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Nitrogen is essential for rice growth and yield formation, but traditional methods

for assessing nitrogen status are often labor-intensive and unreliable at high

nitrogen levels due to saturation effects. This study evaluates the effectiveness of

flavonoid content (Flav) and the Nitrogen Balance Index (NBI), measured using a

Dualex sensor and combined with machine learning models, for precise nitrogen

status estimation in rice. Field experiments involving 15 rice varieties under

varying nitrogen application levels collected Dualex measurements of

chlorophyll (Chl), Flav, and NBI from the top five leaves at key growth stages.

Incremental analysis was performed to quantify saturation effects, revealing that

chlorophyll measurements saturated at high nitrogen levels, limiting their

reliability. In contrast, Flav and NBI remained sensitive across all nitrogen levels,

accurately reflecting nitrogen status. Machine learning models, particularly

random forest and extreme gradient boosting, achieved high prediction

accuracy for leaf and plant nitrogen concentrations (R2 > 0.82), with SHAP

analysis identifying NBI and Flav from the top two leaves as the most influential

predictors. By combining Flav and NBI measurements with machine learning, this

approach effectively overcomes chlorophyll-based saturation limitations,

enabling precise nitrogen estimation across diverse conditions and offering

practical solutions for improved nitrogen management in rice cultivation.
KEYWORDS

rice nitrogen estimation, Dualex measurements, saturation effect, incremental analysis,
machine learning, nitrogen balance index, SHAP analysis
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1 Introduction

Nitrogen is a fundamental nutrient for rice growth and yield

formation, playing a crucial role in processes such as

photosynthesis, protein synthesis, and enzyme activity (Liu et al.,

2021; Luo et al., 2021). Effective nitrogen management not only

boosts rice yield and quality but also reduces environmental

pollution from excessive fertilizer use, thereby supporting

sustainable agriculture (Guo et al., 2020; Cai et al., 2023).

Therefore, accurately monitoring the nitrogen nutritional status

of rice is vital for developing effective fertilization strategies.

Traditional nitrogen assessment methods largely depend on

laboratory analyses, which are often cumbersome, time-consuming,

and expensive, making them impractical for large-scale, real-time

monitoring (Berger et al., 2020). To address the need for fast, non-

destructive measurements, devices such as the SPAD chlorophyll

meter have been widely used (Tan et al., 2021; Singh et al., 2022).

These tools estimate chlorophyll content by analyzing the optical

properties of leaves, thus providing an indirect measure of nitrogen

levels. However, chlorophyll measurements often show saturation

effects at high nitrogen levels, limiting their ability to accurately

capture differences in nitrogen content (Jiang et al., 2021; Gao et al.,

2024). This drawback affects their precision under high-nitrogen

conditions, hindering accurate nitrogen management.

To overcome these limitations, multispectral and hyperspectral

remote sensing technologies at the canopy level have been

introduced for agricultural nitrogen monitoring (Fu et al., 2021;

Qian et al., 2022). These methods utilize the reflectance

characteristics of vegetation across various spectral bands to

develop indices such as the Normalized Difference Vegetation

Index (NDVI) and the Optimized Soil-Adjusted Vegetation Index

(OSAVI). These indices help estimate crop nitrogen content and

biomass (Qian et al., 2022; Yang et al., 2023; Li et al., 2024).

Although remote sensing is beneficial for large-scale, non-contact

monitoring, it is also subject to limitations. Data reliability can be

affected by weather conditions, observation angles, and variations in

light, leading to inconsistencies (Ma et al., 2020; Wu et al., 2023).

Furthermore, at high biomass or nitrogen levels, these indices may

also exhibit saturation effects, resulting in reduced accuracy in

nitrogen estimation (Zhang et al., 2019b; Chang et al., 2022).

Saturation effects present a major challenge in nitrogen

estimation. When measurements saturate at high nitrogen levels,

distinguishing between different nitrogen statuses becomes difficult,

regardless of whether chlorophyll content or canopy-level indices

are used. This leads to reduced accuracy in high-nitrogen

conditions, complicating the implementation of precise nitrogen

management. Therefore, new approaches that can mitigate or

eliminate saturation effects are urgently needed to enhance the

accuracy and reliability of nitrogen estimation.
Abbreviations: Chl, Chlorophyll; Flav, Flavonoid; NBI, Nitrogen Balance Index;

LNC, Leaf Nitrogen Concentration; PNC, Plant Nitrogen Concentration; NNI,

Nitrogen Nutrition Index; PLS, Partial Least Squares Regression; SVR, Support

Vector Regression; RF, Random Forest; XGB, Extreme Gradient Boosting; NN,

Neural Network; SHAP, SHapley Additive exPlanations; RMSE, Root Mean

Square Error; RRMSE, Relative Root Mean Square Error.
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Flavonoids (Flav) are a diverse group of phenolic compounds that

are abundantly present in plants and play key roles in their responses

to biotic and abiotic stresses (Gitelson et al., 2017; Hamdane et al.,

2023). Under stress conditions, such as nitrogen deficiency, Flav

levels increase, making them reliable indicators of nitrogen stress (Li

et al., 2021; Waqas et al., 2023). The portable Dualex sensor facilitates

the simultaneous measurement of chlorophyll (Chl) and Flav in

leaves, allowing the calculation of the Nitrogen Balance Index (NBI),

which is derived as the ratio of Chl to Flav (Cerovic et al., 2012, 2015).

Measurements of Chl and Flav have been effective in differentiating

genotypic responses to nitrogen and water stress in wheat (Raya-

Sereno et al., 2024). Studies have shown that the Dualex sensor

maintains a stronger linear correlation with actual chlorophyll

concentration than devices like SPAD-502 and CCM-200,

especially at higher chlorophyll levels. It also demonstrates higher

reliability in tests on crops such as maize, soybean, and wheat, being

less susceptible to the effects of uneven chlorophyll distribution

(Dong et al., 2019, 2022). Dong et al. (2021) successfully estimated

the Nitrogen Nutrition Index (NNI) in maize across various growth

stages by applying multiple linear regression models that integrated

Dualex readings with environmental variables. Overall, Dualex

measurements prove to be valuable in estimating plant chlorophyll

and nitrogen content, as well as in distinguishing different levels of

nitrogen and water stress, particularly maintaining high sensitivity

even under high nitrogen conditions (Rubo and Zinkernagel, 2022).

However, there is still a lack of comprehensive research on the role of

Flav and NBI in rice nitrogen estimation and their performance

under varying nitrogen conditions.

Nitrogen distribution within rice plants shows variability across

different leaf positions (Chang et al., 2019; Ouyang et al., 2021).

Karaca et al. (2023) highlighted that optical sensor data collected

from various leaf positions can improve the estimation of crop

nitrogen status. In crops like melon and sweet pepper, data from

lower leaves demonstrated superior predictive performance at

certain growth stages. Another study reported that Dualex sensor

measurements across different leaf positions performed similarly

when estimating the NNI. However, data from the third fully

expanded Leaf From the Top (LFT) often showed higher

predictive accuracy, especially during the later growth stages of

maize (Dong et al., 2021). Some studies also suggest that variations

in leaf layers or specific measurement positions do not significantly

impact the assessment of nitrogen content in wheat when using

spectral reflectance (Röll et al., 2019). In rice, SPAD readings taken

from the upper-middle section of the fourth LFT have been found

to provide more accurate and stable reflections of nitrogen status

(Yuan et al., 2016). These findings suggest that relying on a single

leaf position may not comprehensively capture the overall nitrogen

status of the plant. Therefore, using multi-leaf, multi-indicator data

could improve nitrogen diagnosis accuracy. However, integrating

data from multiple leaf positions and indicators to build accurate

nitrogen estimation models remains a challenge that requires

further investigation.

Machine learning models are particularly effective at handling

complex nonlinear relationships and multivariate data, making

them well-suited for agricultural data analysis and prediction

tasks (Shi et al., 2021; Huang et al., 2023; Mandal et al., 2024).
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Combining machine learning with Dualex measurements offers the

potential to enhance nitrogen estimation accuracy and mitigate

saturation effects. Based on this framework, our study systematically

investigates the relationships between Dualex measurements and

rice nitrogen indicators through multi-location, multi-variety, and

multi-leaf-position testing. We assess the effectiveness of Flav and

NBI in reducing saturation effects at high nitrogen levels. We also

develop rice nitrogen nutritional indicator estimation models by

integrating machine learning, focusing on optimizing feature

selection and model structure to enhance interpretability and

practical application. By addressing the limitations of traditional

methods under high nitrogen conditions and extending

applicability across different growth stages, we aim to ultimately

improve the efficiency and sustainability of agricultural production.
2 Materials and methods

2.1 Study area and experimental design

Field experiments were conducted across Jiangsu, Zhejiang, and

Jiangxi provinces in China. These experiments followed a

randomized block design, incorporating 3 to 6 different nitrogen

application rates, each with 3 to 4 replicates. A total of 15 rice

varieties were tested, including 10 japonica, 4 indica, and 1 indica-

japonica hybrid, covering a range of regions and cultivation

systems. Basic details of these varieties are shown in Table 1.

Except for variations in nitrogen application, all other agronomic

practices followed local conventional standards.
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2.2 Data collection

Samples were obtained every 10-15 days from the Tillering (TI)

stage to the Heading (HD) stage, corresponding to key growth stages:

TI, Stem Elongation (SE), Panicle Initiation (PI), and HD. Due to

differences in growth durations among the rice varieties, some early-

maturing varieties had entered the Grain Filling (GF) stage when

most varieties were at HD. Consequently, a small number of samples

were collected during the GF stage for these varieties. At each

sampling time, 3 to 6 hills of uniformly growing plants were

destructively sampled from each plot. Samples were separated into

leaves, sheaths, and panicles, then oven-dried at 105°C for 30

minutes, followed by 75°C until a constant weight was achieved.

Nitrogen concentration was determined using the Kjeldahl method.

The NNI was derived by calculating the ratio of Plant Nitrogen

Concentration (PNC) to the Critical Nitrogen concentration (Nc).

NNI values greater than 1 indicate nitrogen surplus, 1 indicates

sufficiency, and less than 1 indicates deficiency.

NNI =
PNC
Nc

where Nc is calculated using the nitrogen dilution curve

established from our dataset:

Nc = 3:44�W−0:43

where W represents the above-ground dry matter (t·ha-¹). The

parameters (3.44 and -0.43) were derived from our experimental

data using the method described by Justes et al. (1994). This method

involves plotting plant nitrogen concentration against biomass and
TABLE 1 Summary of field experiments and nitrogen treatments.

No. Varieties Subspecies Experimental Site Growth Period Nitrogen Rate

1 NG3908 japonica Nanjing May–Oct 0, 60, 120, 180, 240, 300

2 NG5055 japonica Nanjing May–Oct 0, 100, 150, 200, 250, 300

3 NG46 japonica Zhenjiang May–Oct 0, 60, 120, 180, 240, 300

4 YG13 japonica Zhenjiang May–Oct 0, 75, 150, 225,300

5 NG3 japonica Zhenjiang May–Oct 0, 75, 150, 225,300

6 JH218 japonica Jiaxing May–Oct 0, 80, 120, 140, 160

7 JYZK6 japonica Jiaxing May–Oct 0, 200, 300

8 XS14 japonica Jiaxing May–Oct 0, 100, 200

9 YY15 Hybrid1 Jiaxing May–Oct 0, 189, 230, 270

10 J67 japonica Jiaxing May–Oct 0, 127, 169

11 HHZ indica Yichun Jun–Oct 0, 135, 180, 225

12 MXXZ indica Yichun Jun–Oct 0, 135, 180, 225

13 CY5 japonica Yichun Jun–Oct 0, 135, 180, 225

14 TYXZ indica Yichun Jun–Oct 0, 135, 180, 225

15 TYHZ indica Yichun Jun–Oct 0, 135, 180, 225
1This rice variety is an indica-japonica hybrid bred by the Ningbo Academy of Agricultural Sciences.
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fitting a power function to the minimum nitrogen concentration

observed at each biomass level, representing the Nc required for

optimal growth.

On the same day as the destructive sampling, 10 to 20 rice plants

were selected from each plot to measure the 1-5 LFT using a Dualex

Scientific+ instrument (Force-A Inc., France). Each leaf was measured

at three positions: middle, upper one-third, and lower one-third, and

the average value was calculated for that leaf. The Dualex Scientific+ is

a portable optical sensor designed for rapid, non-destructive detection

of various physiological parameters in plant leaves. By measuring the

transmission and reflection of specific wavelengths of light, it provides

readings for Chl, Flav, Anthocyanin content (Anth), and the NBI. NBI

is the ratio of Chl to Flav, serves as an indirect measure of the plant’s

nitrogen nutritional status. Although the Dualex Scientific+

instrument also measures Anth, preliminary analyses indicated that

anthocyanin levels in rice leaves were consistently low and showed

minimal variation across treatments and growth stages. Consequently,

Anth was not included in the subsequent analyses.

During early growth stages, such as the TI stage, it was sometimes

not possible to identify five fully expanded leaves in a shoot due to the

limited number of leaves. In these cases, we measured at least the 1-4

LFT and calculated the average values. This average was then used as

the value for the 5 LFT. This data preprocessing step ensured

consistency across samples and prevented errors due to unequal

data when applying machine learning models.
2.3 Modeling methods

The study employed several modeling approaches including

Simple Linear Regression (LR), Quadratic Curve Regression (QCR),

Partial Least Squares Regression (PLS), and four machine learning

models—Support Vector Regression (SVR), Random Forest (RF),

Extreme Gradient Boosting (XGB), and Neural Network (NN)—to

estimate rice Leaf Nitrogen Concentration (LNC), PNC, and NNI. The

hyperparameters for each machine learning model were selected based

on preliminary analyses that involved testing various parameter

combinations using grid search and cross-validation. This approach

helped balance model complexity and performance, ensuring robust

generalization. By comparing the performance of these models, their

applicability in estimating rice nitrogen nutrition indices was evaluated.
2.3.1 Simple linear regression and quadratic
curve regression

Initial analyses used LR and QCR to examine the relationships

between individual Dualex measurements (Chl, Flav, NBI) and

nitrogen indices (LNC, PNC, NNI) to gain a preliminary

understanding of variable interactions and fitting effectiveness.

2.3.2 Partial least squares regression
PLS regression, a linear method suitable for multivariate, highly

correlated data, was employed. It extracts latent variables that

maximize the covariance between independent and dependent

variables. In this study, the PLS model used two principal

components to balance complexity and explanatory power.
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2.3.3 Support vector regression
SVR, an application of support vector machines in regression, is

capable of handling nonlinear and high-dimensional data. The SVR

model utilized a radial basis function kernel, with the following

key hyperparameters:
• Penalty parameter C = 1.0: Controls model complexity to

prevent overfitting.

• Epsilon e = 0.2: Defines the width of the support vector

boundary, influencing the model’s robustness.
2.3.4 Random forest
RF is an ensemble learning method that constructs multiple

decision trees and averages their outcomes to reduce overfitting.

Key hyperparameters of the RF model included:
• Number of trees nestimators = 30: Ensures sufficient

model diversity.

• Maximum depth max_depth = 5: Limits tree depth to

prevent overfitting.
2.3.5 Extreme gradient boosting
XGB, a tree-based ensemble model, employs gradient boosting

for efficient and accurate predictions. Its key hyperparameters were

set as follows:
• Number of trees nestimators = 30.

• Maximum depth max_depth = 4: Limits tree depth to

prevent overfitting.

• Learning rate learning_rate = 0.1: Regulates each tree’s

contribution; a smaller rate enhances generalization.

• Regularization parameters reg_alpha = 0.5 and reg_lambda

= 0.5: Apply L1 and L2 regularization to prevent overfitting.
2.3.6 Neural network
The NN model was constructed as a multilayer perceptron

regressor with the following structure and parameters:
• Hidden layer size hidden_layer_sizes = (100),: One hidden

layer with 100 neurons.

• Maximum iterations max_iter = 500: Restr icts

training time.

• Activation function: Rectified Linear Unit (ReLU) to

enhance nonlinear representation.

• Learning rate: Adaptive learning rate to optimize training.
2.3.7 Model training and validation
For LR and QCR, the models used average values of Chl, Flav,

or NBI from the 1-5 LFT as single input variables. For PLS and

machine learning models, four different variable combinations

served as inputs:
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Fron
• Combination 1: Chl measurements from the 1-5 LFT and

their average (six variables).

• Combination 2: Flav measurements from the 1-5 LFT and

their average.

• Combination 3: NBI measurements from the 1-5 LFT and

their average.

• Combinat ion 4 : Al l va r iab les f rom the three

combinations above.
A 10-fold cross-validation was employed to randomly divide

the dataset into training and validation sets, ensuring reliable and

stable model evaluation. This method reduces the model’s

dependence on data partitioning and enhances generalization.
2.4 Saturation effect analysis

To evaluate the saturation effects of different spectral

measurements on rice nitrogen indices, we conducted an

incremental change analysis that included the following steps:
2.4.1 Data normalization
Normalization was performed using Min-Max scaling on both

independent (X) and dependent (Y) variables to make them

comparable.

Xscaled =
X − Xmin

Xmax − Xmin
,  Yscaled =

Y − Ymin

Ymax − Xmin
2.4.2 Sorting
Data were sorted in ascending order based on Xscaled to facilitate

the calculation of incremental changes, ensuring accurate reflection

of X’s impact on Y.

2.4.3 Increment calculation
We quantified the effect of Xscaled changes on Yscaled by

computing increments between adjacent data points.

DXi = Xscaled,i+1 �Xscaled,i,  DYi = Yscaled,i+1 �Yscaled,i
2.4.4 Threshold for DX
A minimum ∣DXi∣ threshold of 1×10−3 was applied to exclude

data points with very small DXi values. This step prevents

excessively large rates of change in the subsequent calculations,

ensuring stability and accuracy in the rate computations.

DXi =
DXi,   if DXij j ≥ 1� 10� 3

NaN ,   if DXij j < 1� 10� 3

(

2.4.5 Rate of change computation
The rate of change was determined to assess Yscaled variations

relative to Xscaled, with rates scaled to the range [-1, 1] using the

maximum absolute rate.
tiers in Plant Science 05
Ratei =
DYi

DXi
,  Rate _ Scaledi =

Ratei
max( Ratej j)
2.4.6 Data smoothing
A moving average with a window size of 5 was used to smooth

the rates, reducing random noise and emphasizing overall trends.

Rate_Smoothedi =
1
5 o

i+2

j=i� 2
Rate_Scaledj
2.4.7 Density curve analysis
To examine the behavior at high nitrogen levels, we focused on

the top 20% of Yscaled values and used Gaussian Kernel Density

Estimation (KDE) on the corresponding Xscaled to obtain a smooth

estimate of their probability density function. This non-parametric

method does not assume any specific underlying distribution,

making it suitable for real-world data. It helps in assessing

whether the measurements continue to respond to increases in

nitrogen levels or exhibit saturation.
2.5 Feature importance analysis and
model evaluation

To gain deeper insights into the contributions of each input

variable to the model’s predictions, we employed the SHAP

(SHapley Additive exPlanations) method (Lundberg and Lee,

2017), which is based on game theory, to analyze feature

importance for the RF and XGB models. SHAP values quantify

the impact of each feature on the prediction outcomes by

calculating its marginal contribution across all possible feature

combinations. Compared to traditional feature importance

metrics, the SHAP method offers consistency and additivity,

enhancing model interpretability and providing guidance for

optimizing measurement strategies in practical applications.

To comprehensively evaluate the predictive performance of

each model, we used the coefficient of determination (R2), Root

Mean Square Error (RMSE), and Relative Root Mean Square Error

(RRMSE) as evaluation metrics. The formulas for these indicators

are as follows:

• Coefficient of determination:

R2 = 1 −
o
n

i=1
(Yi − Ŷ i)

2

o
n

i=1
(Yi − �Y)2

• Root mean square error:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(Yi − Ŷ )2

s

• Relative root mean square error:

RRMSE =
RMSE

�Y
� 100%
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where Yi is the actual value, Ŷ i is the predicted value, �Y is the

mean of the actual values, and n is the number of samples.
2.6 Statistical analysis tools

All statistical analyses and model construction in this study

were performed using Python 3.12.4. Data processing and

analysis utilized libraries such as Pandas, NumPy, and SciPy.

Machine learning modeling was done using Scikit-learn, XGB,

TensorFlow, and Keras, while visualization was carried out using

Matplotlib. Statistical tests were conducted with Statsmodels and

SciPy.stats, and feature importance analysis was performed using

the SHAP library. To ensure reproducibility of results, all random

processes were set with the same random seed during modeling

and testing.
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3 Results

3.1 Relationship between Dualex
measurements and rice nitrogen indicators

Average Dualex values (Chl, Flav, NBI) from the first to fifth

LFT were analyzed using LR and QCR models to explore their

relationship with rice nitrogen nutritional indicators—LNC, PNC,

and the NNI (Figure 1). The findings revealed notable differences in

the effectiveness of these indicators for nitrogen estimation

depending on the specific Dualex metrics used.

Chl displayed a nonlinear relationship with both LNC and PNC

(Figures 1A, D). As Chl levels increased, both LNC and PNC rose,

showing accelerated growth rates at Chl values around 30. However, a

saturation effect was evident between Chl values of 35 to 40, where further

increases in Chl did not lead to corresponding changes in LNC and PNC.
FIGURE 1

Relationship between Dualex values and rice nitrogen indicators across different varieties and growth stages. (A–C) show Chl, Flav, and NBI vs. LNC;
(D–F) show Chl, Flav, and NBI vs. PNC; (G–I) show Chl, Flav, and NBI vs. NNI.
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Conversely, Flav showed a stable and linear relationship with

LNC and PNC, without notable saturation effects (Figures 1B, E).

Flav levels increased steadily as nitrogen content decreased,

demonstrating a strong negative correlation with LNC and PNC

across the full range, with high regression fits (R2 = 0.70 and 0.71).

Even when accounting for differences across rice varieties and

growth stages, Flav consistently provided an accurate assessment

of nitrogen status.

NBI, defined as the ratio of Chl to Flav, exhibited a significant

linear relationship with LNC and PNC (Figures 1C, F), achieving R2

values of 0.74 and 0.70, respectively. This underscores NBI’s

robustness and stability in estimating nitrogen nutritional status.

As a composite indicator, NBI effectively mitigates the saturation

effect observed when using Chl alone, making it a highly reliable

tool for nitrogen diagnosis.

For NNI estimation, which represents a relative value (the ratio

of PNC to the Nc), measurements across different growth stages
Frontiers in Plant Science 07
showed consistent NNI values, primarily ranging between 0.4 and

1.4. However, Dualex readings varied across stages, leading to lower

estimation accuracy for NNI (Figures 1G–I). Although NNI tended

to increase with changes in Chl, Flav, and NBI, this trend exhibited

significant variability across growth stages, resulting in

inconsistent patterns.
3.2 Saturation effect analysis of Dualex
values in estimating nitrogen indicators

The saturation effect analysis of Dualex values in estimating rice

nitrogen nutritional indicators is illustrated in Figure 2. To

minimize the impact of model fitting differences when evaluating

saturation effects across various Dualex indices, we applied an

incremental analysis method using raw and standardized data.

The standardized rate of change (DY/DX) was calculated based on
FIGURE 2

Standardized rate of change relative to Dualex values. This figure illustrates the standardized rate of change (DY/DX) of LNC (A–C), PNC (D–F), and
NNI (G–I) in relation to standardized Dualex values: Chl, Flav, and NBI. In each subplot, blue scatter points represent the original calculated
standardized rate of change data, while the red curve shows the smoothed trend line obtained using a 5-point moving average, reflecting the overall
trend. The gray curve at the bottom indicates the density distribution of measurement values corresponding to the highest 20% of nitrogen indices
(Y values). The vertical black dashed line marks the point of highest density, annotated with the corresponding X-axis value.
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these original data points. Each subplot displays the rate of change

of nitrogen nutritional indicators relative to standardized Dualex

values. In the analysis of Chl versus nitrogen indicators (Figures 2A,

D, G), an initial low rate of change was observed in the lower Chl

range, followed by a gradual increase, peaking at moderate Chl

values. However, as Chl values continued to rise, the rate of change

began to decline, particularly in the high Chl region. In the low Chl

region, the low nitrogen indicator values were primarily responsible

for the reduced rate, while in the high Chl region, a declining rate

suggested that further increases in Chl no longer led to

corresponding rises in nitrogen indicators, indicating a clear

saturation effect. The density curves at the bottom further

validated this: standardized Chl values peaked around 0.68 (for

LNC and PNC) and 0.74 (for NNI), showing a marked decline in

estimation accuracy at these levels.

In contrast, Flav exhibited a negative correlation with nitrogen

indicators (Figures 1B, E, H). The rate of change remained relatively

stable in the low Flav region (Figures 2B, E, H), indicating

effectiveness in estimating nitrogen indicators. The density peaks

for Flav values were observed at 0.22 (for LNC and PNC) and 0.39

(for NNI), with a gradual distribution, suggesting that even at high

nitrogen indicator levels, Flav measurements were evenly spread

without a significant saturation effect. However, for NNI, as Flav

values decreased, a rapid decline in the rate of change was noted,

with the density peak at 0.39 indicating a more pronounced

saturation. Comparing this to Figures 1H, NNI exhibited almost

horizontal distribution in the low Flav range, indicating diminished

sensitivity to changes in Flav.

As a composite indicator, NBI (Chl to Flav ratio) displayed a

more consistent trend in estimating LNC, PNC, and NNI

(Figures 2C, F, I). The rate of change initially increased, then

decreased with rising NBI, resembling the pattern seen in Chl but

with density peaks closer to boundary values (0.76, 0.77, and 0.74,

respectively). This suggests that NBI effectively estimates nitrogen

nutritional status even at high nitrogen levels, exhibiting

significantly less saturation than Chl alone.

In summary, Chl demonstrated a clear saturation effect,

particularly at high nitrogen levels, where its sensitivity

diminished. Conversely, Flav and NBI retained considerable

variability in their rates of change at high nitrogen levels, showing

enhanced sensitivity to changes in nitrogen status and providing a

more accurate reflection of variations in rice nitrogen nutrition.
3.3 Model performance comparison for
LNC, PNC, and NNI estimation

Figures 3–5 illustrate the performance offive different models in

estimating rice nitrogen nutritional indicators using Dualex

readings. Each model utilized measurements from the 1-5 LFT,

including Chl, Flav, and NBI values for individual leaves and their

averages, totaling 18 input variables. The models showed distinct

differences in their performance across training and validation sets,

particularly when estimating different nitrogen indicators. Overall,

estimation accuracy was highest for LNC, followed by PNC, with

NNI being the most challenging to estimate accurately.
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For LNC estimation (Figure 3), all models demonstrated strong

fitting accuracy, achieving R² values above 0.81 in training and

0.78–0.87 in validation datasets. SVR, RF, and XGB models
FIGURE 3

Performance of different machine learning models in predicting LNC
based on Dualex readings. (A, C, E, G, I) show the training
performance, and (B, D, F, H, J) show the validation performance
for PLS, SVR, RF, XGB, and NN models, respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1518272
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shi et al. 10.3389/fpls.2024.1518272
demonstrated the highest validation accuracy, with R² values

between 0.86 and 0.87, and RRMSE below 10%. Data from all

sampling periods, except for minor overestimations at the tillering

stage, were evenly distributed around the 1:1 line.
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In estimating PNC (Figure 4), model performance was similar

to that observed for LNC, despite with slightly reduced accuracy. RF

and XGB remained the top performers, with validation R² values of

0.82 and RMSE at 0.29. The SVR model followed closely with an R²
FIGURE 5

Performance of different machine learning models in predicting NNI
based on Dualex readings. (A, C, E, G, I) show the training
performance, and (B, D, F, H, J) show the validation performance
for PLS, SVR, RF, XGB, and NN models, respectively.
FIGURE 4

Performance of different machine learning models in predicting
PNC based on Dualex readings. (A, C, E, G, I) show the training
performance, and (B, D, F, H, J) show the validation performance
for PLS, SVR, RF, XGB, and NN models, respectively.
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of 0.81. Conversely, PLS regression model demonstrated slightly

lower performance.

For NNI estimation (Figure 5), all models showed a noticeable

decline in fitting accuracy, which was consistent with regression

analysis results from quadratic models. Despite the challenges, RF

and XGB continued to lead, with validation R² values ranging from

0.52 to 0.54, marking a 71% improvement over QCR models.

However, estimating NNI proved to be more difficult than LNC

and PNC, with apparent biases in both low and high-value regions.

Radar charts were used to visualize the estimation accuracy of

different models and input variable combinations on the validation

dataset (Figure 6). The R² values decreased progressively from LNC

to PNC and then to NNI (Figures 6A-C). While LNC and PNC

estimations showed near-equal accuracy, R² values for NNI

dropped substantially. Across all input variable combinations, R²

for NNI estimation declined by an average of 57% and 55%

compared to LNC and PNC, respectively.

In comparing input variable combinations, the PLS model using

multi-leaf NBI value was most effective in estimating LNC and

PNC. For the other models, the all-variable combination

(Combination 4) and NBI combination consistently provided

high accuracy. Changes in RRMSE mirrored R² trends inversely

(Figures 6D-F); models with higher R² exhibited lower RRMSE.

RRMSE increased sequentially when estimating LNC, PNC, and
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NNI. Among the input variable combinations, models using only

the Chl combination had the highest RRMSE for LNC and PNC

estimations, indicating lower accuracy in these cases. In contrast,

for NNI estimation, models using only the Flav combination had

the highest RRMSE (Figure 6F). The NBI and all-variable

combinations consistently achieved similar, superior accuracy

across all nitrogen indicators.
3.4 SHAP analysis of feature importance in
nitrogen estimation

The feature importance analysis results based on SHAP values

for the RF and XGB models in nitrogen estimation are presented in

Figure 7. Both models used Combination 4 as input to assess the

impact of each variable on their predictions.

For LNC prediction, Figures 7A, D show the SHAP analysis for

the RF and XGB models, respectively. In the RF model (Figure 7A),

the NBI value from the 2 LFT was the most influential variable,

followed by the Flav value from the 1 LFT and the NBI value from

the 1 LFT. The XGB model (Figure 7D) also highlighted these three

variables as having the highest impact, with their SHAP values

significantly surpassing those of other variables. This suggests that

these variables were critical for accurate LNC prediction.
FIGURE 6

Comparison of machine learning model performance using different input variables for LNC, PNC, and NNI estimation. Each radar chart compares
five models, with axes representing different input variables: All, Chl, Flav, and NBI. Charts (A–C) display R² values, and charts (D–F) show RRMSE for
validation results.
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In the case of PNC estimation, Figures 7B, E illustrate the SHAP

analysis for the RF and XGB models. The RF model (Figure 7B)

indicated that the Flav value from the 1 LFT and the NBI value from

the 2 LFT were the most significant variables. Similarly, in the XGB

model (Figure 7E), the NBI of the 2 LFT and Flav of the 1 LFT were

also identified as the most influential factors. This consistency

across models underscores the importance of NBI and Flav as key

indicators for both LNC and PNC estimation.

For NNI prediction, Figures 7C, F display the SHAP analysis

results for the RF and XGB models. The RF model (Figure 7C)

identified the Chl value from the 4 LFT as the most important

variable, followed by the NBI value from the 4 LFT. The XGB

model (Figure 7F) similarly showed these two variables

as dominant; however, there were differences in their SHAP

value distributions. In the RF model, the Chl value from the 4

LFT had a SHAP value notably higher than the other variables,

whereas, in the XGB model, SHAP values of variables decreased

in a stepwise manner, indicating that no single variable was

overwhelmingly dominant.

Overall, the SHAP analysis results for LNC and PNC

predictions revealed certain dominant variables that enabled the

models to achieve high-precision estimates. However, for NNI

prediction, the lack of clearly dominant variables and weaker

associations between input variables and the target presented

challenges in achieving satisfactory model accuracy.
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4 Discussion

4.1 Saturation effect and its implications

Incremental analysis highlighted distinct differences in the

saturation effects of different Dualex indices when estimating rice

nitrogen indicators. The results showed that Chl experiences

significant saturation at high measurement values, consistent with

findings from studies using SPAD-502 (Yuan et al., 2016; Zhang

et al., 2019a; Jiang et al., 2021) and chlorophyll-based multispectral/

hyperspectral indices (Fu et al., 2021; Yao et al., 2023; Gao et al.,

2024). Previous research has noted that SPAD values become less

responsive to nitrogen at higher concentrations, complicating the

differentiation of nitrogen levels (Yue et al., 2020). This saturation

effect is documented across various crops, including rice (Wang

et al., 2023), wheat (Jiang et al., 2021), and maize (Dong et al., 2021).

Our findings reaffirm that Chl and SPAD measurements exhibit

saturation under high nitrogen conditions.

When leaf chlorophyll content is low, an increase can enhance

the leaf’s net photosynthetic rate (Tantray et al., 2020). However, as

nitrogen availability rises and chlorophyll reaches a threshold level,

photosynthetic rates plateau due to limits in light absorption area

(Hou et al., 2019). At this point, excess nitrogen is allocated to

non-photosynthetic reserves, altering the ratio of chlorophyll to

leaf nitrogen (Hou et al., 2019; Mu and Chen, 2021).
FIGURE 7

SHAP value analysis of feature importance for RF (A–C) and XGB (D–F) models in predicting rice nitrogen indicators. Each plot presents the SHAP
values for the 15 most important features. In the SHAP scatter plots on the left, red indicates higher feature values and blue indicates lower feature
values. Positive SHAP values indicate that the feature increases the predicted nitrogen indicator, while negative SHAP values indicate that the feature
decreases it. The right side ranks feature importance based on the mean absolute SHAP value.
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Consequently, while Chl is a sensitive indicator at low nitrogen

levels, its effectiveness decreases at higher levels, introducing errors

into predictive models. This trend was observed in our analysis,

particularly in LNC predictions, where models relying solely on Chl

values achieved lower R² scores, failing to capture nitrogen

variations accurately. Therefore, Chl’s utility as a single diagnostic

variable is limited, especially under high nitrogen conditions.

The saturation effect in this study was mainly observed when

rice plants exhibited high nitrogen content. Since nitrogen

concentration in rice leaves or plants gradually decreases during

growth—a pattern known as the nitrogen dilution effect (Yao et al.,

2021; Li et al., 2022a)—with the impact most noticeable around the

tillering and jointing stages. This differs from canopy-level

saturation observed after canopy closure, where high leaf area can

cause remote sensing indices (e.g., NDVI) to saturate due to optical

signal limitations, reducing their sensitivity to nitrogen changes

(Tenreiro et al., 2021). Conversely, Chl saturation is primarily

driven by physiological limits on chlorophyll content within

leaves, necessitating a distinction between these two types of

saturation in research.

In contrast, Flav and NBI showed no significant saturation

effects, maintaining their effectiveness in estimating nitrogen

indicators, even at high nitrogen levels. Flav is closely associated

with plant stress responses, increasing under conditions of nitrogen

stress (Li et al., 2021). When nitrogen is scarce, plants produce more

flavonoids as a protective response (Gitelson et al., 2017). NBI

combines the divergent responses of these indicators. In nitrogen-

rich conditions, Chl levels are high while Flav remains low, leading

to a high NBI. Under nitrogen deficiency, Chl decreases and Flav

increases, resulting in a low NBI. By integrating complementary

data from both indicators, NBI provides a robust reflection of

nitrogen status, offering distinct advantages over Chl alone. This

aligns with studies showing that NBI can overcome saturation and

retain sensitivity under high nitrogen levels (Dong et al., 2022; Song

et al., 2022). Our dataset, encompassing 15 rice varieties across

different growth stages, confirmed that NBI and Flav maintained

high predictive accuracy across various environmental conditions,

suggesting these indicators can reliably reflect nitrogen status across

diverse environmental conditions.
4.2 Comparison of machine
learning models

We compared the performance of five machine learning models

—PLS, SVR, RF, XGB, and NN—in predicting nitrogen indicators.

Overall, XGB and RF models showed the highest accuracy for LNC,

PNC, and NNI predictions, whereas PLS regression and SVR

models had noticeably lower performance, lagging behind the

tree-based approaches. This trend is consistent with findings from

other studies comparing similar models (Fan et al., 2022; Kganyago

et al., 2024). While PLS regression is effective at explaining linear

relationships, it struggles with complex nonlinear patterns (Yang

et al., 2023). SVR, though capable of managing nonlinear data, is

highly sensitive to parameter selection and less efficient with high-
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dimensional inputs (Ben Ishak, 2016). Conversely, tree-based

ensemble models like RF and XGB excel at handling nonlinear,

high-dimensional datasets (Nzekwe et al., 2024), with XGB

particularly excelling due to its gradient boosting optimization,

which iteratively improves model performance.

The NN model, however, was less stable than the XGB and RF

models in this study. This may be due to the relatively smaller dataset

size, as neural networks generally require larger datasets to train

effectively and achieve good generalization. While the NN performed

adequately in estimating LNC and PNC, its predictions for NNI were

less accurate than those of the other models. The RF and XGBmodels

demonstrated strong performance, although the training R² values

were slightly higher than the validation R² values, especially for NNI

estimation, the differences were minimal. This highlights the

importance of model selection and appropriate complexity in

achieving reliable predictions (Moradi et al., 2020; Yates et al., 2023).

The lower estimation accuracy for NNI compared to LNC and

PNC can be attributed to several factors. NNI is a composite index

involving both PNC and Nc, where Nc is dependent on plant

biomass and derived from the nitrogen dilution curve. This adds

layers of complexity and potential sources of error. The dynamic

nature of biomass accumulation and nitrogen dilution across

growth stages introduces variability that is difficult to capture

with current models. Additionally, the relatively narrow range of

NNI values reduces the models’ ability to distinguish subtle

differences. Measurement errors in biomass and nitrogen content

further compound the challenge. Future research could explore

incorporating growth stage information, more precise biomass

measurements, and additional physiological parameters to

enhance NNI prediction accuracy.
4.3 Feature importance across different
input variables and leaf positions

SHAP analysis was instrumental in interpreting the models by

quantifying the contribution of each input variable to the

predictions (Lundberg et al., 2017). This is essential for enhancing

model transparency, which is particularly valuable in agriculture,

where interpretable models facilitate practical application (Ryo,

2022). The SHAP results highlighted that spectral data from

different leaf positions do not contribute equally to nitrogen

prediction. For LNC and PNC, the most significant contributions

came from measurements taken at the 1 LFT and 2 LFT,

corroborating findings from related studies where spectral

reflectance from top leaves was found to be most sensitive for

nitrogen assessment (Dong et al., 2021; Lu et al., 2022; Wang et al.,

2023). For NNI prediction, SHAP analysis pointed to the

importance of Chl measurements from the 4 LFT, suggesting that

chlorophyll content in middle to lower leaves is particularly

relevant. This may stem from the generally lower estimation

accuracy of NNI, which tends to make the significance of

variables more uniform. Additionally, nitrogen translocation in

middle and lower leaves closely aligns with the plant’s overall

nitrogen nutritional status (Sun et al., 2018; Li et al., 2022b).
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To improve NNI prediction accuracy, future strategies could

include incorporating additional variables closely related to NNI,

such as plant leaf area index (Tuccio et al., 2022), growth stages, and

other physiological and environmental factors (Dong et al., 2022,

2024). Moreover, combining these models with crop growth

simulations or radiative transfer models, as well as using multi-

source data, could enhance the model’s ability to account for

complex interactions (Raya-Sereno et al., 2024; Wang et al.,

2024). Expanding the dataset’s size and diversity will also be

crucial for improving generalization and predictive accuracy.

The differences in contributions from various leaf positions

suggest the potential for optimizing measurement strategies in

practical applications. By focusing on key leaf positions that

provide the most significant input to the models, measurement

efficiency can be improved. Reducing the number of measurement

variables not only lowers costs but also enhances the computational

efficiency of the models, making them more viable for real-

world use.
5 Conclusion

This study systematically assessed the effectiveness of Dualex

measurements for estimating rice nitrogen nutritional indicators.

The results indicated that Chl experiences significant saturation at

high nitrogen levels, limiting its utility as a nitrogen diagnostic

indicator. In contrast, Flav and NBI did not exhibit saturation

effects and remained highly sensitive under high nitrogen

conditions, accurately reflecting rice nitrogen status. Among the

machine learning models tested, RF and XGB were the most

effective in predicting LNC and PNC. SHAP analysis identified

the most influential feature variables and leaf positions, further

enhancing model interpretability and accuracy.

Future research should focus on expanding the dataset to

include more diverse rice varieties and growth stages and

incorporating additional crop and environmental variables.

Additionally, exploring the applicability of Flav and NBI across

different crops and environmental contexts could provide broader

technical support for nitrogen management in precision agriculture.
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