinxiang 3126 (holotype:

WUK 228591).

Sinopeucedanum formosanum (Hayata) C.K. Liu & X.J. He,

comb. nov.

≡Peucedanum formosanum Hayata, Icon. Pl. Formosan. 10:

22. 1921.

≡Kitagawia formosana (Hayata) Pimenov, Turczaninowia 20

(2): 167. 2017.

Type: CHINA. Taiwan, Mt. Niitaka, ad 10000 ped. alt. [Nanto],

19 October 1906, Kawakami, Mori 2052 (holotype: TAIF).

Sinopeucedanum grande (K.T. Fu) C.K. Liu & X.J. He, comb. et

stat. nov.

≡Peucedanum harry-smithii Fedde ex H. Wolff var. grande

(K.T. Fu) R.H. Shan & M.L. Sheh, Fl. Reipubl. Popularis Sin. 55

(3): 164. 1992.

≡Peucedanum praeruptorum Dunn var. grande K.T. Fu, Fl.

Tsinling. 1(3): 428. 1981.

Type: CHINA. Shensi, Hwa-in Hsien, Hwa-shan, 1580 m alt., 5

August 1973, Fu Kuntsun 16884 (holotype: WUK).

Sinopeucedanum harry-smithii (Fedde ex H. Wolff) C.K. Liu &

X.J. He, comb. nov.

≡Peucedanum harry-smithii Fedde ex H. Wolff, Repert. Spec.

Nov. Regni Veg. 33: 247. 1933.

Type: CHINA. Shansi, Chieh-hsiuh-Distr. Sung-lin-miao, Cho

mei shan, in prato apricot, ca. 1000 m alt., 3 October 1924, H. Smith

7609 (lectotype, designated by Pimenov (2017): UPS; isolectotypes:

MO 150814, PE 00935536).

Sinopeucedanum huangshanense (Lu Q.Huang, H.S. Peng & S.S.

Chu) C.K. Liu & X.J. He, comb. nov.

≡Peucedanum huangshanense Lu Q. Huang, H.S. Peng & S.S.

Chu, Phytotaxa 430: 21. 2020.

Type: CHINA. Anhui, Mount Huangshan, on the forest

margins and cliffs, ca. 1600 m alt., 20 August 2018, Peng 082011

(holotype: ACM; isotype: ACM).

Sinopeucedanum japonicum (Thunb.) C.K. Liu & X.J. He,

comb. nov.

≡Peucedanum japonicum Thunb., Nova Acta Regiae Soc. Sci.

Upsal. 4: 38. 1783.

≡Anethum japonicum (Thunb.) Koso-Pol., Bull. Soc. Imp. Nat.

Mosc. n. s. 29: 117. 1916.

Type: JAPAN. San Bofu, vulgo Fama Bofu feu Iamma Bofu, i. e.

Bofu littoralis Kaempf. Am. ex. Fafc. V. p. 825 (lectotype, designated

by Thunb. (1784): UPS).

=Peucedanum japonicum Thunb. f. album Q.H. Yang & Q.

Tian, Acta Bot. Boreal. Ocid. Sin. 28(2): 399. 2008.

Type: CHINA. Zhejiang, Zhoushan, 22 June 2007, Tian Qi,

Yang Qinhua, Zhou Xiangyu 07-0331 (holotype: CSH 0067982).

Sinopeucedanum praeruptorum (Dunn) C.K. Liu & X.J. He,

comb. nov.
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≡Peucedanum praeruptorum Dunn, J. Linn. Soc. Bot. 35:

497. 1903.

≡Kitagawia praeruptora (Dunn) Pimenov, Turczaninowia 20

(2): 167. 2017.

Type: CHINA. Hupeh, Ichang, 1887, Henry 2911 (syntypes: P

02272036, 02272037); Changyang, Henry 7505 (syntype: K);

Szechuan, North Wushan, July 1888, Henry 7475 (lectotypes,

designated by Pimenov (2017): E 00002618, 00002619;

isolectotypes: BM 000885390, G, K 000685408, 000685409,

000685411, 000685412, P 022722038, 022722039).

Sinopeucedanum subglabrum (R.H. Shan &M.L. Sheh) C.K. Liu

& X.J. He, comb. et stat. nov.

≡Peucedanum harry-smithii Fedde ex H. Wolff var. subglabrum

(R.H. Shan & M.L. Sheh) R.H. Shan & M.L. Sheh, Fl. Reipubl.

Popularis Sin. 55(3): 164. 1992.

≡Peucedanum hirsutiusculum (Y.C. Ma) R.H. Shan & M.L.

Sheh var. subglabrum R.H. Shan & M.L. Sheh, Acta Phytotax. Sin.

24(4): 310. 1986.

Type: CHINA. Henan, Song Xian, 1000 m alt., 15 September

1965, Wu Peigeng, Wang Wanli 651161 (holotype: NAS 00026834;

isotype: NAS 00042627).

Sinopeucedanum turgeniifolium (H. Wolff) C.K. Liu & X.J. He,

comb. nov.

≡Peucedanum turgeniifolium H. Wolff, Act. Hort. Gothob. 2:

323. 1926.

Type: CHINA. Sichaun, Ch’osodjo, Ö om älven. Torr buskäng,

18 October 1922, H. Smith 4826 (lectotype, designated by Pimenov

(2017): UPS; isolectotype: GB).

Sinopeucedanum wawrae (H. Wolff) C.K. Liu & X.J. He,

comb. nov.

≡Peucedanum wawrae (H. Wolff) S.W. Su ex M.L. Sheh, Fl.

Reipubl. Popularis Sin. 55(3): 149. 1992.

≡Seseli wawrae H. Wolff, Repert. Spec. Nov. Regni Veg. 27:

315. 1930.

Type: CHINA. Shandong, Chefoo, ravines in hills, 7 August

1920, Cowdry 757 (lectotype, designated by Pimenov (2017): K

000697461; isolectotype: K 000697460).
5 Conclusions

Based on the raw data generated from genome skimming, nine

high-quality plastomes and 43 nrDNA sequences were presented.We

performed phylogenetic analyses respectively based on concatenated

plastid protein-coding genes and nrDNA sequences, including 30

members of Peucedanum s.l. with 21 endemic to China. Both analyses

failed to recover Peucedanum s.l. as a monophyletic group and

robustly supported that P. morisonii, the representative of

Peucedanum s.s., was distantly related to other Peucedanum s.l.

members, which implied that all these Peucedanum s.l. taxa were

not “truly Peucedanum plants” and the distant relationship was also

further supported by morphological evidence. Plastid-based

phylogenies recognized two monophyletic clades, clade A (four

species) and clade B (ten taxa). Furthermore, obvious recognized

features from the morphology, plastomes, and chromosome number

for each clade were detected, such as clade A possessing white petals,
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dorsally compressed and glabrous mericarps with filiform dorsal ribs,

winged lateral ribs, and numerous vittae in commissure and each

furrow; IRa/LSC border falling into the rpl23 gene; an overall

plastome size of 152,288-154,686 bp; and chromosome numbers of

2n=20, while clade B possessed white or purple petals, dorsally

compressed and pubescent mericarps with filiform dorsal ribs,

winged lateral ribs, and numerous vittae in commissure and each

furrow; IRa/LSC border falling into the ycf2 gene; an overall plastome

size of 146,718-147,592 bp; and chromosome numbers of 2n=22.

Therefore, we established two new genera (Shanopeucedanum and

Sinopeucedanum) to accommodate the taxa of clades A and B,

respectively. With high support and extended samples, our results

also strongly support the previous taxonomic revisions for

Peucedanum s.l. taxa. Furthermore, molecular dating analysis

showed that the diversification of clades A and B occurred in the

early Pleistocene and late Pliocene, respectively, which may have been

driven by the complex geological and climate shifts in these periods.
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