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Transcriptome analysis reveals
regulatory mechanism of
methyl jasmonate-induced
monoterpenoid biosynthesis
in Mentha arvensis L.
Tingting Huang, Wenjin Men, Ariuntungalag Myanganbayar
and Undarmaa Davaasambuu*

Laboratory of Applied Biological Control, School of Agroecology, Mongolian University of Life
Sciences, Ulaanbaatar, Mongolia
Mentha arvensis L. (M. arvensis) is an aromatic plant of the Mentha genus,

renowned for its medicinal and economic importance. The primary

components of its essential oils (EOs) are monoterpenoids, synthesized and

stored in peltate glandular trichomes (PGTs). In general, the EO content in M.

arvensis is relatively low. Methyl jasmonate (MJ) has been reported as an effective

elicitor of terpenoid biosynthesis in medicinal plants, but the specific

mechanisms underlying MJ’s influence on M. arvensis remain unclear. In this

study, exogenous application of MJ significantly increased the EO content, yield,

and PGT density in a dose-dependent manner. At a 5 mM dose, the EO content

and PGT density peaked, with increases of 71.20% and 53.69%, respectively. Gas

chromatography-mass spectrometry (GC-MS) analysis indicated that, in general,

MJ treatment did not significantly alter the types or relative proportions of EO

components of M. arvensis. However, L-menthol content decreased slightly by

7.90% under 5 mM MJ treatment. Transcriptome analysis identified 4,659

differentially expressed genes (DEGs) in MJ-treated leaves. KEGG enrichment

analysis revealed that “Monoterpenoid biosynthesis” was among the most

significantly enriched metabolic pathways. Key genes involved in jasmonic acid

(JA) signaling (JAZs and MYCs) and monoterpenoid biosynthesis (GPPSs, LSs,

L3Hs, and IPRs) were significantly up-regulated. Co-expression analysis,

promoter binding element analysis and weighted gene co-expression network

analysis (WGCNA) indicated that transcription factors (TFs) such as AP2/ERF,

WRKY, MYB, and bHLH play crucial roles in regulating MJ-mediated

monoterpenoid biosynthesis. Several key candidate TFs potentially involved in

regulating monoterpenoid biosynthesis in M. arvensis were identified. These

findings provide valuable insights into the molecular mechanisms regulating

monoterpenoid accumulation in the Mentha genus.
KEYWORDS

Mentha arvensis (mint), essential oil, jasmonic acid, monoterpenoid, glandular
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1 Introduction

Mentha arvensis L., commonly known as Japanese mint, is

widely distributed across various regions of the world. Its

geographical range mainly includes Asia, Europe, and North

America (Kumar et al., 2012; Vining et al., 2020). Cultivated

primarily for the production of essential oil (EO), this plant

thrives in moist, temperate climates and is often found in

wetlands, riverbanks, and other water-abundant areas (Bussmann

et al., 2020). The EO of Mentha species is widely utilized in

medicine, cosmetics, food and other industries. It is primarily

composed of monoterpenoids such as L-menthol, neomenthol,

isomenthol, and carvone, which are synthesized and stored in

peltate glandular trichomes (PGTs) of above-ground plant tissues

(Ahkami et al., 2015; Lange, 2015). InM. arvensis, L-menthol is the

predominant monoterpenoid, accounting for more than 70% of the

total EO content (Batool et al., 2020). This compound is highly

sought after in global markets for its cooling and fragrance

properties, making it a key natural product in pharmaceutical and

cosmetic applications (Khaliq and Mushtaq, 2023). However, the

EO content in Mentha plants is relatively low, and the production

does not meet the growing demand in pharmaceutical and other

industries (Riaz et al., 2021).

The biosynthesis of terpenoids involves a series of biochemical

processes, including precursor formation, intermediate conversion,

end product generation, and post-modification (Mahmoud and

Croteau, 2002). In mint, monoterpenoid biosynthesis starts with

the methylerythritol phosphate (MEP) pathway, where pyruvate

and 3-phosphoglyceraldehyde are converted into isopentenyl

diphosphate (IPP) via six enzymatic steps. Key enzymes in this

process include 1-deoxy-D-xylulose-5-phosphate synthase (DXS)

and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR).

IPP is then partially converted to dimethylallyl diphosphate

(DMAPP) by isopentenyl diphosphate isomerase (IPPI), and

these isomers combine through geranyl diphosphate synthase

(GPPS) to form geranyl diphosphate (GPP) (Ahkami et al., 2015;

Mahmoud and Croteau, 2002). Subsequently, GPP is converted to

limonene by limonene synthase (LS), then catalyzed by limonene-3-

hydroxylase (L3H), isopiperitenol dehydrogenase (IPD),

isopiperitenone reductase (IPR), pulegone reductase (PR), and L-

menthol reductase (MD), etc., resulting in the formation of valuable

secondary metabolites such as menthone, isomenthone, and L-

menthol (Mahmoud and Croteau, 2002; Croteau et al., 2005).

Earlier studies on the Mentha genus primarily focused on

identifying active compounds and conducting bioactivity assays

(Zeljkovi et al., 2020; Mamadalieva et al., 2020). Recent research

highlights the roles of structural genes in terpenoid biosynthesis.

For instance, in Mentha piperita, overexpression of DXS and DXR

and IPPI enhances its EO content by about 15%, 60% and 26%,

respectively (Lange et al., 2011; Mahmoud and Croteau, 2001, 2002;

Lange et al., 2011). While overexpression of GPPS enhanced

Mentha piperita EO by 18% and increased tobacco limonene

content approximately 35-fold (Yin et al., 2017; Lange et al., 2011).

Strategies to enhance terpenoid production now focus on

modulating biosynthesis pathways and increasing the density or
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size of PGTs (Pandey et al., 2021; Pribat et al., 2013; Singh et al.,

2024). Jasmonic acid (JA), a key phytohormone, plays a crucial role in

plant defense and stress responses (Wang et al., 2020), while also

regulating secondary metabolite synthesis and secretory structure

development by reprogramming gene expression (Maes et al., 2011;

Wasternack and Hause, 2013). For example, JA and its derivatives

methyl jasmonates (MJ) promote terpenoid synthesis and PGT

development in medicinal plants like Artemisia annua (A. annua),

Isodon rubescens, and Chrysanthemum indicum var. aromaticum

(Maes et al., 2011; Li, 2015; Zhang, 2021). High-throughput RNA

sequencing (RNA-seq) has been extensively utilized to elucidate the

molecular mechanisms of MJ in regulating terpenoid biosynthesis in

plants. In Pogostemon Cablin, MJ treatment significantly increased

the content of sesquiterpene patchouli alcohol, through upregulation

of MEP pathway genes (Chen et al., 2019). In Sindora glabra, MJ

increased the content of the sesquiterpenes a-copaene and b-
caryophyllene, leading to the upregulation of most mevalonate

(MVA) pathway genes, while the majority of MEP pathway genes

were significantly down-regulated (Yu et al., 2021a). Although MJ

treatment led to an increase in terpenoid content both in Sindora

glabra and Pogostemon Cablin, the response patterns of structural

genes in the MVA and MEP pathways differed between the two

species. These findings highlight the species-specific mechanisms in

JA-regulated terpenoid biosynthesis.

Transcription factors (TFs) induced by MJ are pivotal in

regulating terpenoid biosynthesis and PGT development, such as

AP2/ERF (apetala2/ethylene-responsive factor), bHLH (basic/helix-

loop-helix), MYB (myeloblastosis DNA-binding protein), WRKY

(WRKY-type DNA binding protein), and NAC (NAM, ATAF, and

CUC domain protein) family genes. For example, the AP2/ERF

family TF CrORCA3 in Catharanthus roseus and AaERF1 in A.

annua positively regulate terpenoid synthesis by activating

structural gene promoters (van der Fits and Memelink, 2000; Tan

et al., 2015; Yu et al., 2012). Similarly, the bHLH TF MYC2 is a

central regulator of JA signaling, coordinating transcriptional

networks across multiple pathways. CrMYC2, induced by JA,

promotes the biosynthesis of vinblastine by activating the

transcription of CrORCA3, thereby actively regulating vinblastine

synthesis (Pan et al., 2012; Sui et al., 2018). In A. annua, AaMYC2

can directly activate the expression of artemisinin synthesis

structural genes, or actively regulate artemisinin synthesis through

the MYC2-GSW1 (WRKY)-ORA (AP2/ERF) transcription cascade

regulatory module (Chen et al., 2017; Shen et al., 2016). Negative

regulators like JAZ proteins repress terpenoid biosynthesis by

inhibiting TFs or structural genes. In A. annua, 9 AaJAZs bind to

AabHLH1 and inhibit its activation of the artemisinin biosynthesis

structural genes AaADS and AaCYP71AV1 (Li et al., 2019).

Overexpression of AaJAZ8 significantly reduces the PGT density,

AaJAZ8 negatively regulates the initiation of PGT by inhibiting the

expression of AaSEP1 and AaHD1, thereby reducing artemisinin

accumulation. When JAs and light are sufficient, AaJAZ8 is

degraded by the 26S proteasome system, releasing AaSEP1, and

promoting the activation of the AaSEP1-AaMYB16-AaHD1-

AaGSW2 transcriptional cascade regulatory module (Chen et al.,

2023; Xie et al., 2021a). Despite these advances, the regulatory
frontiersin.org

https://doi.org/10.3389/fpls.2024.1517851
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Huang et al. 10.3389/fpls.2024.1517851
mechanisms underlying monoterpenoid biosynthesis and PGT

formation remain poorly understood.

In this study, MJ was used as an exogenous hormone to

investigate its effects on the EO content, yield, and the PGT

density in M. arvensis. Gas chromatography-mass spectrometry

(GC-MS) was used to analyze chemical components in the EO.

High-throughput RNA sequencing was performed to identify

potential molecular regulatory mechanisms of MJ in regulating

monoterpenoid biosynthesis of mint. This research provides new

insights into molecular basis of monoterpenoid biosynthesis and

lays the groundwork for further studies in Mentha species.
2 Materials and methods

2.1 Plant cultivation and long-term plant
hormone treatment for essential oil and
peltate glandular trichome analysis

A commercial variety ofM. arvensis was propagated by planting

root segments under natural conditions. Each root segment

contained one growth point and was planted in a substrate

composed of peat soil and perlite in a 3:1 ratio. Six plants were

planted per pot, with pot dimensions of 49 × 21 × 15 cm. The

experiment included 3 independent replicates. Approximately 10

weeks after planting, once the plants had developed 5 leaves and

entered the vigorous growth phase, the plants were treated with

varying concentrations of MJ or SA in order to screen for effective

hormone. The MJ concentrations used were 10 mM, 100 mM, 1 mM,

5 mM, and 10 mM, the solution (Aladdin, Shanghai, China) was

prepared with 0.2% Tween 20 (Sangon, Shanghai, China). The SA

concentrations used were 100 mM and 1 mM, and the solution

(Aladdin, Shanghai, China) was prepared with 0.2% Tween 20

(Sangon, Shanghai, China). The control group was treated with a

0.2% Tween 20 aqueous solution. Hormone treatments were

applied weekly and sprayed on leaves until there was runoff for a

total of 8 treatments. Twenty-four hours after the final treatment,

the aboveground parts of the MJ-treated plants were harvested, and

measurements were taken for fresh weight, PGT density, EO

content, and yield. Similarly, twenty-four hours after the final

treatment, the aboveground parts of the SA-treated plants were

harvested, and measurements were taken for EO content.
2.2 MJ treatment and transcriptomic
sampling strategy

M. arvensis plants were cultured in a temperature-controlled tissue

culture roommaintained at 25 °C with 70% humidity, under a 16-hour

light/8-hour dark cycle with a light density of 150 mmol·m-2·s-1. Once

the plants developed the first 5 leaves, they were transitioned to

continuous light conditions and pre-cultured for one week. The

plants were then sprayed with 1 mM MJ solution until runoff. The

MJ solution (Aladdin, Shanghai, China) was prepared with 0.2%

Tween 20 (Sangon, Shanghai, China). The control group was treated

with a 0.2% Tween 20 aqueous solution. The third pair of leaf samples
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were collected at 0 hours (CK), 4 hours (H4), 8 hours (H8), and 24

hours (H24) after MJ treatment. Three biological replicates were taken

for each time point. All samples were immediately frozen in liquid

nitrogen and stored at -80°C for further analysis.
2.3 Essential oil extraction and its
component analysis

The EO ofM. arvensis was extracted via hydro-distillation using

a Clevenger apparatus. A sample of 200 g of above-ground fresh

plants was subjected to hydro-distillation for 50 minutes. EO

content was expressed as a percentage of fresh weight (w/w). EO

yield was quantified in grams per plant. The composition of the EO

was analyzed using GC-MS. An Agilent 7890B gas chromatograph

coupled with a 5977A mass spectrometer (Agilent Technologies,

Santa Clara, USA) was employed for the GC-MS analysis. The

chromatographic separation was performed on a DB-WAX column

(30 m × 0.25 mm, 0.25 µm film thickness; Agilent Technologies,

Santa Clara, USA). Helium was used as the carrier gas at a flow rate

of 1 mL/min. The quadrupole temperature was maintained at 150°

C, and the ionization mode was electron ionization (EI+)

(Mahmoud and Croteau, 2001).
2.4 Peltate glandular trichome
density analysis

From our previous preliminary experiments, we observed that

the PGT density was the highest in young leaves and the lowest in

old leaves. However, despite their higher PGT density, young leaves

often contain immature PGTs that have not yet synthesized or

stored EO. Consequently, leaves may contain PGTs at various

developmental stages and sizes, complicating accurate observation

and statistical analysis. The third and fourth pairs of leaves typically

have mature and rounded PGTs filled with EO. Therefore, we

selected the third pair of leaves of uniform size as representative

samples for PGT density analysis. Fluorescence microscopy

(Olympus, Tokyo, Japan) was used to capture images of the

abaxial side of each leaf, focusing on the top, middle, and bottom

sections. A 10x objective lens was used for imaging, and

fluorescence was induced using UV light. The quantification of

PGT was performed using ImageJ software (version 1.54k, National

Institutes of Health, Bethesda, USA) with appropriate image

processing and analysis protocols (Yan et al., 2017). This

approach ensured precise quantification of trichome density

across different leaf sections.
2.5 Total RNA extraction, cDNA library
construction, and sequencing

Total RNA from plant leaves was extracted using the Plant RNA

Extraction Kit (Takara, Dalian, China) following the manufacturer’s

protocol. The purity and concentration of the extracted RNA were
frontiersin.org
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assessed with a NanoDrop 2000 spectrophotometer (Thermo Fisher

Scientific, Waltham, USA). RNA samples with an A260/A280 ratio

between 1.8 and 2.0, and an A260/A230 ratio above 2.0 were selected

for further analysis. The RNA sequencing was performed by

Biomarker Technologies (Qingdao, China). Sequencing libraries

were prepared using the NEBNext® Ultra™ RNA Library Prep Kit

for Illumina® (New England Biolabs, Ipswich, USA) following the

manufacturer’s protocol, with index codes added for sample

identification. mRNA was purified from total RNA using poly-T

magnetic beads. First-strand and second-strand cDNA synthesis were

carried out using M-MuLV Reverse Transcriptase, DNA Polymerase

I, and RNase H. After adenylation of 3’ ends, NEBNext Adaptors

were ligated. cDNA fragments (~240 bp) were purified using the

AMPure XP system (Beckman Coulter, Beverly, USA). The USER

enzyme was applied to the adaptor-ligated cDNA before PCR

amplification using Phusion High-Fidelity DNA polymerase and

specific primers. Finally, PCR products were purified and the

library quality was assessed on an Agilent Bioanalyzer 2100

(Agilent Technologies, Santa Clara, USA). Clean reads were

obtained by processing raw fastq data with in-house scripts to

remove adapters, poly-N sequences, and low-quality reads, while

calculating Q20, Q30, GC content, and sequence duplication levels

for quality control. Clean reads were assembled de novo using Trinity

software (version 2.8.4) with default parameters. Functional

annotation of the assembled sequences was carried out using

several databases, including the NR (NCBI non-redundant protein

sequences), Pfam (Protein family), KOG/COG/eggNOG (Clusters of

Orthologous Groups of proteins), Swiss-Prot (A manually annotated

and reviewed protein sequence database), KEGG (Kyoto

Encyclopedia of Genes and Genomes), and GO (Gene Ontology),

to provide comprehensive insights into the biological functions of the

identified genes (Li et al., 2023).
2.6 Differentially expressed genes
identification and pathway
enrichment analysis

Differentially expressed genes (DEGs) were identified using

DESeq2 software with the threshold false discovery rate (FDR) <

0.05 and |log2 Fold Change| ≥ 1 (Love et al., 2014). The GO

classification analysis and KEGG pathway enrichment analysis were

performed using the GO database (https://github.com/tanghaibao/

Goatools) and KOBAS program (http://kobas.cbi.pku.edu.cn/) with

p < 0.05. ClusterProfiler (version 4.12.6, Yulab, Guangzhou, China)

was used to visualize the enrichment results using bar graphs

(Klopfenstein et al., 2018). Volcano plots were constructed and

analyzed using TBtools software (version 2.119, Guangzhou,

China), allowing for the identification of significant DEGs by

plotting the log2 fold change against the -log10 p-value (Chen

et al., 2020). Veen diagram analysis was performed using the

VENNY platform (https://bioinfogp.cnb.csic.es/tools/venny/

index). Heatmaps were constructed from log2(TPM) values using

TBtools (Chen et al., 2020).
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2.7 Transcription factor identify, gene co-
expression analysis, and promoter binding
element analysis

TFs were predicted using the Biomarker Cloud platform (http://

www.biocloud.net/) (Du et al., 2021). Gene co-expression analysis

was conducted via the SRplot platform (http://www.bioinformatics.

com.cn) (Tang et al., 2023). DEGs involved in monoterpenoid

biosynthesis of M. arvensis, along with key enzyme genes

previously reported in monoterpenoid biosynthesis pathways

(Lange and Croteau, 1999b; Lange et al., 2011), and differentially

expressed transcription factors (DETFs), were used to construct a

co-expression trend network diagram (Supplementary Table S1).

Eight monoterpenoid biosynthesis enzyme genes (Supplementary

Table S2) were mapped to the transcriptome database with a

reference genome by local Blast, and the promoter sequence was

searched. Promoter binding elements analysis was then performed

using the PlantRegMap platform (https://plantregmap.gao-lab.org/)

(Du et al., 2021).
2.8 Weighted gene co-expression
network analysis

DEGs involved in monoterpenoid biosynthesis and DETFs were

used to perform weighted gene co-expression network analysis

(WGCNA). The WGCNA was conducted using the Biomarker

Cloud platform (http://www.biocloud.net/) (Du et al., 2021). Five

co-expressed modules were identified by WGCNA. Genes in

module 5 were selected to predict and analyze protein–protein

interaction (PPI) using the STRING database (https://cn.string-

db.org). The interactions were filtered based on a confidence score

threshold of 0.7 to ensure high reliability. The resulting PPI network

was then imported into Cytoscape (version 3.10.2, Cytoscape

Consortium, San Diego, USA). To identify hub genes, the

CytoHubba plugin was employed, and the top 15 hub genes were

selected based on their MCC scores, indicating their potential key

roles in monoterpenoid biosynthesis biological processes under

study (Li et al., 2024).
2.9 Quantitative real-time PCR analysis

The total RNA of the leaf samples was extracted using the

RNAprep Pure Plant Kit (Tiangen, Beijing, China). The quality

and concentration of the RNA were assessed by agarose gel

electrophoresis (Major Science, Saratoga, USA) and Nanodrop

2000 spectrophotometer (Thermo Fisher Scientific, Waltham,

USA). The cDNA was synthesized using the HiScript II Reverse

Transcriptase kit (Vazyme, Nanjing, China). The gene-specific

primers were designed with Primer Premier software (version 6,

PREMIER Biosoft International, Palo Alto, USA). The specific

primers used are shown in Supplementary Table S3. Quantitative
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real-time PCR (qRT-PCR) was performed using AceQ qPCR SYBR

Green Master Mix kit (Vazyme, Nanjing, China) and a Bio-Rad

MiniOpticon Real-Time PCR machine (Bio-Rad, Hercules, USA).

The PCR reaction conditions were: pre-denaturation at 95°C for 1

min, followed by denaturation at 95°C for 10 seconds, and

annealing at 60°C for 30 seconds, a total of 40 cycles were

performed. All the data were normalized using Actin gene as

reference, and the gene expression level was calculated using

2−DDCT (Li et al., 2023).
2.10 Data analysis

The values are presented as the mean ± standard deviation

(SD) of at least 3 replicates. One-way analysis of variance

(ANOVA) was performed using GraphPad Prism (version 8.0,

GraphPad Software, San Diego, USA), and statistical significance

was set at *P < 0.05, **P < 0.01, ***P < 0.001, and ****P< 0.0001

(Park et al., 2024).
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3 Results

3.1 Effect of methyl jasmonate on the
production of essential oil and peltate
glandular trichome density in
Mentha arvensis

The biosynthesis of metabolites in many medicinal plants is

closely linked to defense mechanisms (Bednarek and Osbourn,

2009). MJ and salicylic acid (SA), two key defense-related

phytohormones, were applied to mint leaves to evaluate their

effects. MJ significantly increased the EO content, while SA

showed minimal to no effect (Supplementary Figure 1). Further

experiments demonstrated that MJ promoted M. arvensis EO

synthesis in a concentration-dependent manner (Figures 1A–C).

As the MJ concentration increased from 10 mM to 5 mM, a

corresponding increase in EO content was observed. At the 5 mM

dose of MJ, the EO content peaked, increasing by 71.20% compared

to the control group. While high concentrations of MJ slightly
FIGURE 1

Effects of different concentrations of MJ on essential oil (EO) production and peltate glandular trichome (PGT) density. (A) EO content. (B) Plant
growth. (C) EO yield. (D) PGTs were observed and recorded using a fluorescence microscope. The green background represents the
autofluorescence of chlorophyll, the black dots indicate the autofluorescence of PGTs. (E) Histogram showing PGT density statistics. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.001.
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reduced plant growth (e.g., a 9.51% decrease in fresh weight under

10 mM treatment), this did not hinder EO production. Notably,

under 1 mMMJ treatment, the EO production increased by 58.50%

compared to the control group, although the highest EO content

was achieved under 5 mM MJ treatment.

PGTs are where mint EO is synthesized and stored (Croteau

et al., 2005). The density of mint PGTwas assessed using fluorescence

microscopy. The results showed that the trends in PGT density were

closely aligned with the changes in EO content (Figures 1D, E).

Specifically, the PGT density peaked under 5 mMMJ treatment, with

an increase of 53.69% compared to the control group.
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3.2 Effects of methyl jasmonate on the
essential oil composition of
Mentha arvensis

Across all treatments, 28 chemical components were identified

in M. arvensis EOs, representing over 98.52% of the total

composition (Table 1). In general, the types and relative

proportions of the compounds identified remained consistently

similar across all treatments. In each group, monoterpenoids were

the predominant components. The top 5 compounds were L-

menthol (79.07%~85.86%), L-menthone (4.93%~10.89%),
TABLE 1 Effects of MJ on the EO chemical composition of Mentha arvensis.

No. RT Component Relative content (%)

Name CAS CK 1 mM MJ 5 mM MJ

1 34.34 L-menthol 002216-51-5 85.86 ± 2.27 82.57 ± 1.16 *79.07 ± 2.69 (-7.90%)

2 20.21 L-menthone 014073-97-3 4.93 ± 1.75 7.95 ± 1.00 *10.89 ± 2.84 (+120.80%)

3 31.12 Neomenthol 000491-01-0 1.90 ± 1.66 1.79 ± 0.00 1.60 ± 0.09

4 22.31 Isomenthone 000491-07-6 1.20 ± 0.24 1.42 ± 0.04 1.52 ± 0.16

5 33.13 Pulegone 000089-82-7 0.91 ± 0.21 1.69 ± 0.54 **2.66 ± 0.44 (+191.72%)

6 37.10 Germacrene D 023986-74-5 0.82 ± 0.26 / /

7 38.09 Piperitone 000089-81-6 0.61 ± 0.04 0.54 ± 0.05 0.53 ± 0.05

8 16.43 3-Octanol 000589-98-0 0.48 ± 0.21 0.64 ± 0.02 0.65 ± 0.06

9 29.90 b-Caryophyllene 000087-44-5 0.35 ± 0.11 0.19 ± 0.09 0.12 ± 0.12

10 28.82 Isopulegol 000089-79-2 0.34 ± 0.04 0.35 ± 0.01 0.32 ± 0.03

11 36.57 Lavandulol 000498-16-8 0.26 ± 0.05 0.20 ± 0.06 0.17 ± 0.08

12 37.50 a-Terpineol 000098-55-5 0.20 ± 0.03 0.19 ± 0.01 0.17 ± 0.03

13 28.22 Isopulegone 029606-79-9 0.18 ± 0.07 0.45 ± 0.20 0.38 ± 0.07

14 38.59 Bicyclogermacrene 024703-35-3 0.15 ± 0.05 / /

15 23.13 cis-3-Hexenyl isovalerate 035154-45-1 0.10 ± 0.01 0.11 ± 0.00 0.10 ± 0.02

16 15.64 (Z)-3-Hexen-1-ol 000928-96-1 0.04 ± 0.01 0.04 ± 0.00 0.03 ± 0.00

17 24.52 b-Bourbonene 005208-59-3 0.04 ± 0.01 / /

18 59.29 a-Cadinol 000481-34-5 0.04 ± 0.02 0.04 ± 0.01 0.04 ± 0.01

19 8.38 Limonene 000138-86-3 0.03 ± 0.01 0.08 ± 0.02 0.10 ± 0.05

20 8.72 Eucalyptol 000470-82-6 0.03 ± 0.01 0.05 ± 0.01 0.05 ± 0.02

21 4.14 a-Pinene 000080-56-8 0.01 ± 0.01 0.03 ± 0.01 0.03 ± 0.01

22 5.90 b-Pinene 000127-91-3 0.01 ± 0.01 0.04 ± 0.01 0.04 ± 0.01

23 57.65 Spathulenol 006750-60-3 0.01 ± 0.02 0.02 ± 0.01 /

24 58.61 t-Muurolol 019912-62-0 0.01 ± 0.01 / /

25 59.16 cis-3-Hexenyl phenyl acetate 042436-07-7 0.01 ± 0.00 0.03 ± 0.00 0.03 ± 0.01

26 7.44 b-Myrcene 000123-35-3 0.00 ± 0.01 0.02 ± 0.00 0.01 ± 0.00

27 51.80 Caryophyllene oxide 001139-30-6 / / /

28 60.89 Methyl jasmonate 001211-29-6 / / 0.02 ± 0.01

98.52 98.74 98.79
RT, Retention time; /, Not detected or a component with a relative peak area less than 0.01%; *p < 0.05.
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neomenthol (1.60%~1.90%), isomenthone (1.20%~1.52%) and

pulegone (0.91%~2.66%). These compounds represented over

94.80% of the total volatiles in each treatment. However, subtle

variations were observed between different groups, particularly

under the 5 mM MJ treatment. L-menthol, the predominant

component of M. arvensis EO, serves as a key quality indicator

(Adlard, 2010; Wei et al., 2023). In all treatments, L-menthol

content exceeded 79.07%. The control group exhibited the highest

L-menthol content (85.86%). As MJ concentration increased,

L-menthol content decreased slightly. Under 1 mM MJ treatment,

L-menthol content was 82.57%, while at a 5 mM MJ dose, it

decreased to 79.07%, a significant reduction of 7.90% compared

to the control group (p < 0.05). In contrast, under 5 mM MJ

treatment, menthone and pulegone content increased significantly

by 120.80% (p < 0.05) and 191.72% (p < 0.01), respectively,

compared to the control.
3.3 RNA sequencing data and
quality assessment

Transcriptome sequencing was performed to explore how MJ

regulates EO biosynthesis and PGT development in M. arvensis at

the transcriptional level. Total RNA was extracted fromM. arvensis

leaves at 0, 4, 8, and 24 hours after MJ treatment. Twelve cDNA

libraries (3 replicates per treatment) were sequenced, yielding 81.56

Gb of clean data. Each library produced no less than 6.41 Gb of

clean data. GC content ranged from 46.91% to 47.38% across the 12

transcriptome samples. The percentage of Q30 bases was at least

92.58% (Table 2). Sample replicate correlation analysis

(Supplementary Figure S2A) showed that the Pearson ’s

correlation coefficients within the same treatment group were not

less than 0.899. Furthermore, the principal component analysis
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(Supplementary Figure S2B) revealed that the values of PC1 and

PC2 were 17.14% and 13.23%, respectively. These results indicated

that the dataset is robust, with high reproducibility between

samples, making it suitable for further analysis.
3.4 Functional annotation of unigenes and
identification of differentially
expressed genes

A total of 55,154 unigenes were annotated using public protein

databases (NR, Swiss-Prot, GO, COG, KOG, KEGG, etc.) with a

BLAST E-value cutoff of 1.0 × 10-5 (Supplementary Table S4). To

evaluate the effect of MJ on M. arvensis gene expression, DEG

analysis was performed. A total of 7,428 DEGs were identified

across six comparative groups (Figure 2). In the CK vs H4

comparison, 2,765 DEGs were identified, including 1,317 up-

regulated and 1,448 down-regulated genes. In the CK vs H8

comparison, 1,674 DEGs were identified, including 745 up-

regulated and 929 down-regulated genes. In the CK vs H24

comparison, 2,443 DEGs were identified, including 1,828 up-

regulated and 615 down-regulated genes. In the H4 vs H8

comparison, 2,069 DEGs were identified, including 929 up-

regulated and 1,140 down-regulated genes. In the H4 vs H24

comparison, 4,511 DEGs were identified, including 2,971 up-

regulated and 1,540 down-regulated genes. In the H8 vs H24

comparison, 3,885 DEGs were identified, including 2,731 up-

regulated and 1,154 down-regulated genes (Figures 2A, B;

Supplementary Figure S3). In addition, a total of 4,659 DEGs

were identified across the CK vs H4, CK vs H8, and CK vs H24

comparisons. The analysis revealed that 96 genes were consistently

up-regulated, while 124 genes consistently down-regulated after MJ

treatment (Figure 2C). Over time, different genes showed varied

expression patterns in response to MJ (Figure 2D). Overall, MJ

significantly affected gene transcription in M. arvensis.
3.5 GO enrichment and KEGG pathway
analysis of differentially expressed genes

GO enrichment analysis was performed to explore the potential

functions of these DEGs from the CK vs H4, CK vs H8, and CK vs

H24 comparisons (Figure 3), categorizing them into 3 major

groups: biological process (BP), cellular component (CC), and

molecular function (MF). Within BP, the top 4 subcategories

were “metabolic process”, “cellular process”, “single-organism

process” and “biological regulation” . In CC, the top 3

subcategories were “membrane”, “cell” and “cell part”. In MF,

most DEGs clustered in “binding”, followed by “catalytic activity”

(Figure 3A). Notably, 1,569 DEGs were annotated in the “metabolic

process” subcategory, making it the most abundant category in the

GO enrichment analysis. Additionally, 409, 203, 45, 41, and 20

genes were annotated in the subcategories of “response to stimulus”,

“detoxification”, “immune system process”, “signal transducer
TABLE 2 Statistical table of sequencing data.

Samples Clean
Reads

Clean
Bases (bp)

GC (%) Q30 (%)

CK-1 22,868,136 6,847,194,680 46.97% 92.58%

CK-2 21,848,006 6,541,720,413 46.89% 93.27%

CK-3 24,687,751 7,382,323,417 47.38% 93.98%

H4-1 22,180,033 6,639,000,553 47.20% 93.85%

H4-2 24,488,593 7,330,430,519 47.15% 93.24%

H4-3 23,378,976 7,001,160,200 47.03% 93.25%

H8-1 22,149,639 6,620,820,606 46.91% 94.00%

H8-2 22,042,766 6,594,444,350 46.77% 93.36%

H8-3 21,413,933 6,405,415,866 46.89% 93.76%

H24-1 22,954,164 6,873,251,249 46.96% 93.12%

H24-2 21,495,755 6,438,541,892 47.12% 93.13%

H24-3 22,985,286 6,882,903,469 47.23% 93.43%
CK, Control; H4, H8, H24, Sampling at 4, 8, and 24 hours after 1 mM MJ treatment; Q30,
indicates the percentage of bases with a Phred value >30.
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activity”, and “antioxidant activity”, respectively (Figure 3A;

Supplementary Table S5). These subcategories have been shown

to play key roles in plant resistance to stress.

KEGG pathway analysis showed that 130 pathways were

significantly enriched under MJ treatment. DEGs were

predominantly enriched in the plant-pathogen interaction (240

genes), MAPK signaling (179 genes), phenylpropanoid biosynthesis

(134 genes), and plant hormone signal transduction pathways (126

genes). Notably, 28 genes were enriched in the monoterpenoid

biosynthesis pathway (Figure 3B; Supplementary Table S6).

Additionally, 12 genes (1.17%), 9 genes (1.53%), and 19 genes

(2.13%) were enriched in this pathway in the CK vs H4, CK vs H8,

and CK vs H24 comparisons, respectively (Supplementary Figure S4),

indicating that H24 induced a higher number of genes involved in

monoterpenoid biosynthesis. For example, in the CK vs H24

comparison, 3 genes encoding cytochrome P450 enzyme (CYP450)

(TRINITY_DN14738_c1_g1, TRINITY_DN32509_c0_g1, and

TRINITY_DN46431_c0_g1 ) , 2 genes encod ing IPR

(TRINITY_DN60151_c0_g1 and TRINITY_DN90669_c0_g1), 1

gene encoding LS (TRINITY_DN5134_c0_g1), and 1 gene

encoding MD (TRINITY_DN28821_c1_g1 encoded) were identified.
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3.6 Gene expression profiles related to JA
signaling and monoterpenoid biosynthesis

InArabidopsis thaliana, the F-box protein coronatine insensitive 1

(COI1) acts as the receptor for JA. Perception of JA-Ile by the SCFCOI1

complex triggers the degradation of JAZ proteins through the 26S

proteasome. This process activates downstream TFs involved in JA

responses, such as Octadecanoid responsive 3 (ORA3), a member of

the APETALA2/ethylene responsive factor (AP2/ERF) family

(Montiel et al., 2011; Yu et al., 2021b). In this study, 10 DEGs were

identified as key factors of JA signaling in M. arvensis (Figure 4A).

Among them, 1 JAR6 gene (TRINITY_DN3071_c0_g1) and 4 JAZ9

genes (TRINITY_DN16183_c0_g1, TRINITY_DN19929_c0_g1,

TRINITY_DN11251_c0_g1 and TRINITY_DN834_c0_g2) were

significantly up-regulated at 4 hours after MJ treatment. Two MYC2

genes (TRINITY_DN4107_c0_g2 and TRINITY_DN16914_c0_g1)

were significantly up-regulated at 24 hours after MJ treatment

(Figure 4A; Supplementary Table S1).

InM. arvensis, monoterpenoids are the primary components of

its EOs. KEGG enrichment results indicated that “Monoterpenoid

biosynthesis” was one of the most significantly enriched pathways
FIGURE 2

Characteristics of DEGs under MJ treatment. (A) Volcano plot of MJ treatment for 24 hours. (B) Histogram showing DEG expression changes under
MJ treatment for 4, 8, and 24 hours. (C) Venn diagrams of up-regulated and down-regulated genes: (a) Up-regulated genes; (b) Down-regulated
genes. (D) Heat map of DEGs.
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under MJ treatment. Twenty-eight DEGs associated with

monoterpenoid biosynthesis were identified in response to MJ

treatment. Notably, GPPSs were significantly up-regulated at 4

and 8 hours after MJ treatment, 4 LS genes were up-regulated

both at 4, 8 and 24 hours, and 12 IPR genes were significantly up-

regulated at 24 hours after MJ treatment. CYP450, catalyze the

decoration of terpenoid basic skeletons and thereby contribute

significantly to their structural diversity (Weitzel and Simonsen,

2015). In this study, 4 CYP450 genes were identified as significantly

expressed (Figure 4B; Supplementary Table S1). L-menthol is the

predominant component of M. arvensis EO, which is synthesized

through a series of enzymatic reactions. The enzymatic catalysis

mechanism of L-menthol synthesis has been extensively studied in 3
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Mentha varieties: Mentha piperita, Mentha spicata, and Mentha

haplocalyx (Ahkami et al., 2015). Using reference genes from these

varieties as queries, 11 orthologous genes were identified in M.

arvensis (Supplementary Table S1), including the previously

reported LS and MD genes (Akhtar et al., 2017; Wang et al., 2013).
3.7 Identification of DETFs and co-
expression analysis with monoterpenoid
biosynthesis genes

TFs regulate plant growth, development, and secondary

metabolite synthesis (Yang et al., 2012). In this study, 260 DETFs
FIGURE 3

GO enrichment and KEGG pathway characterization of DEGs after MJ treatment. (A) GO enrichment analysis. (B) KEGG pathway analysis.
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belonging to 22 families were identified after MJ treatment for 4, 8,

and 24 hours (Figure 5A; Supplementary Table S1). The top 8 families

with the highest number of DEGs were AP2/ERF (42 genes), MYB

(including MYB-related, 38 genes), WRKY (33 genes), NAC (22

genes), HSF (heat shock transcription factors, 16 genes), bHLH (14

genes), C2H2 (C2H2 zinc-finger protein, 14 genes), and GRAS (GAI-

RGA-and-SCR, 14 genes). These TFs responded positively to MJ

treatment. To further explore the regulatory relationship between TFs

and monoterpenoid biosynthesis, a co-expression pattern analysis of

DETFs and monoterpenoid biosynthetic genes was performed

(Figure 5B). The analysis identified 7 gene clusters. Each cluster

exhibited a unique expression pattern, indicating a close association

between TFs and monoterpenoid biosynthetic enzyme genes. Most of
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the highly expressed monoterpenoid biosynthesis genes (Log2FC > 3)

were grouped into cluster 6. Therefore, further analysis focused on

this cluster. In cluster 6, the top 3 TF families with the highest number

of DEGs were AP2/ERF (17 genes), WRKY (16 genes), and MYB (10

genes) (Figure 5B; Supplementary Table S2). In this study, 8

monoterpenoid biosynthesis genes, including DXS, DXR, GPPS-L,

LS, IPR, PR, and MD, which are either highly expressed genes

(Log2FC > 3) or key genes in this process as previously reported

(Lange and Croteau, 1999a; Lange et al., 2011; Mahmoud et al., 2004)

were selected for promoter analysis. These genes contained the

highest number of AP2/ERF binding sites (2,763), followed by

bHLH (266), WRKY (251), and MYB (197) (Figure 5C;

Supplementary Table S2).
FIGURE 4

Heatmaps of the DEGs in the JA signaling and monoterpenoid biosynthesis pathways under MJ treatment. (A) JA signaling pathway: JAR6,
Jasmonoyl-L-amino acid synthetase; COI1, Coronatine insensitive 1; JAZ, Jasmonate ZIM domain protein; MYC2, bHLH transcription factor MYC2.
(B) Monoterpenoid biosynthesis pathway: DXS, 1-deoxy-D-xylulose-5-phosphate synthase; DXR, 1-deoxy-D-xylulose-5-phosphate
reductoisomerase; MCT, 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; CMK, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase;
MECPS, 2-C-methylerythritol-2,4-cyclodiphosphate synthase; IPPI, Isopentenyl diphosphate isomerase; GPPS, Geranyl diphosphate synthase; LS,
Limonene synthase; L3H, Limonene-3-hydroxylase; IPD, trans-Isopiperitenol dehydrogenase; IPR, Isopiperitenone reductase; IPI, cis-Isopulegone
isomerase; PR, Pulegone reductase; MD, L-menthol dehydrogenase.
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3.8 WGCNA of differentially expressed
monoterpenoid biosynthesis genes and
transcription factors

WGCNA was employed to construct a gene co-expression

network, aiming to identify DETFs involved in MJ-induced

monoterpenoid biosynthesis. Hierarchical clustering identified 5

co-expressed modules (Figure 6A). Most of the high expressed

monoterpenoid biosynthesis genes (10 out of 11, Log2FC > 3)

peaked at 24 hours after MJ treatment and were classified in module

5 (Figure 6B; Supplementary Table S7). KEGG analysis was

performed for this module. Among these, 18 unigenes were

annotated in the plant hormone signal transduction pathway

(35.29%), 16 unigenes in the plant pathogen interaction pathway

(31.37%), and 11 unigenes in the monoterpenoid biosynthesis

pathway (21.57%) (Supplementary Figure S4). Additionally,

module 5 was highly associated with the H24 group (R = 0.99,

p = 0.006). These results closely mirrored the analysis of the

monoterpenoid biosynthesis pathway in Figure 4, prompting a

focus on module 5 (Figure 6B; Supplementary Table S7).

Furthermore, all genes of module 5 were used to conduct PPI

analysis, the results were visualized using Cytoscape, and hub genes

were identified using CytoHubba (Figure 6C). A venn diagram

analysis was used to identify common genes between the top 15 hub

genes from the CytoHabba analysis and cluster 6 genes from the co-

expression analysis (Log2FC > 1, FPKM > 10) (Figure 5B),

which were considered as candidate genes. The results

revealed 5 common genes, including 4 AP2/EFR genes—

TRINITY_DN8517_c0_g1 (ERF108), TRINITY_DN4459_c0_g1

( ER F 1 B ) , T R IN I TY _DN1 1 1 0 7 _ c 0 _ g 1 (DREB 1D ) ,
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TRINITY_DN688_c0_g1 (DREB1C), and 1 WRKY gene

TRINITY_DN1548_c0_g1 (WRKY33), which were significantly

up-regulated (Log2FC > 2) at 24 hours after MJ treatment

(Figures 6D, E).
3.9 Validation of RNA-seq data

A qRT-PCR assay with independent samples from the control

and MJ treatment group (H24) was conducted to verify

the expression changes of several key genes involved in

monoterpenoid biosynthesis. In total, 10 genes, including 6 from

the monoterpenoid biosynthesis pathway, and 4 TFs were selected

to confirm the RNA-seq data. The expression levels of these selected

genes, as determined by qRT-PCR, were generally consistent with

the RNA-seq results (Figure 7).
4 Discussion

The EO of M. arvensis, rich in monoterpenoids like L-menthol

and menthone, is highly valued for its medicinal properties and is

widely used in industries such as medicine, cosmetics, and food

(Kumar et al., 2012; Souza et al., 2020). Previous studies have shown

that exogenous defense hormones such as MJ and SA can promote

the biosynthesis of plant secondary metabolites including

terpenoids, anthocyanins and alkaloids (Kumari et al., 2018; Li

et al., 2024; Xiang et al., 2015). In some cases, these hormones also

increase the density of PGT, as observed in Artemisia annua

(Kumari et al., 2018). In our study, MJ treatment significantly

enhanced EO content in M. arvensis, whereas SA showed minimal
FIGURE 5

Analysis of the co-expression patterns of monoterpenoid biosynthesis genes and differentially expressed transcription factors (DETFs). (A) Identification of
DETFs. (B) Gene clusters classified based on co-expression patterns. (C) Statistics of promoter binding elements for key enzyme genes.
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to no effect (Supplementary Figure S1). Although SA is known to

antagonize JA signaling pathways and can reduce JA levels, such as

in Arabidopsis thaliana (Barbara and David, 2002), its lack of

impact on EO content in M. arvensis may explained by several

factors. First, plant genotype plays a critical role. For example, in

Pyrus pyrifolia (pear), exogenous SA treatment had minimal effect

on the total amount of cuticle wax in leaves (mainly composed of

terpenoids), suggesting insensitivity of terpenoid biosynthesis to SA

in this species (Wu et al., 2018). Second, EO synthesis inM. arvensis

may involve mechanisms beyond trichome development, which

could make it less responsive to SA-induced interference (Han et al.,

2022). Third, the dose, frequency, and application method of SA are

important factors. Studies have shown that applying SA once or

twice can promote the accumulation of terpenoid lactones, while

increasing the frequency to three or four applications suppresses

their synthesis (Wang et al., 2021a). Lastly, it remains necessary to

confirm the changes in endogenous levels of these hormones

following JA and SA treatments in this study to fully understand

their interactions.
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JA plays a critical role in increasing secondary metabolite

production in aromatic and medicinal plants (Patt et al., 2018;

Wasternack and Strnad, 2019). For example, in Picea abies, JA

treatment induced the accumulation of monoterpenoid and

diterpene in resin ducts (Schmidt et al., 2011). Similarly, MJ

treatment increased the artemisinin content by about 300% in A.

annua (Kumari et al., 2018; Maes et al., 2011) and the EO content

by 36.80% in Ocimum basilicum (Zlotek et al., 2016). Furthermore,

MJ promotes trichome development, not only in both non-

glandular trichome-bearing species like Arabidopsis thaliana and

Medicago truncatula (Maes and Goossens, 2010; Traw and

Bergelson, 2003), but also in glandular trichome-producing

species such as Solanum lycopersicum and A. annua (Maes and

Goossens, 2010; Maes et al., 2011). In this study, PGT density was

increased by 53.69% under 5 mM MJ treatment in M. arvensis.

These results suggest that JA is a potent inducer of EO production

through stimulating both monoterpenoid biosynthesis and PGT

development in M. arvensis. Although MJ significantly increased

the EO content, it also inhibited mint growth in a concentration-
FIGURE 6

WGCNA of differentially expressed monoterpenoid biosynthesis genes and transcription factors. (A) Hierarchical clustering of differentially expressed
gene modules. (B) Module-trait relationships. (C) Cytoscape visualization of the top 15 connectivity pairs in module 5. (D) Venn diagram analysis of
common genes between module 5 from WGCNA and cluster 6 from co-expression analysis. (E) Gene expression analysis of common genes
identified in the Venn diagram analysis.
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dependent manner. Treatment with 10 mM MJ reduced the fresh

weight ofM. arvensis by 9.51% (Figure 1B), consistent with previous

studies indicating that excessive JA accumulation can suppress

gibberellin biosynthesis, thereby delaying plant growth (Heinrich

et al., 2013). In this study, while high concentrations of MJ slightly

reduced L-menthol content, the 1 mM MJ treatment achieved the

highest EO yield without significantly affecting L-menthol levels.

These findings highlight the importance of optimizing MJ doses to

maximize EO production (Table 1).

To further elucidate the molecular mechanisms underlying MJ’s

effects on EO biosynthesis, RNA-seq analysis was conducted. A

total of 7,428 DEGs were identified across six comparison groups

(Figure 2). Interestingly, the observed increase in DEGs between H4

vs H24 compared to the CK vs H24, suggests a dynamic

transcriptional response to MJ (Figure 2B). This pattern aligns

with the known rapid and transient nature of JA-induced gene

expression. Previous studies have shown that JA signaling triggers

immediate transcriptional changes, peaking within a few hours of

treatment, followed by a decline as the response stabilizes (Hickman

et al., 2017). In our study, the H4 sample likely captures this peak

transcriptional activity, encompassing genes involved in defense

responses, secondary metabolite biosynthesis, and stress signaling

pathways. By 24 hours (H24), many of these responses may have

been downregulated due to feedback mechanisms or metabolic

adjustments, resulting in fewer DEGs when compared to CK. For

example, some core factors of JA signaling were highly expressed in

H4, while some were decreased in H24 (Figure 4). GO enrichment

analysis revealed that MJ treatment significantly influenced

metabolic processes, with DEGs predominantly involved in the

“response to stimulus”, “detoxification”, “immune system process”,
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and “signal transducer activity” categories (Figure 3A;

Supplementary Table S2), which are crucial for plant responses to

biotic and abiotic stress (Chi et al., 2018; Li et al., 2013; Nie et al.,

2020). KEGG analysis revealed that DEGs were enriched in key

pathways such as plant-pathogen interaction, MAPK signaling,

phenylpropanoid biosynthesis , p lant hormone signal

transduction, and monoterpenoid biosynthesis (Figure 3B;

Supplementary Table S6). These results indicate that JA may

enhance terpenoid production in plants to effectively respond to

environmental challenges (Unsicker et al., 2009).

The core elements of JA signaling were significantly

differentially expressed in this study, including 1 JAR6, 4 JAZ9,

and 2MYC2 genes (Figure 4A; Supplementary Table S1). The result

is consistent with previous research in Chrysanthemum indicum

var. aromaticum (Gao et al., 2020), indicating that MJ mediates JA

signaling pathways, thereby regulating a range of downstream genes

in M. arvensis. Monoterpenoids, the primary constituents of M.

arvensis EO, are crucial for plant defense against pathogens and

herbivores (Unsicker et al., 2009). KEGG analysis indicated that MJ

treatment triggered significant differential expression of 28 genes

involved in monoterpenoid biosynthesis and 12 genes related to

terpenoid backbone biosynthesis, including genes encoding GPPS,

LS, IPR, MD, and CYP450 enzymes (Figure 4B; Supplementary

Tables S1, S6). Notably, early-stage genes such as DXS showed peak

expression at H4, intermediate-stage genes like GPPS and LS peaked

at H8, and late-stage genes like IPR and MD reached their highest

expression at H24 (Figure 4B; Supplementary Figure S1). These

findings align with previous studies on peppermint—in the later

stages of monoterpenoid biosynthesis, L-menthol becomes the

predominant component. Correspondingly, structural genes
FIGURE 7

Quantitative real-time PCR verification of the RNA-seq data of 10 selected genes in the MJ treatment group (H24) and the control group (CK).
*P < 0.05, **P < 0.01, ***P < 0.001.
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involved in the later reactions, such as MD, exhibit a delayed

developmental timeline compared to the earlier enzymes in the

monoterpenoid biosynthesis pathway (Turner et al., 2000).

The production and the accumulation of terpenoids,

meticulously controlled in plants in a spatiotemporal manner, are

orchestrated by TFs (Singh et al., 2024). In this study, 260 DETFs

belonged to 22 families, including AP2/ERF, WRKY, MYB, and

bHLH etc., were identified in M. arvensis after MJ treatment

(Figure 5A, Supplementary Table S1). Many TFs have been

reported to regulate the terpenoid biosynthesis, including bHLH,

MYB, WRKY, AP2/ERF, TCP, bZIP, and NAC in previous studies

(Su et al., 2019; Zhang et al., 2022). These TFs enhance terpenoid

accumulation by directly or indirectly promoting the

transcriptional activation of both TF and structural genes. For

instance, AtMYB21 in Arabidopsis thaliana and FhMYB21 in

Freesia hybrida promote terpenoid accumulation by binding to

TPS promoters (Yang et al., 2020). In A. annua, bHLH1 and

bHLH112 significant ly promote the accumulat ion of

sesquiterpene artemisinin by binding to the promoters of the

artemisinin synthesis genes and the transcription factor ERF1,

respectively (Ji et al., 2014; Xiang et al., 2019). In Phalaenopsis

orchids , bHLH4 increases the monoterpenoid content

approximately 950-fold by activating the GPPS promoter

(Chuang et al., 2018). In Dendrobium officinale, bHLH4 and in

Arabidopsis thaliana, MYC2 promote terpenoid synthesis by

binding to the TPS gene (Hong et al., 2012; Yu et al., 2021c). In

Catharanthus roseus and A. annua, MYC enhances terpenoid

synthesis by regulating AP2/ERF and WRKY transcription factors

(Chen et al., 2017; Paul et al., 2017). In A. annua, under JA

induction, WRKY9 activates the transcription of GSW1, thereby

positively regulating artemisinin synthesis (Fu et al., 2021; Jiang

et al., 2016). AP2/ERF transcription factors AaERF1, AaERF2,

AaTAR1 and AaORA are induced by JA and positively regulate

artemisinin synthesis by binding to the promoter of artemisinin

synthesis genes (Tan et al., 2015; Yu et al., 2012). NACs in A. annua

and Actinidia arguta can both promote monoterpenoid synthesis by

activating TPS expression (Nieuwenhuizen et al., 2015). Despite

significant progress in understanding the molecular mechanisms of

plant terpenoid biosynthesis, certain key mechanisms remain

poorly understood. Additionally, different TFs have specific roles

in regulating terpenoid biosynthesis in various plants, and these

regulatory mechanisms may vary between species (Singh et al.,

2024). In this study, co-expression analysis revealed that AP2/ERF,

WRKY, and MYB families were strongly associated with

monoterpenoid biosynthesis genes (Figure 5B; Supplementary

Table S2). Promoter analysis indicated that key monoterpenoid

biosynthesis genes contained binding sites for these TFs

(Figure 5C), suggesting that AP2/ERF, WRKY, and MYB may

play important roles in regulating MJ-induced monoterpenoid

biosynthesis in M. arvensis. Furthermore, WGCNA, PPI, and

CytoHubba analysis revealed that MYC2 is positioned at the

center of the regulatory network and is involved the biosynthesis

of various secondary metabolites, such as anthocyanins and

terpenoids (Luo et al., 2023). A venn analysis identified 5

common genes between cluster 6 of the co-expression analysis

and module 5 of WGCNA, including 4 AP2/ERF genes and 1
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WRKY gene (Figure 6). Among them, ERF1B is homologous to

CrORCA3 from Catharanthus roseus (Montiel et al., 2011). The

WRKY33 homolog from Arabidopsis thaliana has been reported to

participate in defense responses and positively regulate the synthesis

of the secondary metabolite camalexin (Zhou et al., 2020). These

findings suggest that AP2/ERF TFs play an important role in

regulating mint monoterpenoid biosynthesis. However, the

functions of these candidate genes require further verification.

Trichomes are specialized structures formed by the highly

differentiated epidermal cells of plant’s aboveground organs.

Depending on their secretory function, trichomes can be divided

into glandular and non-glandular types (Dai et al., 2010). The mint

EO is synthesized and stored exclusively in the peltate glandular

trichome (Croteau et al., 2005). Trichome development is regulated

by complex molecular networks (Han et al., 2022). Currently, the

molecular regulatory mechanisms governing non-glandular

trichome development in plants are relatively well-understood

(Han et al., 2022; Wang et al., 2021b). In plants like Arabidopsis

thaliana, key regulatory pathways for non-glandular trichome

development have been identified, involving TFs such as

GLABRA1 (GL1), GLABRA3 (GL3), and TRANSPARENT

TESTA GLABRA1 (TTG1). These TFs form the MYB-bHLH-

WD40 (MBW) complex (Pesch and Hulskamp, 2009; Zhao et al.,

2008), which activates downstream genes GLABRA2 (GL2) and

TRANSPARENT TESTA GLABRA2 (TTG2), thereby initiating

trichome differentiation (Han et al., 2022; Wang and Chen, 2008).

In contrast, negative regulators such as R3-MYB transcription

factors TRICHOMELESS (TCL), TRIPTYCHON (TRY),

CAPRICE (CPC), and ENHANCER OF TRY AND CPC (ETC),

competitively bind to TTG1-GL3/EGL3 complex, forming an

inactive complex that inhibits the expression of downstream

genes GL2 and TTG2 (Esch et al., 2003; Zhao et al., 2008).

However, research on the molecular regulatory networks involved

in glandular trichome development remains limited (Chalvin et al.,

2020). Some progress has been made in species like A. annua and

Solanum lycopersicum, where key regulatory pathways have been

identified (Chalvin et al., 2020). In A. annua, AaMIXTA1 (MYB)

interacts with AaHD8 (HD-ZIP) forming a complex that activates

the downstream AaHD1 (HD-ZIP) and AaGSW2 (WRKY), then

promoting glandular trichome initiation (Xie et al., 2021b; Yan

et al., 2017, 2018). However, attempts to overexpress MIXTA from

Antirrhinum majus in Arabidopsis thaliana failed to rescue the

trichome loss phenotype, and overexpression of non-glandular

trichome regulators gene AtGL1 from Arabidopsis thaliana in

Solanaceae species did not induce glandular trichome initiation,

suggesting distinct regulatory pathways for glandular and non-

glandular trichomes (Payne et al., 1999).

However, little is known about the molecular mechanisms

underlying PGT development in the Mentha genus (Tissier,

2012). Recent studies have reported that in Mentha canadensis,

the HD-ZIP transcription factor McHD-ZIP3 interacts with

McMIXTA to form a complex that promotes PGT development

(Qi et al., 2022). In this study, we identified homologous genes

involved in non-glandular trichome development from Arabidopsis

thaliana in M. arvensis transcriptome, including positive regulators

like GL3, GL2, and TTG2, as well as negative regulators like TRY,
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CPC, and ETC3. These genes were significantly differentially

expressed after MJ treatment (Supplementary Figure 6,

Supplementary Table S9). Unfortunately, through local BLAST,

we did not find homologous genes for the positive regulators

AaMIXTA, AaHD8, and AaHD1 from A. annua. However,

homologs of McMIXTA and HD-ZIP3 from Mentha canadensis

were identified but did not show significant differential expression

compared to the control, possibly due to the differences in the leaf

age of the samples. Studies have reported that genes related to PGT

initiation in mint, like McMIXTA, are highly expressed in young

leaves, while the leaves collected in this experiment were mature (Qi

et al., 2022). Further investigation is needed to validate the role of

these candidate genes in PGT formation in mint.
5 Conclusion

Exogenous application of MJ enhanced the EO accumulation

and increased the PGT density in M. arvensis. RNA-seq analysis

indicated that numerous unigenes were differentially expressed,

particularly those involved in JA signal transduction,

monoterpenoid biosynthesis, and TFs. MJ treatment up-regulated

genes associated with JA signal transduction, including JAZs and

MYCs, as well as key structural genes in the monoterpenoid

biosynthesis pathway, such as GPPSs, LSs, L3Hs, and IPRs.

Additionally, TFs such as AP2/ERF, WRKY, MYB, and bHLH

were identified as potential regulators of monoterpenoid

biosynthesis or PGT development. Several key candidate genes

which regulate monoterpenoid biosynthesis and PGT

development were identified, even though their specific functions

require further validation. These findings provide valuable insights

into the molecular mechanisms governing monoterpenoid

biosynthesis and PGT development, and offer potential strategies

for enhancing EO production in M. arvensis.
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