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Paeonia lactiflora Pall. (P. lactiflora) is an important medicinal plant in China with

high ornamental value. Predicting the potential habitat of P. lactiflora is crucial for

identifying its geographic distribution characteristics and ensuring its ecological

and economic importance. Therefore, we aimed to predict the potential

geographic distribution of P. lactiflora in China under future climate change

scenarios. To this end, we used an optimized Maxent model and ArcGIS software

to analyze the influence of 12 environmental variables on P. lactiflora potential

distribution in China based on 291 effective distribution records. The key factors

limiting the potential geographic distribution of P. lactiflora were evaluated by

combining the contribution rates of the environmental variables with the

significance of their replacement. The jackknife method was employed to

assess the importance of these factors. Response curves were used to

determine the appropriate intervals for the environmental factor variables and

to analyze the changes in spatial patterns. The Maxent model exhibited a low

degree of overfitting and good prediction accuracy. The main variables

influencing P. lactiflora distribution were precipitation in the wettest month

and hottest quarter, lowest temperature in the coldest month, and highest

temperature in the warmest month. Under current climatic conditions, P.

lactiflora could theoretically grow across and area of 231.1 × 104 km2 in China.

Under the six future climate change scenarios, the potential geographic

distribution area was reduced compared with the current distribution area, and

the potentially suitable areas shifted southwestward. The majority of priority

conservation sites for P. lactiflora are located in northern and northeastern China,

which align with the highly favorable areas predicted by the Maxent model. The

findings of this investigation can guide the selection of future introductions as

well as artificial cultivation and preservation of P. lactiflora resources.
KEYWORDS

Paeonia lactiflora, climate change, Maxent, Marxan, prediction of suitable area
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1516251/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1516251/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1516251/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1516251/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1516251&domain=pdf&date_stamp=2025-01-09
mailto:zhangfenguo@sxnu.edu.cn
https://doi.org/10.3389/fpls.2024.1516251
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1516251
https://www.frontiersin.org/journals/plant-science


Wang et al. 10.3389/fpls.2024.1516251
1 Introduction

Global warming is increasing due to the intensity of human

activities (Klein and Anderegg, 2021). The Sixth Assessment Report

of the United Nations Intergovernmental Panel on Climate Change

states that between 2011 and 2020, the temperature increased by

1.09°C (range of 0.95–1.20°C) compared to that during 1850–1900

(Zhou, 2021). Global warming has had far-reaching effects on plant

communities. Studies have suggested that climate change-induced

habitat destruction may become the greatest global threat to

biodiversity in the coming decades (Li et al., 2019). As global

warming accelerates, some species will migrate to higher latitudes

or elevations, whereas others may adapt physiologically or

phenologically to changes in their habitat (Root et al., 2003;

Zhang et al., 2018). Research on the influence of climate change

on species’ potential habitats has prompted efforts toward

safeguarding rare plant resources and facilitating the introduction

and growth of economically important plants. Consequently, this

area of research has gained momentum, focusing on understanding

the ramifications of global change on species distribution (Zhao

et al., 2021). Furthermore, because the climate varies with latitude in

terms of temperature and precipitation, it has a substantial impact

on species distribution, in conjunction with other environmental

factors, including terrain, soil type, and biotic interactions

(Puchałka et al., 2023). Understanding how species have

responded to climate change in the past and how they will

respond in the future can assist scientists in managing germplasm

resources and comprehending the historical factors that have led to

the emergence of new species and changes in their geographic

ranges (Zhao et al., 2021).

Ecological niche modeling quantifies the correlation between

species occurrence and various environmental variables to

characterize the ecological niche or habitat suitability of a species

(Guisan and Zimmermann, 2000). It is an effective tool for

explaining changes in species distribution due to environmental

variables such as climate (Zimmemann et al., 2011). Appropriate

plant distribution areas can be estimated by examining the features

of plant ecological niches and associated environmental factors in

relation to the known geographic distribution of plants (Zhao et al.,

2021). Various species distribution models, including CLIMEX,

Domain, Genetic Algorithm for Rule-Set Production, and

Maximum Entropy (Maxent), have been utilized to assess the

ecological requirements, responses, and distribution areas of

species (Guisan and Thuiller, 2004; Phillips and Dudıḱ, 2008). In

particular, the Maxent model has been used extensively both

regionally and internationally in many fields owing to its intuitive

modeling, high prediction accuracy, ease of operation, and strong

explanatory power (Wang et al., 2023). This model determines the

primary factors and adaptation ranges that affect species growth by

combining various environmental variables to predict potential

distributions. It is frequently used to study ecological

characteristics and forecast the possible distribution of species

(Wang et al., 2023a). Puchałka et al. (2023) Using Maxent

successfully estimated climate niche shifts and threat levels under

various climate change scenarios for two Vaccinium species.
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Paeonia lactiflora Pall., commonly known as the Chinese peony

or garden peony, is an herbaceous plant belonging to the

Paeoniaceae family. It has been referred to as the “flower of

fortune” since ancient times and has substantial economic,

ornamental, and medicinal value. As a traditional Chinese flower,

P. lactiflora boasts large flowers, a beautiful appearance, and a rich

fragrance (Zhang et al., 2021; Yuan et al., 2023). In addition, P.

lactiflora is used for the treatment of inflammatory and

cardiovascular diseases and as a neuroprotective agent (Li et al.,

2021). Its root is widely used in traditional Chinese medicine, where

it is known as “white peony,” due to its high content of terpenoids,

flavonoids, polysaccharides, polyphenols, and other bioactive

compounds, which have effects such as analgesia, spasmolysis,

removal of blood stasis, and promotion of menstruation (Yan

et al., 2021). Owing to its aesthetic, therapeutic, and commercial

value, P. lactiflora has been extensively cultivated worldwide (Xue

et al., 2018; Zhao et al., 2019).

Research on this economically important medicinal plant has

primarily focused on its chemical composition and pharmacological

effects. To our knowledge, this study is the first to integrate the

Maxent model with the Marxan framework to predict the

distribution of suitable habitats for peonies, identify the key

environmental factors influencing this distribution, and provide

recommendations for conservation areas. We utilized the optimized

Maxent model to enhance the prediction of current and future

suitable zones for P. lactiflora by incorporating additional

environmental factors and minimizing overfitting. In addition,

the Marxan model was employed to delineate protected areas to

address the endangerment of wild Paeonia species. Thus, the goals

of this study were to: (1) predict the distribution patterns of

potentially suitable areas for P. lactiflora in China under current

climatic conditions and classify them into different suitability

grades; (2) determine the primary environmental variables

affecting P. lactiflora geographical distribution; (3) forecast and

compare the potentially suitable areas for P. lactiflora and the

changing trends under future climatic conditions; and (4) outline

key conservation areas and areas conducive to P. lactiflora growth.

This analysis can serve as a theoretical foundation for the

introduction, propagation, preservation, and sensible use of

P. lactiflora.
2 Materials and methods

2.1 Collection of occurrence data

To gather comprehensive data on the occurrence of P. lactiflora

across its range, we conducted an exhaustive search of online

databases for relevant literature, specifically utilizing the Chinese

Virtual Herbarium (CVH, http://www.cvh.org.cn/) and the Global

Biodiversity Information Facility (GBIF, https://www.gbif.org/)

databases. We utilized the Baidu coordinate retrieval system

(https://api.map.baidu.com/lbsapi/getpoint/) to ascertain the

latitude and longitude of records that lacked precise geographic

coordinates. Duplicate coordinate points, excessively dense species
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distribution data within a region, and distribution data containing

incorrect or incomplete coordinate information were defined and

excluded as unqualified data. To reduce sampling bias, we used the

R software package “spThin” to filter the data (Aiello-Lammens

et al., 2015), retaining only one coordinate point in a 5 km × 5 km

grid. After removing incorrect and incomplete coordinate data, and

applying the aforementioned filtering method. Ultimately, as

illustrated in Figure 1, 291 confirmed presence data of P.

lactiflora were obtained in order to build the models.
2.2 Environmental factors

Initially, we identified 38 environmental variables that

potentially influence the distribution of P. lactiflora. These

encompassed three topographical variables and nineteen climatic

variables from various time periods, all sourced from the

WorldClim 2.1 Database (https://www.worldclim.org), with a

resolution of 2.5′ (5 km × 5 km). The averages for the following

periods were calculated: present (covering 1970–2000), 2050s

(2041–2060), and 2090s (2081–2100). Scenarios combining the

Shared Socioeconomic Pathway (SSP) and Representative

Concentration Pathway (RCP) based on CMIP6 for projecting

future climate variables were developed using the China (Beijing)

Climate Center Climate SystemModel 2 Medium Resolution (BCC-

CSM2-MR) (Jiang et al., 2020). CMIP6 addresses the limitations of

CMIP5, which just takes into account CO2 concentrations and

radiative forcing targets, by integrating common socioeconomic

scenarios and land use. It provides a more rigorous and scientific

explanation of potential future climate scenarios (Ostad-Ali-Askari

et al., 2020; Shi et al., 2023). In our study, we considered sustainable

development (SSP126), intermediate development (SSP245), and

conventional development (SSP585). Additional data on 16 soil

factors (basic saturation, carbonate or lime content, sulfate content,
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cation exchange capacity of cohesive soil, cation exchange capacity

of soil, clay content, volume percentage of crushed stone,

exchangeable sodium salt, conductivity, organic carbon content,

pH, soil bulk density, sand content, silt content, classification of

exchangeable base, USDA soil texture) were sourced from the

World Soil Database (https://www.fao.org/). Provincial national

vector image was acquired from the Ministry of Natural

Resources of China (http://www.mnr.gov.cn/).

To address the potential issue of overfitting in the model, which

may arise from an abundance of environmental variables and

subsequently compromise prediction accuracy, we utilized pertinent

R code to analyze multicollinearity and calculate Pearson’s

correlation coefficients for the 38 environmental variables. Based on

the outcomes, we excluded variables with correlation coefficients |r|

≥0.7. Following this, we selected the variance inflation factor (VIF) as

a criterion for further model refinement (Dormann et al., 2013; Zhao

et al., 2021b). The variance inflation factor (VIF) is also known as the

reciprocal of the tolerance metric. A VIF value below 5 indicates no

significant multicollinearity among factors; a VIF ranging from 10 to

100 suggests moderate multicollinearity; and a VIF above 100

indicates substantial interfactor multicollinearity (Wang et al.,

2023b). The first environmental factors we considered were those

with correlations less than 0.7 and VIF values less than 5.

Additionally, we enabled jackknife resampling in the environmental

parameter settings to evaluate the weight of the environmental

factors. We identified the dominant environmental component by

summing the percentage contributions of each environmental factor

and the significance of the substitution value (Phillips et al., 2006).

We loaded all the environmental factors, along with the P. lactiflora

distribution data, into Maxent. We allocated 25% of the dataset for

testing and used the remaining 75% for training. We set up 10

repetitions, selected Bootstrap as the repetition type, and output the

distribution values in logistic form. Ultimately, we selected 12 major

environmental variables to model the Maxent model (Table 1).
2.3 Model optimization and
accuracy evaluation

By optimizing the regulation multiplier (RM) and the feature

combination (FC) adjusted using the ENMeval data package in R

software, the model’s prediction accuracy can be greatly increased

and overfitting can be mitigated (Phillips et al., 2017; Guo et al.,

2022). Our research began by analyzing the presence-only datasets

available within the ENMeval framework, with the objective of

determining the optimal feature class transformations and

regularization coefficients. ENMeval facilitates the development of

environmental niche models (ENMs) using the presence-only

approach in Maxent (Phillips et al., 2006). The Maxent

framework comprises five features: linear (L), quadratic (Q),

fragmented (H), product (P), and threshold (T) characteristics

(Zhao et al., 2021a). In this study, the default parameters of the

Maxent software were set to RM = 1 and FC = LQHPT. To refine

the Maxent model, the RM was adjusted to value ranging from 0.5

to 4, in increments of 0.5, resulting in a total of eight regulated

frequency adjustments. Six pairs of one or more attributes were
FIGURE 1

Distribution of occurrence points of P. lactiflora.
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selected simultaneously: L, L and Q, H, L, Q, H and H, L, Q, H and

P, and L, Q, H, P and T. A total of 48 parameter combinations were

calculated using permutations and combinations. These 48

parameters were then combined and tested to evaluate the

model’s complexity. The evaluation was based on the values of

delta. AICc and (auc.train-auc.diff.avg). The model’s prediction

accuracy increases as these two values decrease (Zhao et al., 2021b).

We employed the receiver operating characteristic (ROC) curve

and the area under the curve (AUC) as measures to assess the model’s

accuracy (He et al., 2023). The AUC value ranges from 0 to 1, with

higher values indicating a higher degree of confidence in the

prediction results. This metric is independent of the model’s

threshold. It serves primarily as a metric to evaluate the accuracy of

the model (Poririo et al., 2014; Wan et al., 2021). An AUC value

closer to 1 indicates a higher level of prediction accuracy. Specifically,

an AUC between 0.5 and 0.7 suggests a moderate prediction, between

0.8 and 0.9 indicates a good prediction, and between 0.9 and 1.0

signifies an excellent prediction (Dakhil et al., 2019; Ren et al., 2020).

The True Skill Statistic (TSS) serves as an indicator of the net

prediction success rate, encompassing both presence and absence

data, and has been widely applied in various ecological models in

recent years. TSS values range from -1 to +1, where +1 denotes

perfect agreement, and values of 0 or lower reflect performance that is

indistinguishable from random. The closer the TSS value is to 1,

higher the level of prediction accuracy (Allouche and Kadmon, 2006).
2.4 Changes in the spatial pattern of the
suitable distribution area for P. lactiflora

Based on the methodology outlined by Zhang’s et al. (2019), the

probabilistic outcomes of suitable distribution areas of P. lactiflora
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obtained from the model were reclassified. To establish a binary

presence/absence matrix (0, 1) for the potential geographical

distribution of P. lactiflora under both current and future climate

change scenarios, spatial units with a probability of species existence

≥ 0.49 were classified as suitable areas, whereas those with a

probability < 0.49 were deemed unsuitable areas. Suitable areas

were assigned the value of “1”, whereas the unsuitable areas were

assigned the value of “0”. Further analysis was conducted regarding

the spatial pattern of the suitable distribution zones for P. lactiflora

under future climate change scenarios, using the presence/absence

matrix. Consequently, four categories of changes in suitable areas

were identified: unsuitable area, lost suitable area, reserved suitable

area, and newly added suitable area. These categories facilitate an

understanding of how past and future climate change will modify

the spatial patterns of potentially suitable areas: An unsuitable area

is represented by a matrix value of 0 → 0. A newly added suitable

area is indicated by a value of 0→ 1. A lost suitable area is indicated

by a value of 1 → 0. A reserved suitable area is indicated by a value

of 1 → 1 (Zhao et al., 2021a).
2.5 Division of potentially suitable areas for
P. lactiflora

We imported the ASC file generated by Maxent into ArcGIS

10.4.1, subsequently converted it into grid data, and visualized it by

overlaying it onto a map depicting China’s administrative regions.

Using this foundation, we utilized the Gis reclassification function

to classify the suitability of different areas for P. lactiflora. The

corresponding area calculations were then conducted using the grid

computation tool. To ascertain P. lactiflora’s habitat suitability

index, we apopted the natural breakpoint classification method.

The suitability of habitats was categorized into four categories:

unsuitable areas (0–0.49), low suitability areas (0.49–0.55),

moderately suitable areas (0.55–0.65), and highy suitable areas

(0.65–1).
2.6 Migration of the centroid

The SDM toolbox, a Geographic Information System (GIS)

application developed on a Python platform, was used to calculate

the shifting patterns in the relevant areas. The centroids of future

and existing suitable zones were then compared (Brown, 2014). We

utilized the SDMTool package to calculate the position of the center

of gravity in the suitable area for P. lactiflora under both current and

future climate scenarios, and utilized the geosphere package

(https://cran.r-project.org/package=geosphere) to quantify the

range shift distance of the centroids across different climate

scenarios. The distribution data layers representing both present

and future conditions were superimposed using the ArcGIS overlay

tool. To establish the designated set, reclassify the new layers, and

categorize the suitability classes to produce the final peony

suitability zoning map, this tool merges several raster data into a

single output. The two suitability classes—general suitability area

and most appropriate area—were considered in the calculation of
TABLE 1 Environmental factors.

Type Variable
code

Environmental factor Unit

Climatic factor bio5
Max Temperature in
Warmest Month

°C

bio6
Min Temperature in
Coldest Month

°C

bio13 Precipitation in Wettest Month mm

bio14 Precipitation in Driest Month mm

bio18 precipitation in warmest quarter mm

bio19 precipitation in coldest quarter mm

Topographic
factors

elev Altitude m

slope Slope variability %

Soil factor t_bs Basic saturation %

t_cec_clay
Cation exchange capacity of
cohesive soil

%

t_esp Exchangeable sodium salt %

t_silt Silt content in topsoil %
frontiersin.org

https://cran.r-project.org/package=geosphere
https://doi.org/10.3389/fpls.2024.1516251
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1516251
the overall suitability area in this study. To examine the connections

between environmental variables and the possible distribution area,

the values of the predominant environmental variables and

suitability degrees in different time periods were taken from 291

distribution points (Zhao et al., 2021b; Wang et al., 2023a).
2.7 Marxan model construction

Marxan is a multi-objective system protection planning

software based on simulated annealing that is capable of

achieving the most effective protection objectives within specified

protection cost constraints. Due to the continuous refinement of its

methodology, it has become widely used in recent years for the

planning of terrestrial conservation systems (Zhang X. et al., 2021).

In this study, we utilized the spatial optimization model Marxan to

design the reserve network of P. lactiflora. We selected a grid of 25

km × 25 km as the spatial planning unit to cover China.

Furthermore, in ArcGIS, we created a species distribution matrix

using zone statistics tools to determine the distribution region of the

target species within each planning unit (Wang et al., 2023b).

Following the 10%-30% threshold outlined in the IUCN

Terrestrial Ecosystem Conservation Plan (TECP), we chose 30%

of the upper limit of the species’ distribution range as the optimal

conservation ratio (Guo et al., 2018). The clustering of planning

units within a conservation priority area is controlled by a

parameter known as the boundary length modifier (BLM). The

appropriate BLM value balances the boundary length of a

conservation priority area with the overall cost of protecting the

planning units (McDonnell et al., 2002). In this study, we selected a

BLM value of 10000, an SPF value of 100, and ran the model for 100

iterations to obtain the optimal solution for the spatial planning

unit. Subsequently, we imported the results into ArcGIS to

construct a spatial planning map of the P. lactiflora reserve.
3 Results and analysis

3.1 Model optimization

The Maxent model may lead to overfitting when predicting the

potential distribution of a species. We utilized the ENMeval package to

cross-validate the tuning of the model using 291 distribution locations

of P. lactiflora and 12 environmental factors across various

combinations of RM and FC. When FC = LQHPT, delta, and RM =

1 are the default parameters for the model. When RM = 2.5, FC = H,
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and delta is considered, the AICc value is 43.81. The model is deemed

optimal when AICc = 0, based on AIC criteria. Compared to the typical

settings, changes were observed in the average difference (avg.diff)

values. The optimizedmodel’s area under the curve (AUC) and average

test odds ratio for the top 10 percent of predictions (avg.test.or10pct)

decreased by approximately 46.8% and 51.7%, respectively (Table 2).

The optimized models exhibited decreased complexity and overfitting,

leading to enhancedmodel fitting. Consequently, RM= 2.5 and FC =H

were chosen as the final parameter settings for this study. The Maxent

model was run using these optimal model parameter settings and

cross-validated 10 times, resulting in an average AUC of 0.834

(Figure 2) and a TSS value of 0.71, which indicate accurate predictions.
3.2 China’s current P. lactiflora potentially
suitable regions

In light of the optimized Maxent model’s forecast outcomes, the

distribution map of P. lactiflora was divided using ArcGIS to visualize

the potentially suitable distribution area across different time period, as

shown in Figure 3. On the map, the color coding indicates the suitability

levels for P. lactiflora, with red denoting highly suitable area, yellow

denoting moderately suitable area, and green denoting low suitable

habitat area, spanning 159,331 km2, 804,093 km2, and 1,347,579 km2,

respectively. The total suitable area accounts for approximately 24.1% of

the national territory and is predominantly distributed across 24

provinces and municipalities, such as Heilongjiang, Jilin, Liaoning,

Inner Mongolia, Hebei, Shanxi, Shaanxi, Gansu, Qinghai, Shandong,

Henan, Hubei, Anhui and Sichuan. Northeastern Inner Mongolia,

eastern Qinghai, southeastern Gansu, and central Shaanxi constitute

the primary regions where the highly suitable areas are located,

representing 1.66% of the nation’s total area. Shanxi, Ningxia, and

central Shaanxi are the main areas where the moderately suitable

habitats are found, accounting for 8.38% of the nation’s total area.
3.3 Prediction of suitable areas for P.
lactiflora under future climatic conditions

Based on the same criteria as previously mentioned, the

optimized Maxent model was used to predict the potentially

suitable distribution areas of P. lactiflora in the 2050s and 2090s,

taking into account the SSP126, SSP370 and SSP580 scenarios. In

addition to the area and variations within each acceptable range, we

also obtained a spatial distribution map (Figure 4) of the projected

future potentially suitable areas of P. lactiflora (Table 3).
TABLE 2 Maxent model’s evaluation outcomes for various parameter setting.

Model
evaluation

Feature
combination

Regularization
multiplier

Value of delta Akaike
information

criterion corrected

auc.diff.avg 10% Training
omission rate

Default LQHPT 1 43.81 0.111 0.294

Optimized H 2.5 0 0.059 0.142
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When comparing the 2050s and 2090s to the current period, the

area of each suitability class decreases to varying degrees for each of

the three climate scenarios. The SSP126, SSP245, and SSP585

scenarios, for instance, saw their areas shrink by 16.17%, 11.86%,

and 11.36%, respectively, in the 2050s. However, it’s noteworthy

that the suitable area gradually increases with higher radiation

forcing within this timeframe. Conversely, in the 2090s, the

suitable area decreased as radiation forcing intensified. There is a

notable increase in both highly suitable areas and unsuitable areas,

accompanied by a decrease in low suitable area. Under the SSP585

scenario, in the 2090s, the highly suitable area expands by up to

70.6%. Over time, the overall surface area of potentially suitable

distribution for P. lactiflora tends to decrease initially, followed by
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an increase, but it never surpasses the suitable area observed in the

current period.
3.4 Dominant environmental factors

A jackknife test was used to ascertain the mean contribution of

each parameter with the aim of identifying important environmental

variables. The results indicated that precipitation during the wettest

month was the foremost environmental factor influencing the

distribution of P. lactiflora, contributing 43.2% (Table 4). Other

notable factors encompassed precipitation in the warmest quarter

(15.7%), slope variability (6%), maximum temperature in the

warmest month (6.3%), minimum temperature in the coldest

month (7.2%), and exchangeable sodium salt (9.9%). Collectively,

these six environmental factors constituted 88.3% of the overall

contribution, with precipitation in the wettest month (43.2%) being

the most predominant. The factors exhibiting over 10% importance

were precipitation in the warmest quarter (29.3%), precipitation in

the wettest month (21.9%), slope variability (11.5%), maximum

temperature in the warmest month (10.5%), and minimum

temperature in the coldest month (10.5%). From the important

values and contributions, it is evident that the factors affecting

precipitation, temperature, and slope variability exerted the greatest

effects. In contrast, soil characteristics and elevation had minimal

influence on the distribution pattern P. lactiflora.

Further analysis of response curves for five environmental

factors that significantly impact P. lactiflora’s global distribution

provided insights into the climatic characteristics of potentially

suitable areas, considering current climatic conditions. Generally,

environmental conditions are deemed favorable for plant growth

when the survival probability exceeds 0.5. Our findings indicate

striking similarities between the precipitation curves for the wettest

month (bio13) and the warmest quarter (bio18). Both curves

initiate at 0, rise with precipitation, and reach their peaks at 100
FIGURE 2

ROC response curve under the Maxent model.
FIGURE 3

Prediction of the potentially suitable area for P. lactiflora.
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TABLE 3 Based on the current period, the change shift in the suitable habitat of P. lactiflora under various climatic scenarios.

Current
(×104

km2)

2050s (%) 2090s (%)

SSP126 SSP245 SSP585 SSP126 SSP245 SSP585

Unsuitable area 728.90 5.13 3.76 3.60 0.96 1.68 3.08

Low suitable 134.76 -27.5 -24.25 -18.15 -10.51 -11.90 -11.96

Moderately suitable 80.41 -12.05 -6.63 -11.59 3.42 -0.11 -21.83

Highly suitable 15.93 59.20 66.54 47.21 27.56 24.23 70.56

Total suitable 231.10 -16.17 -11.86 -11.36 -3.04 -5.31 -9.71
F
rontiers in Plant Scien
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The bluer the color, the greater the reduction. The darker the red, the greater the increase.
FIGURE 4

Future climatic scenarios and P. lactiflora’s potential distribution.
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mm and 240 mm, respectively. Following the attainment of these

peaks, the survival rate stabilizes within a specific precipitation

range. However, beyond a certain precipitation threshold, the

survival rate of P. lactiflora experiences a rapid decline. The slope

variability curve steeply increases to attain a maximum at 0, and as

it continues to ascend, the survival rate of P. lactiflora decreases,

albeit in a relatively gradual manner. Similarly, the maximum

temperature in the warmest month (bio5) possesses an ideal

range, contributing to the overall survival of the species.
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Consequently, the thresholds for the primary environmental

parameters in the projected potentially suitable area of P.

lactiflora, as shown in Figure 5, are as follows: precipitation in the

wettest month ranging from 10 mm to 300 mm, the precipitation in

the warmest quarter ranging from 220 mm to 530 mm, maximum

temperature in the warmest month ranging from 20°C to 30°C, and

slope variability ranging from 0 to 0.4×106.
3.5 Dynamic shifts in P. lactiflora’s
appropriate habitats under various
climatic scenarios

The spatial patterns of P. lactiflora habitats under six different

future climate scenarios were investigated in comparison with those

of current suitable areas. The results showed that P. lactiflora will

experience differential reductions in suitable areas during future

periods and under various climate scenarios (Table 5). Nevertheless,

the vast majority of the current suitable area will still remain

suitable. The percentage of P. lactiflora suitable habitat lost in

each of the three future climate scenarios varies from 10.47 to

22.08%, and the area of habitat loss ranges from 24.19-51.02×104

km2. Habitat loss is mainly concentrated in northeastern China,

northern and central China, including Heilongjiang, Henan, Hubei

and other provinces (Figure 6). The increase in the extent of the

region suitable for P. lactiflora increased by 13.66-21.67×104 km2,

with a growth rate of 5.91-9.38%. The expansion of suitable areas

was primarily observed in the southwestern region, including Tibet,

Sichuan, Qinghai, and Yunnan provinces. The regional rates of

change ranged from 3.04% to 16.17%, with the lowest rates observed

under the SSP126-2090s climate scenario and the highest rates

under the SSP126-2050s climate scenario. Specifically, the SSP126-

2050s climate scenario also showed a maximum loss of 51.02 × 104
FIGURE 5

Response curve of the current climate.
TABLE 4 Contribution rates and importance values of
environmental factors.

Environmental factor
Contribution
(%)

Importance
(%)

Max Temperature in
Warmest Month

6.3 10.5

Min Temperature in
Coldest Month

7.2 10.5

Precipitation in Wettest Month 43.2 21.9

Precipitation in Driest Month 0.4 0.5

precipitation in warmest quarter 15.7 29.3

precipitation in coldest quarter 0.1 1.4

Altitude 1.9 0.7

Slope variability 6 11.5

Basic saturation 2.7 0.6

Cation exchange capacity of
cohesive soil

2.5 2.2

Exchangeable sodium salt 9.9 4.5

Silt content in topsoil 4 6.2
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km2 of suitable area and a minimum gain of 13.66 × 104 km2,

indicating a more sensitive response to climate change under this

scenario. However, the loss of area under the SSP126-2090s climate

scenario was relatively minimal. Our comparative analysis of the

changes in spatial patterns of potential habitat for P. lactiflora under

various future climate change scenarios, the rates of change in

spatial regions were higher in the 2050s than in the 2090s,

indicating that the pattern of spatial changes in habitat was more

significant in the 2050s.
3.6 Centroid changes of P. lactiflora based
on future climatic scenarios

We used a centroid to delineate the central point of the

distribution area, serving as a proxy for the location of the P.

lactiflora habitat (Figure 7). The results indicated that, despite some

variations in the shifts of suitable areas across different climate

scenarios, the primary migration trend remained relatively

consistent, predominantly towards the southwest. All of the

aforementioned areas were situated within Hebei Province.

Presently, the potential geometric centroid of the P. lactiflora

habitat is situated around Taocheng District, Hengshui City, Hebei

Province, China (115.46°E, 37.78°N). Under the SSP585 climate

scenario in the 2090s, the centroid of the suitable growing region

for P. lactiflora shifted to its southernmost boundary. At this point,

the migration distance amounted to 159,071 meters, positioning the

centroid of the suitable growing area in Handan, Hebei Province

(114.14°E, 36.81°N). Under both the SSP126 and SSP585 climate

scenarios, it was predicted that the migration distance of centroid

within the potentially suitable area would increase with escalating

radiative forcing. Conversely, under the SSP245-2050s climate

conditions, the centroid of suitable area shifted southwest. During

this period, the centroid was situated in NingJin County, Xingtai City,

Hebei Province (115.12°E, 37.69°N), with a migration distance of

309,85 meters. However, in the suitable area for P. lactiflora under the

SSP245-2090s climate scenario, the centroid shifted northeast. The

new location, with a migration distance of 15,331 meters, was in

Shijiazhuang City, Hebei Province (115.28°E, 37.76°N).
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3.7 Priority protected regions of P.
lactiflora under current climate scenarios

We conducted an investigation into the potential distribution

range of P. lactiflora in the contemporary climatic conditions. We

utilized the Marxan model to identify the priority conservation areas

and subsequently imported the computational results from ArcGIS

software to formulate a comprehensive conservation strategy with P.

lactiflora as the central focus (Figure 8). The findings revealed that

protected areas (PAs) were predominantly situated in 13 provinces,

spanning across eastern Inner Mongolia, the border regions of

Heilongjiang and Jilin, northern Liaoning, northern Hebei, Shanxi,

central Shaanxi, southern Gansu, eastern Qinghai, central Hubei, and

central Anhui. These areas substantially overlapped with the potential

altitude zones and moderately adapted habitats for P. lactiflora under

current climatic conditions, thereby enhancing the credibility of the

predictive results.
4 Discussion

4.1 Evaluation of Maxent after optimization

The Maxent model is independent of the sample size and can

generate species response curves to quantify environmental factors in

suitable habitats (Phillips et al., 2006; Gebrewahid et al., 2020). Many

researchers have demonstrated that the default settings of Maxent can

be intricate, leading to a high degree of overfitting. This may reduce the

accuracy of the results and make them more difficult to interpret,

particularly for response curves representing highly fluctuating

environmental conditions. In this study, based on three

environmental variables—climate, topography, and soil factors—the

ENMeval package in R was used to optimize the model to mitigate

overfitting and sampling bias, thereby improving prediction accuracy

(Sony et al., 2018). This approach restricts the background data to the

region corresponding to the calibrated location to ensure that the

potential geographic distribution area encompasses the current

distribution points. By adopting this strategy, the performance of the

Maxent model can be enhanced by adjusting its parameters. The
TABLE 5 P. lactiflora changing distribution area under various time periods and scenarios.

Period
Climate
scenario

Habitat
area

(×104km2)

Loss
(×104km2)

Stable
(×104km2)

Gain
(×104km2)

Species
range

change(%)

Percentage
loss (%)

Percentage
Gain (%)

Current 231.10

SSP126 193.74 51.02 180.08 13.66 -16.17 22.08 5.91

2041-
2060

SSP245 203.69 44.54 186.56 17.13 -11.86 19.27 7.41

SSP585 204.84 44.64 186.46 18.38 -11.36 19.32 7.95

SSP126 224.06 24.19 206.91 17.15 -3.04 10.47 7.42

2081-
2100

SSP245 218.83 33.94 197.16 21.67 -5.31 14.69 9.38

SSP585 208.67 38.71 192.39 16.28 -9.71 16.75 7.04
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accuracy of the system can be assessed by improving the alignment

between the projected and actual distribution areas and visually

inspecting the Geogrid map (Guo et al., 2018). To minimize errors,

we evaluated 48 parameter combinations in the ENMeval package by

constructing eight numerical regularization multipliers with values

ranging from 0.5 to 4 and using six feature combinations. The

results indicated that the optimal Maxent model settings were FC =

H and RM = 2.5. Model complexity affects the transferability of species

distributions. Studies have shown that the complexity of the Maxent

model can be controlled by utilizing the AICc parameter and adjusting

the regularization multiplier (Li et al., 2020; Warren and Seifert, 2011).
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When the model was optimized, the AICc decreased from 43.81 to 0,

indicating reduced overfitting after optimization. The parameter-

optimized Maxent model effectively predicted the distribution of P.

lactiflora. In accordance with Shelford’s tolerance law, the response

curve was noticeably smoother and more akin to a normal distribution

curve (Zhao et al., 2021a). The optimized Maxent model simulated the

potential distribution regions of P. lactiflora with high reliability.

The area under the ROC curve (AUC) is a crucial evaluation

metric, particularly for binary classification problems. The AUC

measures a model’s ability to rank samples, specifically, its capacity

to prioritize positive samples over negative ones. This is particularly
FIGURE 6

Dynamic change map of the predicted potentially suitable area of P. lactiflora.
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important for species distribution predictions using the Maxent model.

A Maxent model with a high AUC value indicates its ability to predict

the presence or absence of a species more accurately, thereby

enhancing its practical utility in real-world applications.

Furthermore, the AUC value is independent of the decision

thresholds and can be used to compare different models, making it

the current optimal metric for assessing model prediction accuracy

(Swets, 1988; Chen et al., 2012). In this study, the AUC value exceeded

0.8, indicating that the modeling of the current potential distribution

area provides a reasonable basis for predicting the future potential

distribution of P. lactiflora. However, it should be noted that the AUC

value largely depends on the sample size and the coverage of the
Frontiers in Plant Science 11
climatic niche within the relevant region. Dyderski et al. (2018)

suggested that, after resampling, the AUC value tends to decrease as

the sample size increases. As the proportion of climatic variation

occupied by the species increases, the distinction between occupied

and unoccupied areas diminishes. Conversely, models assessing rare

species with few records typically exhibit higher AUC values because

their narrow climatic niche often contrasts sharply with that of the

surrounding areas. Chen et al. (2012) demonstrated that when the

sample size was relatively small, the AUC values of species distribution

models fluctuated more and exhibited poorer stability. When the

sample size exceeded 120, the AUC value became increasingly stable

and eventually remained largely unchanged, even with variations in the

sample size.
4.2 Effects of environmental variables on
geographical range of P. lactiflora

It is crucial to understand the major environmental factors shaping

the spatial distribution patterns of species from an ecological

perspective. The distribution of suitable areas for a species is

primarily influenced by several factors, including precipitation in the

wettest month, precipitation in the warmest quarter, exchangeable

sodium salt, maximum temperature in the warmest month, minimum

temperature in the coldest month, and slope variability. These

conclusions were supported by the percentage contribution,

permutation importance, and jackknife test results from the Maxent

model. In this study, the high-suitability areas were mainly

concentrated in northeastern Inner Mongolia and other regions,

which aligned with the optimal growth zone of P. lactiflora. The

accuracy of these results has been verified (Li et al., 2019).

The geographical distribution of plants is greatly influenced by

hydrothermal conditions, and terrestrial plants are particularly

sensitive to temperature and precipitation (Bradie and Leung,

2017). The findings of the Maxent model indicate that temperature
FIGURE 7

Centroids of the predicted potentially suitable area of P. lactiflora.
FIGURE 8

Priority protected areas of P. lactiflora in China predicted by the
Marxan model.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1516251
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1516251
and precipitation were the two most crucial environmental variables

limiting the potential distribution of P. lactiflora, contributing a

combined total of 72.9% of the model predictions. Previous studies

have indicated that temperature plays a considerable role in the

morphological structure, vegetative growth, seed dormancy, and

germination of P. lactiflora. The optimal temperature range for the

growth of P. lactiflora is 15–25°C. When P. lactiflora plants are

subjected to high-temperature stress, there is a reduction in the rate of

chlorophyll synthesis and an acceleration of chlorophyll degradation

within the plants. Simultaneously, this stress results in the

accumulation of reactive oxygen species in plants. Furthermore,

when exposed to high-temperature stress, the leaves of P. lactiflora

exhibit a yellow-green coloration, accompanied by small and dense

sunburn-induced perforations and large dark brown patches. These

effects ultimately cause plant wilting and death. As a typical temperate

plant, P. lactiflora thrives under temperate climatic conditions but is

intolerant of high humidity or high temperatures. The average

temperature of the coldest month in its distribution areas generally

ranges from -5°C to -20°C, or even lower (Shen et al., 2012; Hou et al.,

2023). Precipitation regulates plant carbon sequestration and

transpiration by influencing soil moisture (Shi et al., 2023). When

the precipitation in the wettest month fell below 90 mm, or the

precipitation in the warmest quarter was less than 220 mm, the

probability of the presence of P. lactiflora significantly decreased. This

indicates that precipitation is a crucial limiting factor for its

distribution. Previous studies have shown that as water availability

decreases, photosynthesis by P. lactiflora notably diminishes,

accompanied by external morphological changes such as yellowing

and defoliation (Wang et al., 2014). The emergence and growth of P.

lactiflora are directly influenced by water availability (Zhang et al.,

2018). These hydrological factors are likely to play a primary role in

shaping the ecological adaptations of P. lactiflora and affect numerous

physiological processes related to seed germination, growth, and

plant development. Consequently, they have a substantial impact

on species distribution. Zhang et al. (2022) showed that the amount

of active components in P. lactiflora roots was significantly influenced

by annual precipitation and annual average temperature. In the

present study, the survival rate of P. lactiflora was higher in regions

with lower precipitation and colder temperatures (Shen et al., 2012).

Topography and soil were also important factors influencing the

distribution of P. lactiflora, with a total contribution of 27.1%. Lv et al.

(2009) reported that wild peony species are primarily distributed in

mountainous grasslands and under forest canopies at elevations

ranging from 480 to 700 m on hillsides in Northeast China. They

are also found at specific elevations in hilly, mountainous, and plateau

regions, such as North China, the Qinling Mountains, the Qilian

Mountains, and the Yinshan Mountains. Additionally, these species

are present in mountainous grasslands at elevations of 1000–2300 m in

other Chinese provinces. Relevant studies have shown that factors such

as slope gradient and aspect not only influence plant distribution and

community structure but also affect the distribution of plant biomass

and root system architecture (Ferrari et al., 2021). This suggests that

geographic factors, such as elevation, topography, slope, and slope

direction, have a significant influence on the distribution of P. lactiflora.

Inorganic elements in the soil such as Mn, Fe, Zn, and Cu play crucial

roles in the growth of P. lactiflora. Among these, Zn plays a key role in
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the formation of P. lactiflora (Chen et al., 2009). Therefore,

temperature, precipitation, topography, and soil factors influence the

potential distribution pattern of Paeoniaceae. However, in this study,

precipitation had a greater influence than temperature and soil

topography among the environmental factors affecting its distribution.
4.3 Changes in the potential geographical
distribution and resource protection of
P. lactiflora

It is crucial to quantify the impact of climate change on the

potential distribution patterns of species to create conservation plans

that preserve ecological balance (Deb et al., 2017). The response of P.

lactiflora distribution to climate change was primarily evident in the

varying degrees of shrinkage of suitable areas under future climate

scenarios. This included the expansion of highly suitable areas, a

reduction in less suitable areas, and significant intensification of

habitat fragmentation. Moderately suitable areas decreased under

all scenarios, except for an increase under the SSP585-2090s climate

scenario. Under future climate scenarios, the distribution of P.

lactiflora will not only decrease in terms of suitable areas but also

in its spatial patterns. The boundaries of suitable areas will change

drastically, and the rate of loss of suitable areas for P. lactiflora will be

significantly higher than the rate of increase of new suitable areas.

These results suggest that suitable areas for P. lactiflora will be found

at lower latitudes and higher elevations in the future. This trend aligns

with the projected southwestward migration of the center of mass

under future climate scenarios.

Wild populations of P. lactiflora are now endangered due to the

destruction of their natural habitats and overexploitation of the

environment. Considering projected future climate change, and to

meet the market demand for P. lactiflora, we recommend prioritizing

the conservation of P. lactiflora in its primary distribution areas, such

as North China and Northeast China. Given the predicted decrease in

its distribution range under future climate conditions, conservation

methods should involve adaptive management techniques to

effectively address the effects of climate change. Furthermore, by

considering various climate change scenarios and their impacts on

species distribution, we can gain more nuanced perspectives on the

long-term conservation prospects of P. lactiflora. The reliability of

predictions can be enhanced by utilizing sophisticated modeling

approaches and broader spatial coverage of distribution data. In

summary, our research contributes to the overall understanding of P.

lactiflora distribution and provides insights for conservation and

management initiatives. By addressing the known research gaps and

incorporating additional factors, we can improve the scientific rigor

and applicability of future studies, ultimately aiding in the

preservation of this crucial species and its habitat.
4.4 Potential limitations and
future outlooks

We must acknowledge some limitations in the current study.

We focused on climate and topography, but other factors could
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influence a species’ potential geographic range. In addition to

affecting temperature and precipitation, climate complexity affects

light radiation intensity, the soil carbon cycle, and changes in the

ozone layer. Biological elements, such as competition, reproduction,

and human activity, as well as abiotic physical barriers, also affect

plant growth (Blois et al., 2013). Therefore, in future research, we

can integrate the physiological and biochemical effects of plants,

interactions between organisms, ecosystem changes, and human

factors to make more accurate predictions and enhance the

precision of the model. In this study, climate variables and land

cover conditions were employed as model inputs. However, we

anticipate that the future land cover will change (Wang et al.,

2023b). To create more accurate estimates, future studies should

examine the complexity of climate change effects in greater detail.

Climate change indirectly influenced the population

composition and distribution of P. lactiflora by affecting the

ecosystem. In this study, only two time periods, the 2050s and the

2090s, were considered for environmental factor variables. The aim

of this study was to predict the potential range of P. lactiflora in

China. Several investigations have demonstrated that changes in

research scale can lead to alterations in background data, ultimately

affecting model formulation (Ji et al., 2019; Ma and Li, 2023). When

adjusting the scope of the study, background data points should be

carefully compared with species occurrence points, rather than

relying solely on random sampling within the study region.

However, identification of suitable background data points

remains an area worthy of further exploration. Currently, a

standardized system for assessing suitability within an appropriate

area is lacking, and the choice of a threshold directly affects the

delineated suitable area. This can result in substantial discrepancies

between the designated highly suitable range and actual

distribution. Therefore, it is crucial to select an appropriate

threshold for classification and to validate it against the observed

distribution. Future research could explore the overall trends in the

potential geographic distribution across various time periods.

Further investigation is required to incorporate as many relevant

variables as feasible into computer model simulations to achieve

more precise forecasts, particularly as information becomes more

comprehensive and accessible in the future. Despite these

limitations, our initial application of the optimized Maxent model

marks the first step in macro-planning for reliably predicting

potentially suitable areas in China. In future studies, we will

collect data on the global and regional distribution of P. lactiflora

to enable a more comprehensive analysis of its optimal

environmental conditions. Nevertheless, the findings of this study

provide a theoretical foundation for the development of practical

adaptation strategies tailored to rare indigenous plant species facing

climate change. These results remain highly relevant for guiding the

preservation of germplasm resources, future planting initiatives,

and the sustainable development and utilization of P. lactiflora.
5 Conclusions

In this study, we used an optimized Maxent model to predict,

for the first time, the distribution of areas favorable for P. lactiflora
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considering current and projected climate conditions. The data

revealed that P. lactiflora was predominantly located in Northeast

and North China, covering the provinces of Inner Mongolia, Hebei,

and Shanxi, totaling 231.1 × 104 km2. Precipitation in the wettest

month (100–230 mm), precipitation in the warmest month (240–

540 mm), the coldest month’s minimum temperature (≤4°C), and

the warmest month’s maximum temperature (20–30°C) emerged as

the most critical factors influencing its distribution. Temperature

was the second most significant factor. The potential habitat of P.

lactiflora is projected to shift toward the southwest in the 21st

century to allow it to adapt to global warming. However, unlike the

current climate conditions, all future scenarios are expected to lead

to varying degrees of reduction in suitable areas for P. lactiflora

because of its sensitivity to moisture and temperature. A decline of

3.04–16.17% was predicted for the entire potentially suitable area.

Conversely, it is expected that, under all circumstances, the area of

highly suitable habitats will expand to different extents. Notably, the

highly suitable areas identified by the Maxent model were aligned

with the key conservation sites for P. lactiflora, primarily situated in

North and Northeast China. This study offers valuable insights into

the potential distribution of P. lactiflora under different climate

scenarios, considering various environmental factors. The outcomes

of this study provide a scientific basis for the management,

conservation, and strategic site selection of P. lactiflora, while

enhancing our understanding of the primary factors influencing

population dispersal.
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climate change threaten European forest tree species distributions? Glob Change Biol.
24, 1150–1163. doi: 10.1111/gcb.13925

Ferrari, F. R., Schaefer, C., Pereira, A. B., Thomazini, A., Schmitz, D., Francelino, M.
R., et al. (2021). Coupled soil-vegetation changes along a topographic gradient on
KingGeorge lsland, maritime Antarctica. Catena 198, 105038. doi: 10.1016/
j.catena.2020.105038

Gebrewahid, Y., Abrehe, S., Meresa, E., Eyasu, G., Abay, K., Gebreab, G., et al. (2020).
Current and future predicting potential areas of Oxytenanthera abyssinica (A.Richard)
using Maxent model under climate change in Northern Ethiopia. Ecol. Process. 9, 15.
doi: 10.1186/s13717-019-0210-8

Guisan, A., and Thuiller, W. (2004). Predicting species distribution: offering more
than simple habitat models. Ecol. Lett. 10, 435–435. doi: 10.1111/j.1461-
0248.2005.00792.x

Guisan, A., and Zimmermann, N. E. (2000). Prediclive habitat distribution models in
ecology. Ecol. Modell. 135, 147–186. doi: 10.1016/s0304-3800(00)00354-9

Guo, Y., Liang, C., and Li, X. W. (2018). Systematic conservation planning for
freshwater wetlands in the Yangtze River Basin based on waterfowl. Acta Ecol. Sin. 38,
1984–1993. doi: 10.5846/stxb201703130422
Guo, Y. X., Wang, Y. F., Fu, Z. X., and Ma, X. (2022). Prediction and analysis of
potential geographical distribution of Bunias orientalis in China based on the optimized
Maxent model. Plant Prot. 48, 40–47. doi: 10.16688/j.zwbh.2021148

He, Y. L., Ma, J. M., and Chen, G. S. (2023). Potential geographical distribution and
its multifactor analysis of Pinus massoniana in China based on the maxent model. Ecol.
Indic. 154, 110790. doi: 10.1016/j.ecolind.2023.110790

Hou, Z. Y., Gong, Y. Z., Qian, Y., Cheng, Z. Y., Tao, J., and Zhao, D. Q. (2023).
Evaluation of heat tolerance of herbaceous peony and screening of its identification
indices. Sci. Agri Sin. 56, 4742–4756. doi: 10.3864/j.issn.0578-1752.2023.23.015

Ji, Q., Wang, R., Pang, H., Yuan, J., Ren, J., and Xiao, W. (2019). Influence of sample
size and research scope on the accuracy of MaxEnt model-a case study of black-and-
white snub-nosed monkeys. Acta Theriol. Sin. 39, 126–133. doi: 10.16829/j.slxb.150203

Jiang, T., Lv, Y. R., Huang, J. L., Wang, Y. J., Su, B. D., and Tao, H. (2020). New
scenarios of CMIP6 model (SSP-RCP) and its application in the Huaihe river basin.
Adv. Meteor Sci. Tech. 10, 102–109. doi: 10.3969/j.issn.2095-1973.2020.05.016

Klein, T., and Anderegg, W. R. L. (2021). A vast increase in heat exposure in the 21st
century is driven by global warming and urban population growth. Sustain Cities Soc
73, 103098. doi: 10.1016/j.scs.2021.103098

Li, J. Y., Chang, H., Liu, T., and Zhang, C. (2019). The potential geographical
distribution ofHaloxylon across Central Asia under climate change in the 21st century.
Agric. For Meteorol. 275, 243–254. doi: 10.1016/j.agrformet.2019.05.027

Li, Y. C., Li, M. Y., Li, C., and Liu, Z. Z. (2020). Optimized Maxent model predictions
of climate change impacts on the suitable distribution of Cumninghamia lanceolata in
China. Forests 11, 302. doi: 10.3390/f11030302

Li, P., Shen, J., Wang, Z. Q., Liu, S. S., Liu, Q., Li, Y., et al. (2021). Genus Paeonia: A
comprehensive review on traditional uses, phytochemistry, pharmacological activities,
clinical application, and toxicology. J. Ethnopharmacol. 269, 113708. doi: 10.1016/
j.jep.2020.113708

Lv, J. R., Guo, L. P., Huang, L. Q., Liang, L. K., Sun, Y. Z., Zhang, X. B., et al. (2009).
Selectivity rank regionalization of Paeonia Lactiflora based on fuzzy method. China J.
Chin. Mater. Med. 34, 807–811. doi: 10.3321/j.issn:1001-5302.2009.07.001

Ma, W., and Li, S. (2023). Research progress of MaxEnt model at home and abroad
and its application in different climatic backgrounds and regional scales. Forest.
construction 02), 32–40.

McDonnell, M. D., Possingham, H. P., Ball, I. R., and Cousins, E. A. (2002).
Mathematical methods for spatially cohesive reserve design. Environ. Model. Assess.
7, 107–114. doi: 10.1023/A:1015649716111

Ostad-Ali-Askari, K., Shayannejad, M., Ghorbanizadeh, K. H., and Zareian, M. J.
(2020). Effect of climate change on precipitation patterns in an arid region using GCM
models: case study of Isfahan-Borkhar plain. Nat. Hazards Rev. 21, 04020006.
doi: 10.1061/(asce)nh.1527-6996.0000367
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