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Three-dimensional (3D) LiDAR is crucial for the autonomous navigation of

orchard mobile robots, offering comprehensive and accurate environmental

perception. However, the increased richness of information provided by 3D

LiDAR also leads to a higher computational burden for point cloud data

processing, posing challenges to real-time navigation. To address these issues,

this paper proposes a 3D point cloud optimization method based on the octree

data structure for autonomous navigation of orchard mobile robots. This

approach includes two key components: 1) In terms of orchard mapping, the

spatial indexing and segmentation features of the octree data structure are

introduced. According to the sparsity and density of the point cloud, the 3D

orchard map is adaptively divided and the key information of the orchard is

retained. 2) In terms of path planning, by using octree nodes as the unit nodes for

RRT* random tree expansion, an improved RRT* algorithm based on octree is

proposed. Field experiments were conducted in a pear orchard based on this

method. The experimental results show that: 1) The overall number of point

cloud data points in the map was reduced by approximately 76.32%, while

important features, including tree morphology, trellis structure, and road

surface information, were fully preserved. 2) When different octree node

resolutions were applied, the improved RRT* algorithm demonstrated

significant improvements in path generation time, sampling point utilization,

path length, and curvature. The lateral tracking error increased as the resolution

of octree nodes decreased. At a resolution of 0.20 m, the maximum average

lateral tracking error was 0.079 m, indicating strong path trackability. This

method exhibits tremendous potential for processing large-scale 3D point

cloud data and enhancing path planning efficiency, providing a valuable

technical reference for the real-time autonomous navigation of mobile robots

in complex orchard environments.
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1 Introduction

China currently ranks first in the world in both planting area

and production of orchards. The fruit industry plays a pivotal role

in China’s agricultural economy, ranking just behind grain and

vegetables (National Bureau of Statistics of China, 2022). However,

the late development of intelligent agricultural machinery in

Chinese orchards has resulted in insufficient operational efficiency

to address labor shortages and meet the demand for high-quality

fruit products (Liu et al., 2022; Zhao et al., 2023). Current

application trends show that autonomous navigation technology

of orchard mobile robots possesses the capabilities of autonomous

perception, positioning, navigation, and decision-making (Jin et al.,

2021; Yuan et al., 2023). These robots can autonomously select

paths based on the surrounding environment and task

requirements, providing technical support for tasks such as

unmanned pollination (Gao et al., 2023), weeding (Nørremark

et al., 2008; Adrien et al., 2018), spraying (Jones et al., 2019), and

fruit harvesting (Xiong et al., 2018). Therefore, introducing

intelligent robot autonomous navigation technology is an effective

method to improve the production and management efficiency of

orchards and address the aforementioned challenges (Dou et

al., 2024).

Autonomous navigation technology enables robots to perceive

their environment, build maps, and plan motion in dynamic

environments using onboard sensors with minimal or no human

intervention, allowing for autonomous movement (Ravankar et al.,

2018; Li and Qiu, 2021). The three related aspects are introduced in

detail in Figure 1. In orchard environments, widely used navigation

methods currently include Global Navigation Satellite System
Frontiers in Plant Science 02
(GNSS), Inertial Navigation System (INS), visual sensors, and

LiDAR. Table 1 provides a comparison of state-of-the-art orchard

mobile robot autonomous navigation platforms, highlighting their

features, advantages, and limitations.

In recent years, navigation systems for orchard environments

have seen significant advancements. Yue et al. (2024) developed a

GNSS-based automatic navigation driving system specifically for

tracked orchard sprayers. They designed a motion model for the

sprayer and integrated it with a linear path tracking control method,

which uses position and heading deviations as state variables. The

tracked platform demonstrated robust automatic navigation

capabilities, achieving a maximum straight-line path tracking

accuracy of 5.6 cm with a standard deviation of 2.8 cm at an

optimal speed of 1.0 m/s. This system effectively meets the

requirements for automatic spraying operations in orchards.

However, Global Navigation Satellite System (GNSS) signals in

orchard environments are easily obstructed by tree canopies,

resulting in weakened or even distorted positioning signals.

Zhang et al. (2022) used a loosely coupled method to integrate

the satellite navigation system with the INS. The system corrected

INS errors in real-time using the Kalman error filtering algorithm,

based on position and heading angle measurements. Compared

with a standalone satellite navigation system, the accuracy of the

satellite/Inertial Measurement Unit (IMU) integrated navigation

system was significantly improved. However, GNSS+IMU can only

provide geometric positions and cannot perceive semantic

information the categories of surrounding objects, which is not

conducive to the interaction between robots and the environment.

Machine vision technology has been widely researched

and applied in the field of autonomous navigation for orchard
FIGURE 1

The components of autonomous navigation technology.
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robotsdue to its advantages, e.g., low hardware cost and

rich visual information (Yasuda et al., 2020; Alkendi et al., 2021).

Han et al. (2021) used the U-Net semantic segmentation algorithm

to segment, extract, and fit the navigation path between fruit tree

rows, effectively eliminating problems, e.g., complex backgrounds

and high noise interference in orchard images. Unlike most studies

to date that utilize ground structures e.g., tree trunks and canopies

in orchards, Peng et al. (2022) developed a navigation system using

a depth camera and odometry data to autonomously navigate

through vineyard rows without relying on GNSS or artificial

landmarks. The system includes a robust row-end detection

method, exploiting drastic changes in the statistical distribution of

point cloud data sensed by the depth camera. By building a local

environment map and utilizing a reactive path tracker, the system

enabled safe row-end turning and entry into the next row. This

method demonstrated its effectiveness in handling row-end

transitions, with a mean row-end detection error of 0.54 m.

Although vision-based navigation methods are cost-effective and

provide a wealth of navigation information, considering the climate

in orchards and the occlusion caused by dense canopies, the impact

of frequent light changes on visual sensors cannot be overlooked.

Compared to GNSS and vision-based navigation methods,

LiDAR has advantages, e.g., long measurement distance, high

accuracy, and rich distance information (Blok et al., 2018; Liu

et al., 2021). Baltazar et al. (2023) developed a 2D LiDAR-based
Frontiers in Plant Science 03
navigation system integrated with GNSS for continuous canopy

sensing and real-time spray adjustment in orchards. The system

detects canopy boundaries, calculates tree volumes, and

georeferences canopy data along the sprayer’s trajectory. It

demonstrated up to 79% reduction in spray volume compared to

traditional methods, ensuring precise and efficient spraying

operations. However, the system relies on 2D LiDAR, which is

limited in perceiving occluded trunks and dense canopy structures

in more complex 3D orchard environments. Addressing these

limitations, Wang et al. (2022) utilized 3D LiDAR to perceive

environmental information, solving the issue of losing critical

spatial data with 2D LiDAR. Their method achieved high-

precision detection of tree row information and obstacle

perception from multiple directions. Liu et al. (2023) further

improved navigation path smoothness by combining dual-source

point cloud data from 3D LiDAR at high and low frequencies,

enabling complementary fusion of path planning.

Compared to 2D LiDAR, 3D LiDAR has more comprehensive

and accurate environmental perception capabilities in autonomous

navigation, improving navigation accuracy and safety, further

making it more suitable for navigation tasks in complex

environments e.g., orchards (He et al., 2018; Zhang et al., 2019).

Although the orchard point cloud map obtained by 3D LiDAR

scanning can finely depict the 3D structure of the orchard, its data

scale is enormous, resulting in requiring not only a large amount of
TABLE 1 Comparison of state-of-the-art focusing on orchard mobile robot autonomous navigation platform.

Author
(Year)

Navigation
Method

Research Scheme Existing Problems

Yu et al. (2024) GNSS
•Developed a tracked orchard sprayer with GNSS
positioning, linear path tracking, and motion model
integration for automatic navigation.

•GNSS signals are susceptible to obstruction in
orchard environments.

Zhang et al. (2022) GNSS + IMU
•Real-time error correction for IMU utilizing the Kalman
error filtering algorithm.

•Lack of semantic information and insufficient
support for finegrained tasks.

Han et al. (2021) Stereo vision camera
•Using U-Net for road segmentation;
•Extracting edge information through scanning method;
•Fit the navigation path based on B-spline curves.

•It is necessary to readjust the network structure
and retrain the model to adapt to new scenarios.
Less portability.

Peng et al. (2022) Depth camera
•Prioritized row-end detection using statistical changes in
depth data to ensure robust navigation under GNSS-
free conditions.

•Susceptible to visual occlusions caused by dense
canopies; accuracy declines with fewer
environmental features at row-ends.

Baltazar et al. (2023) 2D LIDAR
•Used 2D LiDAR to continuously detect canopy edges,
enabling accurate spray path adjustments.

•2D LiDAR perceives limited information and is not
suitable for complex navigation tasks.
•It has not been verified in the real-time
spraying scene.

Wang et al. (2022) 3D LIDAR
•Constructing an orchard environment map using LiDAR.
•Leveraging millimeter-wave radar to aid in obstacle
detection with LiDAR.

•The processing of 3D point cloud data involves
multiple steps and complex methods.

Liu et al. (2023) 3D LIDAR

•Three steps are employed for preprocessing the 3D point
cloud.
•Two methods are utilized to extract inter-row navigation
lines and subsequently perform complementary fusion
on them.

This paper 3D LIDAR

•Aiming at the large-scale complex 3D point cloud in the orchard, this paper uses octree data structure to simplify
the existing processing methods.
•An improved RRT* algorithm is proposed by deeply using the processed octree nodes, which improves the
sampling efficiency and generates shorter and smoother paths.
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storage space but also high computational power. Moreover, for the

application requirements of autonomous navigation, due to the

influence of various factors e.g., scanning angle, occlusions, and

ground weeds during the actual operation process, the point cloud

map contains a large amount of noise points and irrelevant detailed

information, causing unnecessary data redundancy and affecting

the accuracy and real-time performance of the map (Wang et al.,

2018; Yang et al., 2019). In current research on autonomous

navigation of orchard robots, filtering methods are used to

remove noise points, outliers, and abnormal points, and then

sampling methods are used to reduce the data volume.

Subsequently, depending on the requirements, clustering,

segmentation, feature extraction, and plane fitting methods are

chosen to deal with different scenarios (Malavazi et al., 2018; Liu

et al., 2021; Xie et al., 2023; Zhang et al., 2024). However, this

process is very cumbersome. Taking filtering as an example, it

includes different methods e.g., voxel filtering, statistical filtering,

nearest neighbor filtering, Gaussian filtering, and adaptive filtering.

Selecting the appropriate method and ensuring the processing

effectiveness and efficiency is a significant challenge.

To address the aforementioned research problem of processing

large-scale 3D point cloud data in orchards, the octree data

structure has unique advantages in managing and processing

large-scale point cloud data due to its efficient data compression,

precise spatial partitioning, and fast data indexing capabilities.

However, it has not been well applied in the field of autonomous

navigation for mobile robots in orchards. Therefore, this paper

proposes a navigation scheme based on 3D LiDAR, while utilizing

octree to optimize the collected 3D point cloud data of the orchard

and construct an orchard map. Then, based on the generated octree

nodes, an improved RRT* algorithm is proposed to accelerate the

generation of navigation paths. The pure pursuit algorithm is used

to track the navigation path. Finally, field experiments are

conducted to verify the performance of the navigation system.

The innovation proposed in this study primarily manifests in the

following aspects:
Frontiers in Plant Science 04
1. This study introduces the efficient spatial partitioning and

segmentation capabilities of the octree data structure for

processing 3D point cloud data in orchards, thereby

optimizing the workflow for handling such complex data

within the orchard domain.

2. A novel RRT* algorithm enhanced by both octree and an

adaptive step size adjustment strategy is proposed in this

research. By utilizing octree nodes as the foundational units

for tree expansion and carefully examining the relationship

between step size thresholds and node sizes, a significant

improvement in both path generation speed and quality

is achieved.
The subsequent sections of this paper are organized as follows:

Section 2 elaborates on the materials and methods employed in this

study, encompassing hardware tools, software systems, control

principles, and a comprehensive exposition on the characteristics of

the octree data structure and the core framework of the enhanced RRT*

algorithm based on octree. Section 3 delineates the experimental

scenarios and methodologies utilized in this study. Section 4 focuses

on an in-depth analysis of the optimization impacts on 3D point clouds

leveraging octree, along with the evaluation of path generation speed

and quality across varying node resolutions. Sections 5 and 6

encapsulate the significance and constraints of this research, while

outlining prospective directions for future research pursuits.
2 Materials and methods

2.1 Autonomous navigation platform for
orchard mobile robots

The autonomous navigation platform for mobile robots

employed in this study is illustrated in Figure 2. The platform

primarily comprises six components: (1) a 3D LiDAR, (2) an

onboard Real-Time Kinematic Global Navigation Satellite System
FIGURE 2

Orchard mobile robot autonomous navigation platform.
frontiersin.org
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(RTK-GNSS), (3) a mobile chassis, (4) an onboard central

computer, (5) a mobile power supply for Jetson AGX Orin, and

(6) a mobile power supply. Table 2 presents a comprehensive

overview of the working parameters for the key components.

In the software system of the above platform, the Ubuntu 20.04

LTS operating system is utilized on Jetson AGX Orin. The Robot

Operating System (ROS) Noetic version, Ceres non-linear

optimization library, and Point Cloud Library (PCL) are utilized

for further development. The complete control framework of the

above platform is depicted in Figure 3:
Fron
1. The orchard environment is scanned by the LiDAR at a

frequency of 10 Hz to acquire point cloud information,
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further being transmitted to the central computer (Jetson

AGX Orin embedded computing platform) via Ethernet.

Point cloud optimization, path planning and path tracking

are performed on the central computer, in which the

control commands are generated.

2. The control commands are sent to the mobile chassis through

CAN communication. The received control commands are

converted bymobile classis into the required speed commands

for motor operation, ultimately enabling the mobile robot to

achieve autonomous movement.

3. The laptop and the central computer are integrated through

SSH communication to establish a distributed control

framework, facilitating data monitoring and control.
FIGURE 3

Control flow chart of mobile robot.
TABLE 2 Key Components and parameters of orchard mobile robot autonomous navigation platform.

No Name Main Work Parameters Company
Manufacturing

Location

(1) LiDAR

• Lidar Channels: 16
• Measurement Range (m): 0~200
• Velocity Accuracy (cm): ± 3
• Scanning Frequency (Hz): 5,10,20 (optional)
• Vertical Angular Resolution (°): 2
• Horizontal Angular Resolution (°): 0.09,0.18,0.36

Leishen
LIDAR

Shenzhen, China

(2) RTK-GNSS
• Horizontal positioning accuracy in fixed solution: ± 1cm
• Initialization time <10 s
• Data output frequency: 30Hz

QFRTK Shenzhen, China

(3) Motion chassis

• Dimensions (Length× Width× Height):
930mm×699mm×349 mm
• Wheelbase: 498mm
• Maximum Moving Speed: 1.5 m/s
• Maximum Off-road Angle: 30°

AGILE.X Shenzhen, China

(4)
Jetson

AGX Orin

• AI Performance: 275 TOPS
• GPU: 2048-core NVIDIA Ampere architecture GPU with 64 Tensor
Cores
• CPU: 12-core Arm® Cortex®-A78AE v8.2 64-bit CPU 3MB
L2 + 6MB L3
• Memory: 64GB 256-bit LPDDR5 204.8GB/s

NVIDIA Santa Clara, California, USA
frontiersin.org
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2.2 Octree-based optimization method for
3D point cloud in orchards

As a multi-level data structure based on spatial partitioning,

octree efficiently organizes orchard 3D point cloud data by

recursively dividing the 3D space into eight equal sub-cubes, also

referred to as leaf nodes (Huang et al., 2020; Que et al., 2021; Fu

et al., 2022; Wang, 2023). Specifically, the octree algorithm

considers the entire 3D point cloud space as the root node and

constructs eight child nodes from top to bottom by setting

appropriate recursion depth and threshold values. If a node still

contains point cloud data, it is further subdivided into eight child

nodes until the maximum recursion depth or minimum node size is

attained. Figure 4 illustrates the detailed partitioning process and

provides a schematic representation of the octree algorithm.

In practical applications, due to the dynamic changes in the

orchard environment and the presence of noise, sometimes a node

may contain point cloud data and sometimes not. Therefore,
Frontiers in Plant Science 06
nodes within the entire point cloud space can have three

possible states: free, unknown, and occupied. To explicitly

express the “unknown” state, a floating-point number between

(0, 1) is typically used to represent the probability of a node being

occupied. A value of 0.5 indicates that the node’s state is

“uncertain”, with higher values suggesting a greater likelihood of

the node containing point cloud data, and lower values indicating

a lower likelihood. According to the derivation of octree theory

(Wurm et al., 2010; Hornung et al., 2013), assuming that the

observed data at times t=1, 2,…, T are d1, d2,…, dT, the

information recorded by the nth leaf node is:

P(njd1 :T) = 1 +
1 − P(njdT)
P(njdT)

1 − P(njd1 :T−1)
P(njd1 :T−1)

P(n)
1 − P(n)

� �−1
(1)

In the Equation 1:
• P(njd1 :T ): The posterior probability of the nth leaf node

being occupied given the observed data d1 to dT.
 
(a) Schematic diagram of the division of octree algorithm 

 

(b) Flowchart of octree algorithm partition 

FIGURE 4

Schematic diagram and partition process of octree algorithm. (A) Schematic diagram of the division of octree algorithm. (B) Flowchart of octree
algorithm partition.
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Fron
• P(njdT ): The posterior probability of the nth leaf node being
occupied given the observed data dT at the current time T.

• P(njd1 :T−1): The posterior probability of the nth leaf node

being occupied given the observed data d1 to dT-1.

• P(n): The prior probability of the nth leaf node being

occupied, i.e., the initial estimate of the nth node being

occupied without any observed data.
This formula is essentially an application of Bayes’ theorem. It

tells us that given the observed data dT at the current time and the

posterior probability P(njd1 :T−1) from the previous time, we can

calculate the updated posterior probability P(njd1 :T ) of node n at

time T. By recursively applying this formula at each time step, we

can continuously fuse new observed data and update the occupancy

probability of each leaf node in the octree, thereby achieving real-

time modeling of the orchard environment.

In order to map the probabilities between 0 and 1 to the range of

real numbers from negative infinity to positive infinity, allowing

probability values to be linearly combined and compared, the logit

transformation is used. The logit transformation is a mathematical

transformation that converts probabilities into log-odds, commonly

used in modeling and analysis of binary classification problems.

Equation 2 is the expression for the logit transformation:

a = logit(P) = log(
P

1 − P
) (2)

a is the log-odds, which refers to the natural logarithm of the

ratio of the probability of an event occurring to the probability of it

not occurring. If L represents the log-odds of each leaf node, the

probability update formula after the logit transformation becomes:

L(njd1 :T ) = L(njd1 :T−1) + L(njdT ) (3)

P = logit−1(a) =
1

1 + e−a
(4)

From Equations 3 and 4, it is evident that whenever the octree

information needs to be updated, it is only necessary to add new

information and then convert it back to the original probability.

Through this “divide and conquer” strategy, the octree can

adaptively refine the dense point cloud regions in the orchard

while maintaining a lower resolution for sparse point cloud

regions. This approach greatly reduces the amount of point cloud

data while retaining important environmental features such as tree

morphology and trellis structures in the orchard.

To utilize the spatial partitioning characteristics of the octree for

removing ground weeds, an appropriate height threshold must be

set based on the characteristics of the orchard environment. This

threshold should be slightly higher than the average height of the

road surface but not so high that it misclassifies the point cloud data

of trees and trellis structures as weeds. During the construction of

the octree, the height values of the point cloud data contained

within each octree node are checked. If the heights of all points

within the node fall within the aforementioned range, the node is

considered to satisfy the road surface characteristics, and the node

and its child nodes are retained; otherwise, it is classified as ground

weeds and removed. By employing this method, the octree can
tiers in Plant Science 07
effectively retain road surface information while removing ground

weeds, providing more accurate and reliable environmental

information for autonomous navigation and operation tasks.
2.3 Path planning method of improved
RRT* algorithm based on octree

The Rapidly-exploring Random Tree (RRT) family of algorithms

employs random sampling to expand search trees, effectively

addressing path planning challenges in high-dimensional spaces.

They exhibit characteristics such as fast path generation, easy

extensibility, and probabilistic completeness, making them widely

used in robot motion planning and autonomous driving (Pandian

and Noel, 2020; Zhang et al., 2020; Yu et al., 2024). The RRT*

algorithm introduces the process of re-selecting parent nodes and

rewiring based on the traditional RRT algorithm, optimizing path

quality and asymptotic optimality to a certain extent, albeit at the cost

of increased computational complexity.

While orchard inter-row spaces exhibit a certain degree of

regularity, deterministic path-planning methods may lack

flexibility in addressing real-world uncertainties, such as obstacles,

irregular tree arrangements, and dynamic terrain changes.

Therefore, this paper proposes an improved RRT* algorithm that

leverages the octree-processed point cloud map for global path

planning. The use of random sampling allows this method to

flexibly handle the complex environmental features of orchards,

while the octree’s spatial partitioning significantly enhances

sampling efficiency by reducing unnecessary sample points. This

method integrates an adaptive step-size adjustment strategy to

balance sampling precision and path-planning speed, making it

particularly suitable for large-scale 3D orchard environments (as

shown in Figure 5). The algorithm mainly consists of the following

four steps:
(1) Initialization: Defining the three-dimensional space,

starting point, and target point. Choosing an appropriate

node resolution based on the size of the environment and

the distribution of obstacles. Creating an octree and

inserting the starting point as the root node.

(2) Expansion: Randomly selecting a node from the octree as

the expansion node. Within the octree node where the

expansion node is located, randomly sampling a new

position. Utilize the efficient query feature of the octree to

check whether the new position is inside an obstacle. If it is,

discard the position and resample. Find the node nearest to

the new position in the octree as the parent node. Create a

new node and connect it to the parent node while inserting

it into the octree.

(3) Optimization: Performing a neighborhood search by

leveraging the spatial partitioning property of the octree

to search only the nodes adjacent to the octree node where

the new node is located, instead of searching the entire tree.

Reducing the search scope. Attempting to connect the new

node to each neighboring node. Updating the parent node
frontiersin.org
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of the new node if the path cost is lower after

the connection.

(4) Path Extraction: Checking if the distance between the new

node and the target point is smaller than a set threshold; if

so, considering a feasible path to be found, and terminating

the algorithm. Terminating the algorithm if the maximum

number of iterations or other termination conditions are

reached. Backtracking from the target point along the

parent node pointers to the starting point. Using the

sequence of backtracked nodes as the final path.
When using octree nodes as the unit nodes of the search tree in

the RRT* algorithm, the expansion process is shown in Figure 6. To

balance the octree resolution and the step size of the RRT*

algorithm, this method introduces an adaptive step size

adjustment strategy. The pseudocode is shown as Figure 7. When

the size of an octree node is larger than a preset step size threshold,

the node center is directly used as the new node position;

conversely, when the node size is less than or equal to the

threshold, a new node position is randomly sampled within a

range centered at the node center with a radius equal to the step

size. This allows for appropriately increasing the step size in regions

with lower octree resolution to accelerate tree expansion, while

maintaining the original step size in regions with higher resolution

to ensure path refinement.

By combining the above-mentioned octree sampling strategy

with adaptive step size adjustment, this method inherits the

probabilistic completeness and asymptotic optimality of the RRT*

algorithm while fully utilizing the hierarchical structure and

neighborhood information of the octree. This allows for more

effective coverage and exploration of the entire space, reducing

redundant and unnecessary sampling, and simultaneously

generating shorter and smoother paths.
FIGURE 6

Schematic diagram of the expansion process of the improved RRT* algorithm based on octree. Qinit, starting point; Qgoal, target point; Qrand, random
sampling point; Qnew, new node; Qnearest, original parent node; Qnear_min, re-selected parent node. In the figure, the red dashed circle represents the
defined radius range for finding all nearby nodes Qnear. The black solid line represents the original path, and the red solid line represents the path
after rewire.
FIGURE 5

Flowchart of the improved RRT* algorithm based on octree.
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2.4 Path tracking

Mobile robots in orchards usually travel at low speeds, and the path

curvature generally does not change significantly. The mobile robot’s

drive-by-wire chassis used in this study satisfies the differential drive

kinematics model, as shown in Figure 8. Therefore, we consider using a

simple and efficient pure pursuit algorithm for path tracking of the

optimized path. In the Figure 8, the red dashed line represents

the target path. At the look-ahead distance Ld on the target path, the

current tracking point M is selected. The current robot’s driving path

can be approximately considered as the circular arc corresponding to

the chord Ld, where the radius R is the current turning radius. Based on

trigonometric functions, the relationship between the look-ahead

distance and the turning radius R is derived as follows:

Ld
sin 2a

=
R

cosa
(5)

R =
Ld

2 sina
(6)

The above Equations 5 and 6 indicates that for mobile robots,

the current linear velocity at a given moment is known, and it is

only necessary to solve for the heading angle d required for the

robot to turn. According to the trigonometric function relation, the

following formula can be obtained:
Frontiers in Plant Science 09
tan d =
L
R

(7)

Substituting Equation 6 into Equation 7 and introducing the

time dimension, the expression of the control quantity d is obtained
as follows:

d (t) = tan−1
2L sin (a(t))

Ld

� �
(8)
The ultimate controlled variable of the pure pursuit algorithm is

the steering angle d. However, for practical applications, it is

essential to understand the parameters that require adjustment.

From Equation 8, it is evident that the primary factor influencing

the control variable d is the selection of the look-ahead distance Ld.

To better comprehend the impact of the look-ahead distance on the

pure pursuit algorithm controller, the curvature of the

corresponding circle can be analyzed. Based on trigonometric

relationships, the following equation can be derived:

sina =
e
Ld

(9)

In the Equation 9, e represents the lateral deviation at the

current moment. Substituting Equation 9 into Equation 6 yields the

curvature of the curvature circle:
FIGURE 7

Pseudocode for adaptive step-size adjustment algorithm.
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K =
1
R
=

2

(Ld)
2 e (10)

As such, it can be inferred that the larger the Ld, the smaller the

curvature, resulting in smoother robot adjustments but potentially

leading to delayed responses. Conversely, a smaller Ld yields more

precise tracking but may also introduce oscillations.
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3 Experiment design

The experiments in this study were conducted in a pear orchard at

the Jiangsu Academy of Agricultural Sciences, located in the Xuanwu

district, Nanjing, Jiangsu province, China (N: 118°52’15.42”, E: 118°

52’15.42”). As shown in Figure 9, the experiments took place on April
FIGURE 9

“Y”-shaped trellis orchard.
FIGURE 8

Schematic diagram of pure tracking algorithm. In the figure, P1 denotes the initial pose of the robot; P1’ indicates the pose during turning;
P2 represents the target pose of the robot; Point M signifies the lookahead position; Ld denotes the lookahead distance; the red dashed line indicates
the target path; the blue dashed line represents the approximate path; R stands for the current turning radius; L is the distance traveled by the robot
to reach the turning point; e denotes the lateral deviation at the current moment; a represents the required heading angle at the current moment;
d signifies the heading angle of the robot when reaching the turning point.
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14th, 2024. The orchard employs a standard Y-shaped trellis system,

with tree rows measuring 30.0 m in length, a row spacing of 6.0 m, and

a plant spacing of approximately 2.9 m. Tree heights range between

2.5 m and 2.8 m, and the widths are consistent across the orchard. The

trees are relatively uniform in size, and the rows are arranged in straight

lines. The road surface between the rows is generally level, meeting the

experimental requirements of this study.

To facilitate the operation and real-time monitoring of the

robot’s performance, an SSH-based communication framework was

established between a laptop and the embedded computing

platform, enabling distributed remote control. During the

experiment, the scanning distance of the LiDAR was limited to

adequately cover the fruit trees on both sides of the current row.

This adjustment aimed to reduce noise interference and improve

processing speed. The specific experimental steps are as follows:
Fron
1. After establishing equipment connections, the LiDAR-

scanned point cloud data from each frame was transferred

to the octree for optimization. The processed point cloud data

was then visualized in RVIZ. In the experimental scenario, the

height of the weeds surrounding the fruit trees typically ranged

between 0.18 and 0.25 m. To preserve the structural integrity

of the fruit trees, a height threshold of 0.20 m was applied

during the experiment to filter out weeds.

2. To evaluate the practical performance of the improved

RRT* algorithm based on octree, three different octree

node resolutions were selected. During the experiment,

the robot was positioned at the starting point of the

centerline of a tree row. Both the improved RRT*

algorithm and the traditional RRT* algorithm were tested

for path planning within a single row. Each algorithm was

run 30 times, and the average results were calculated. As the

RRT* algorithm added new nodes during each iteration, the

coordinates of the newly added nodes were published using

the “Publisher” feature of ROS with built-in message types.

These published path point messages were subscribed to

and stored by a new ROS node via the “Subscriber” for

subsequent analysis.

3. The experimental orchard had an inter-row spacing of

approximately 6.0 m, with minimal RTK signal

interference from canopy occlusion. During the

experiment, the real-time pose information provided by

the RTK positioning module was used to track the mobile

robot’s actual position. The robot’s lateral tracking error at

different positions was then calculated based on this data.
4 Results

4.1 Optimization experiment of 3D point
cloud map

The orchard map optimized by octree is illustrated in Figure 10,

which also illustrates the point cloud map after height rendering is

disabled for better annotation and observation. The original point
tiers in Plant Science 11
cloud contains approximately 265,000 points per frame. After

optimization using octree, each frame comprises about 62,752

points. Compared to the original point cloud map, the number of

points in the octree-optimized point cloud has decreased by

approximately 76.32%. As shown in Figures 10A–C, the fruit tree

shape and the “Y” shaped trellis structure can be clearly observed,

indicating that this method can effectively retain the important

environmental features of the orchard while reducing the number of

point clouds, which is beneficial for navigation and other

operational tasks. The weed filtering results are presented in

Figure 11. It is evident that the weed removal effect is significant,

and while filtering the weed nodes, it also preserves relatively

complete road surface information, providing sufficient road

surface nodes for subsequent path planning and expansion.
4.2 Path planning and path
tracking experiment

Table 3 presents the average performance metrics of the

improved RRT* algorithm based on octree compared to the

traditional RRT* algorithm. The results indicate that the octree-

based improved RRT* algorithm outperforms the traditional

algorithm across all evaluated aspects. Specifically, the average

path generation time increased by over 44.98%, the average

sampling point utilization rate improved by more than 19.02

percentage points, the average path length decreased by over

9.20%, and the average curvature reduced by more than 51.16%.

Additionally, as the octree node resolution decreases, the path

response speed improves, and the sampling point utilization rate

increases. Conversely, higher octree node resolutions result in more

accurate path planning but come at the expense of increased

computation time and a slight decrease in sampling point

utilization efficiency.

Building on prior research conducted in similar orchard

environments, a driving speed of 1.0 m/s was identified as the

optimal speed to achieve high navigation accuracy and stability (Xia

et al., 2023). This speed enables the robot to strike an ideal balance

between steering responsiveness and trajectory tracking while

minimizing lateral tracking errors. As shown in Figure 12, field

tests from previous studies demonstrated that, at 1.0 m/s, the

navigation system requires fewer heading adjustments and

performs more smoothly on both straight and curved paths.

Given the comparable experimental setup and conditions in this

study, a speed of 1.0 m/s was adopted for all navigation tests.

The lateral tracking error of the robot, derived from real-time

tracking position data provided by RTK, is illustrated in Figure 13. To

comprehensively evaluate the tracking performance, the maximum

value, average value, and standard deviation of the lateral tracking

error were calculated, with the results summarized in Table 4.

When the octree node resolution was set to 0.20 m, the robot’s

lateral tracking error exhibited a maximum value of 0.208 m, an

average value of 0.079 m, and a standard deviation of 0.060 m. At a

resolution of 0.10 m, the maximum lateral tracking error decreased

to 0.160 m, the average value to 0.059 m, and the standard deviation

to 0.040 m. Further increasing the resolution to 0.05 m reduced the
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a The orchard before weed filtering                                                              b The weed filtering effect (Labeled) 

FIGURE 11

The weed filtering effect based on the octree data structure. (A) The orchard before weed filtering. (B) The weed filtering effect (Labeled).
a Top view (Unlabeled) 

b Top view (Labeled) 

c Front view (Unlabeled)                                                                            d  Front view (Labeled) 

FIGURE 10

Orchard map optimized by octree 3D point cloud. (A) Top view (Unlabeled). (B) Top view (Labeled). (C) Front view (Unlabeled). (D) Front view (Labeled).
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FIGURE 12

Navigation tests at different speeds (Xia et al., 2023).
TABLE 3 Comparison of algorithm performance.

Algorithm Average Path
Generation Time (s)

Average Utilization Rate of
Sampling Points (%)

Average Path
Length (m)

Average curvature
of path (m-1)

RRT* 14.05 11.37 37.03 0.86

Informed-RRT* 7.02 20.52 33.86 0.65

Improved RRT*
based on octree

Resolution:0.20m 4.26 45.21 33.62 0.42

Resolution:0.10m 5.91 37.22 32.48 0.29

Resolution:0.05m 7.73 30.39 30.94 0.17
F
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maximum lateral tracking error to 0.105 m, the average value to

0.048 m, and the standard deviation to 0.027 m.

Overall, the robot’s tracking performance on the path improves

as the resolution of the octree node increases. The reason is

consistent with the previous analysis. When the resolution of the

octree node increases, the generated path becomes more accurate

and smoother, which facilitates the robot’s tracking operation. The

drawback remains that it sacrifices planning efficiency and time to a

certain extent.
5 Discussion

This study introduces a method leveraging the octree data

structure to optimize 3D point cloud space, effectively addressing

the challenges of processing large-scale 3D LiDARmaps in orchards

with low computational efficiency. The experimental results

demonstrate that the amount of point cloud data optimized using

this method has decreased by 76.32%, effectively reducing the

data scale.

To tackle the problem of low sampling efficiency of RRT in the

inter-row space of orchards, this paper employs octree nodes as the
Frontiers in Plant Science 14
unit nodes for the expansion of the random tree in the RRT

algorithm and introduces an adaptive step size adjustment

strategy to balance the resolution of octree nodes and the step

size of the RRT algorithm, thereby generating a global path that the

robot can follow. Experimental results under three resolutions

(0.2 m, 0.1 m, and 0.05 m) show that this method significantly

improves path planning performance compared to the traditional

RRT algorithm. It reduces average path length by 9.20% and

curvature by 51.16%, demonstrating enhanced path smoothness.

Additionally, it increases sampling point utilization by 19.02

percentage points and improves planning efficiency with a 44.98%

increase in path generation speed.

In comparison to existing methods, our approach demonstrates

significant advantages in computational efficiency and adaptability.

For example, Wang et al. (2022) used 3D LiDAR for high-precision

obstacle detection and environmental map construction, but their

approach struggled with real-time performance due to the

computational burden of processing large-scale point cloud data.

Similarly, Liu et al. (2023) improved path smoothness through dual-

source LiDAR point clouds, focusing on combining high-frequency

and low-frequency data. In contrast, our octree-based method

prioritizes a balance between computational efficiency and path

accuracy, making it more suitable for dynamic orchard

environments. Compared to Han et al. (2021), which relied on

visual navigation and required retraining for different orchard

scenarios, our approach achieves robust performance across

varying environmental conditions without the need for frequent

algorithm updates.

If GNSS signals are subjected to dense canopy conditions,

significant degradation due to multipath effects may occur,

potentially leading to localization errors of up to 0.11 m.

Furthermore, while the octree-based RRT* algorithm improves path
FIGURE 13

Lateral tracking errors.
TABLE 4 Comparison of lateral tracking errors.

Octree
Resolution

(m)

Maximum
Value
(m)

Average
Value
(m)

Standard
Deviation

(m)

0.20 0.208 0.079 0.060

0.10 0.160 0.059 0.040

0.05 0.105 0.048 0.027
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planning efficiency, it could face challenges in handling dynamic

obstacles, particularly during abrupt row-end turns. If irregular tree

arrangements are present, the adaptive step size adjustment strategy

might occasionally fail to ensure optimal path smoothness.

Additionally, if the robot’s embedded hardware has computational

limitations, delays in processing large-scale point cloud data could

arise, potentially impacting real-time navigation performance. Future

research will address these limitations by incorporating multi-sensor

fusion techniques, such as integrating LiDAR data with semantic

camera information, to improve obstacle detection and path

planning in complex orchard environments. Additionally, we plan to

optimize the computational framework and improve the adaptability

of the step size adjustment strategy to overcome these challenges and

ensure more robust and efficient navigation.
6 Conclusions

This paper proposes an autonomous navigation method for

mobile robots in orchard environments based on the octree data

structure and an improved RRT algorithm. By utilizing octree to

optimize the 3D point cloud space, the data scale is effectively

reduced. Through the introduction of octree nodes and an adaptive

step size adjustment strategy, the sampling efficiency and path

quality of the RRT algorithm in the inter-row space of orchards

are enhanced. The experimental results demonstrate that this

method can provide a technical reference for the autonomous

navigation of mobile robots in orchards.

This research highlights the potential of the octree data

structure to optimize 3D point cloud space and enhance path

planning efficiency, contributing to the advancement of

autonomous navigation technology for mobile robots in orchard

environments. Furthermore, as different orchard environments

exhibit unique characteristics, other researchers can adopt the

ideas from this study to design experiments tailored to their

specific conditions, thereby selecting optimal operational

parameters. The structural characteristics of the octree not only

enhance the current navigation scheme but also offer significant

potential for integration with other advanced techniques such as

heuristic search and pruning strategies. This scalability underscores

its applicability across diverse and dynamic orchard scenarios,

paving the way for broader adoption in autonomous navigation

research. Future research can explore additional octree-based

optimization techniques, such as heuristic search, pruning

strategies, bidirectional search, and collision detection, to further

improve algorithm performance and enable its application in more

complex and dynamic orchard environments.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Frontiers in Plant Science 15
Author contributions

HL: Conceptualization, Data curation, Methodology, Software,

Writing – original draft. KH: Data curation, Formal analysis,

Methodology, Writing – review & editing. YS: Data curation,

Supervision, Writing – review & editing. XHL: Investigation,

Methodology, Supervision, Writing – review & editing. QY:

Investigation, Writing – review & editing. JZ: Resources,

Supervision, Writing – review & editing. XLL: Funding acquisition,

Resources, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by China Agriculture Research System of MOF and

MARA (grant numbers CARS-28-21), National Natural Science

Foundation of China (grant numbers 32201680), National Science

and Technology Development Program of China (grant numbers

NK2022160104), National Key Research and Development Program

of China (grant numbers 2022YFD2001400), Wuxi Science and

Technology Development Fund (grant numbers N20221003).
Acknowledgments

The authors would like to express their gratitude to their schools

and institutions for the support provided throughout this project. We

are sincerely thankful for all the assistance received. Additionally, we

extend our appreciation to the editor and reviewers for their valuable

feedback and contributions to improving this paper.
Conflict of interest

Author JZ was employed by Wuxi YTK Agricultural Machinery

Technology CO., Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1510683
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1510683
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Plant Science 16
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Adrien, D. P., Emile, L. F., Viviane, C., Thierry, S., and Stavros, V. (2018). Tree
detection with low-cost three-dimensional sensors for autonomous navigation in
orchards. IEEE Robot. Autom. Lett. 3, 3876–3883. doi: 10.1109/LRA.2018.2857005

Alkendi, Y., Seneviratne, L., and Zweiri, Y. (2021). State of the art in vision-based
localization techniques for autonomous navigation systems. IEEE. doi: 10.1109/
ACCESS.2021.3082778

Baltazar, A. R., Santos, F. N. D., De Sousa, M. L., Moreira, A. P., and Cunha, J. B.
(2023). 2D liDAR-based system for canopy sensing in smart spraying applications.
IEEE. doi: 10.1109/ACCESS.2023.3271973

Blok, P. M., Suh, H. K., van Boheemen, K., Kim, H. J., and Kim, G. (2018).
Autonomous in-row navigation of an orchard robot with a 2D LIDAR scanner and
particle filter with a laser-beam model. J. Institute Control Robotics Syst. 24, 726–735.
doi: 10.5302/J.ICROS.2018.0078

Dou, H. J., Chen, Z. Y., Zhai, C. Y., Zou, W., Song, J., Feng, F., et al. (2024). Research
progress on autonomous navigation technology for orchard intelligent equipment.
Trans. Chin. Soc Agric. Machinery 55, 1–25. doi: 10.6041/j.issn.1000-1298.2024.04.001

Fu, C. Y., Li, G., Song, R., Gao, W., and Liu, S. (2022). Octattention: Octree-based
large-scale contexts model for point cloud compression. Proc. AAAI Conf. Artif. Intell.
36, 625–633. doi: 10.1609/aaai.v36i1.19942

Gao, C. Q., He, L. L., Fang, W. T., Wu, Z. C., Jiang, H. H., Li, R., et al. (2023). A novel
pollination robot for kiwifruit flower based on preferential flowers selection and precisely
target. Comput. Electron. Agric. 207, 107762. doi: 10.1016/j.compag.2023.107762

Han, Z. H., Li, J., Yuan, Y. W., Fang, X. F., Zhao, B., and Zhu, L. C. (2021). Path
recognition of orchard visual navigation based onU-Net.Nongye Jixie Xuebao/Transactions
Chin. Soc. Agric. Machinery 52, 30-39. doi: 10.6041/j.issn.1000-1298.2021.01.004

He, Y., Jiang, H., Fang, H., Wang, Y., and Liu, L. Y. (2018). Research progress of
intelligent obstacle detection methods of vehicles and their application on agriculture.
Transactions of the Chinese Society of Agricultural Engineering 34, 21-32. doi: 10.11975/
j.issn.1002-6819.2018.09.003

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. (2013).
OctoMap: An efficient probabilistic 3D mapping framework based on octrees.
Autonomous robots 34, 189–206. doi: 10.1007/s10514-012-9321-0

Huang, L., Wang, S., Wong, K., Liu, J., and Urtasun, R. (2020). Octsqueeze: Octree-
structured entropy model for lidar compression. Proc. IEEE/CVF Conf. Comput. Vision
Pattern recognition, 1313–1323. doi: 10.1109/CVPR42600.2020

Jin, Y. C., Liu, J. Z., Xu, Z. J., Yuan, S. Q., Li, P. P., and Wang, J. Z. (2021).
Development status and trend of agricultural robot technology. Jin, Yucheng, Jizhan
Liu, Zhujie Xu, Shouqi Yuan, Pingping Li and Jizhang Wang. Int. J. Agric. Biol. Eng. 14,
1–19. doi: 10.25165/j.ijabe.20211404.6821

Jones, M. H., Bell, J., Dredge, D., Seabright, M., Scarfe, A., Duke, M., et al. (2019).
Design and testing of a heavy-duty platform for autonomous navigation in kiwifruit
orchards. Biosyst. Eng. 187, 129–146. doi: 10.1016/j.biosystemseng.2019.08.019

Li, X., and Qiu, Q. (2021). “Autonomous navigation for orchard mobile robots: A
rough review,” in 2021 36th Youth Academic Annual Conference of Chinese Association
of Automation (YAC) (Nanchang, China: IEEE), 552–557.

Liu, H., Duan, Y. P., and Shen, Y. (2023). Real-time navigation method of orchard
mobile robot based on laser radar dual source information fusion. Trans. Chin. Soc.
Agric. Machinery 54, 249–258. doi: 10.6041/j.issn.1000-1298.2023.08.024

Liu, C., Gong, L., Yuan, J., and Li, Y. (2022). Current status and development trends
of agricultural robots. Trans. Chin. Soc. Agric. machinery 53, 1–22. doi: 10.6041/
j.issn.1000-1298.2022.07.001

Liu, W., He, X., Liu, Y., Wu, Z., Yuan, C., Liu, L., et al. (2021). Navigation method
between rows for orchard based on 3D LiDAR. Trans. Chin. Soc Agric. Eng. 37, 165–
174. doi: 10.11975/j.issn.1002-6819.2021.09.019

Malavazi, F. B., Guyonneau, R., Fasquel, J.-B., Lagrange, S., and Mercier, F. (2018).
LiDAR-only based navigation algorithm for an autonomous agricultural robot.
Computers and electronics in agriculture. Computers and Electronics in Agriculture
154, 71–79. doi: 10.1016/j.compag.2018.08.034

National Bureau of Statistics of China, (2022). China statistical yearbook (Beijing,
China: China Statistics Press). Available at: https://www.stats.gov.cn/sj/ndsj/2022/
indexch.htm (Accessed June 17, 2024).

Nørremark, M., Griepentrog, H. W., Nielsen, J., and Søgaard, H. T. (2008). The
development and assessment of the accuracy of an autonomous GPS-based system for
intra-row mechanical weed control in row crops. Biosyst. Eng. 101, 396–410.
doi: 10.1016/j.biosystemseng.2008.09.007
Pandian, B. J., and Noel, M. M. (2020). Control of constrained high dimensional
nonlinear liquid level processes using a novel neural network based Rapidly exploring
Random Tree algorithm. Appl. Soft Computing 96, 106709. doi: 10.1016/
j.asoc.2020.106709

Peng, C., Fei, Z. H., and Vougioukas, S. G. (2022). “Depth camera based row-end
detection and headland manuvering in orchard navigation without GNSS,” in 2022
30th Mediterranean Conference on control and Automation (MED) (IEEE), 538–544.
doi: 10.1109/MED54222.2022.9837270

Que, Z., Lu, G., and Xu, D. (2021). “Voxelcontext-net: An octree based framework for
point cloud compression,” in 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). (Nashville, TN, USA: IEEE), 6042–6051.

Ravankar, A., Ravankar, A. A., Kobayashi, Y., Hoshino, Y., and Peng, C. C. (2018).
Path smoothing techniques in robot navigation: State-of-the-art, current and future
challenges. Sensors 18, 3170. doi: 10.3390/s18093170

Wang, P.-S. (2023). Octformer: Octree-based transformers for 3d point clouds. ACM
Trans. Graphics (TOG) 42, 1–11. doi: 10.1145/3592131

Wang, H., Luo, T., and Lu, P. (2018). Development of the lidar applications in
unmanned vehicles and its key technology analysis. Laser Infrared 48, 1458–1467.
doi: 10.3969/j.issn.1001-5078.2018.12.002

Wang, S., Song, J., Qi, P., Yuan, C., Wu, H., Zhang, L., et al. (2022). Design and
development of orchard autonomous navigation spray system. Front. Plant Sci. 13.
doi: 10.3389/fpls.2022.960686

Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., and Burgard, W. (2010).
“OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic
systems,” in Proceedings of the ICRA 2010 Workshop on Best Practice in 3D Perception
and Modeling for Mobile Manipulation. (Anchorage, AK, USA: IEEE), 3.

Xia, Y., Lei, X. H., Pan, J., Chen, L. W., Zhang,, Zhang, Z., et al. (2023). Research on
orchard navigation method based on fusion of 3D SLAM and point cloud positioning.
Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1207742

Xie, B., Jin, Y., Faheem, M., Gao, W., Liu, J., Jiang, H., et al. (2023). Research progress
of autonomous navigation technology for multi-agricultural scenes. Comput. Electron.
Agric. 211, 107963. doi: 10.1016/j.compag.2023.107963

Xiong, J., He, Z., Lin, R., Liu, Z., Bu, R., Yang, Z., et al. (2018). Visual positioning
technology of picking robots for dynamic litchi clusters with disturbance. Comput.
Electron. Agric. 151, 226–237. doi: 10.1016/j.compag.2018.06.007

Yang, X. Y., Li, C., Hao, L. T., Wang, Y., and Gulzira, A. (2019). Research progress
and trend analysis of advanced 3D Imaging lidar technology. Laser J. 40, 1–9.
doi: 10.14016/j.cnki.jgzz.2019.05.001

Yasuda, Y. D., Martins, L. E. G., and Cappabianco, F. A. M. (2020). Autonomous
visual navigation for mobile robots: A systematic literature review. ACM Computing
Surveys (CSUR) 53, 1–34. doi: 10.1145/3368961

Yu, J., Chen, C., Arab, A., Yi, J., Pei, X., and Guo, X. (2024). RDT-RRT: Real-time
double-tree rapidly-exploring random tree path planning for autonomous vehicles.
Expert Syst. Appl. 240, 122510. doi: 10.1016/j.eswa.2023.122510

Yuan, J., Ji, W., and Qingchun, F. (2023). Robots and autonomous machines for
sustainable agriculture production. Agriculture 13, 1340. doi: 10.3390/
agriculture13071340

Yue, B. B., Zhang, Z. G., Zhang, W. Y., Luo, X. W., Zhang, G. C., and Huang, H. X.
(2024). Design of an automatic navigation and operation system for a crawler-based
orchard sprayer using GNSS positioning. Agronomy 14, 271. doi: 10.3390/
agronomy14020271

Zhang, J., Gu, J., Hu, T., Wang, B., and Xia, Z. (2024). An image segmentation and
point cloud registration combined scheme for sensing of obscured tree branches.
Comput. Electron. Agric. 221, 108960. doi: 10.1016/j.compag.2024.108960

Zhang, L., Lin, Z., Wang, J., and He, B. (2020). Rapidly-exploring Random Trees
multi-robot map exploration under optimization framework. Robotics Autonomous
Syst. 131, 103565. doi: 10.1016/j.robot.2020.103565

Zhang, Y., Ren, G. Q., Cheng, Z. Y., and Kong, G. J. (2019). Application research of
three-dimensional LiDAR in unmanned vehicle environment perception. Laser
Optoelectronics Prog. 56, 9–19. doi: 10.3788/LOP56.130001

Zhang, L., Zhu, X., Huang, J., Huang, J., Xie, J., Xiao, X., et al. (2022). BDS/IMU
integrated auto-navigation system of orchard spraying robot. Appl. Sci. 12, 8173.
doi: 10.3390/app12168173

Zhao, C. J., Fan, B. B., Li, J., and Feng, Q. C. (2023). Agricultural robots: Technology
progress, challenges and trends. Smart Agric. 5, 1. doi: 10.12133/j.smartag.SA202312030
frontiersin.org

https://doi.org/10.1109/LRA.2018.2857005
https://doi.org/10.1109/ACCESS.2021.3082778
https://doi.org/10.1109/ACCESS.2021.3082778
https://doi.org/10.1109/ACCESS.2023.3271973
https://doi.org/10.5302/J.ICROS.2018.0078
https://doi.org/10.6041/j.issn.1000-1298.2024.04.001
https://doi.org/10.1609/aaai.v36i1.19942
https://doi.org/10.1016/j.compag.2023.107762
https://doi.org/10.6041/j.issn.1000-1298.2021.01.004
https://doi.org/10.11975/j.issn.1002-6819.2018.09.003
https://doi.org/10.11975/j.issn.1002-6819.2018.09.003
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1109/CVPR42600.2020
https://doi.org/10.25165/j.ijabe.20211404.6821
https://doi.org/10.1016/j.biosystemseng.2019.08.019
https://doi.org/10.6041/j.issn.1000-1298.2023.08.024
https://doi.org/10.6041/j.issn.1000-1298.2022.07.001
https://doi.org/10.6041/j.issn.1000-1298.2022.07.001
https://doi.org/10.11975/j.issn.1002-6819.2021.09.019
https://doi.org/10.1016/j.compag.2018.08.034
https://www.stats.gov.cn/sj/ndsj/2022/indexch.htm
https://www.stats.gov.cn/sj/ndsj/2022/indexch.htm
https://doi.org/10.1016/j.biosystemseng.2008.09.007
https://doi.org/10.1016/j.asoc.2020.106709
https://doi.org/10.1016/j.asoc.2020.106709
https://doi.org/10.1109/MED54222.2022.9837270
https://doi.org/10.3390/s18093170
https://doi.org/10.1145/3592131
https://doi.org/10.3969/j.issn.1001-5078.2018.12.002
https://doi.org/10.3389/fpls.2022.960686
https://doi.org/10.3389/fpls.2023.1207742
https://doi.org/10.1016/j.compag.2023.107963
https://doi.org/10.1016/j.compag.2018.06.007
https://doi.org/10.14016/j.cnki.jgzz.2019.05.001
https://doi.org/10.1145/3368961
https://doi.org/10.1016/j.eswa.2023.122510
https://doi.org/10.3390/agriculture13071340
https://doi.org/10.3390/agriculture13071340
https://doi.org/10.3390/agronomy14020271
https://doi.org/10.3390/agronomy14020271
https://doi.org/10.1016/j.compag.2024.108960
https://doi.org/10.1016/j.robot.2020.103565
https://doi.org/10.3788/LOP56.130001
https://doi.org/10.3390/app12168173
https://doi.org/10.12133/j.smartag.SA202312030
https://doi.org/10.3389/fpls.2024.1510683
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	An autonomous navigation method for orchard mobile robots based on octree 3D point cloud optimization
	1 Introduction
	2 Materials and methods
	2.1 Autonomous navigation platform for orchard mobile robots
	2.2 Octree-based optimization method for 3D point cloud in orchards
	2.3 Path planning method of improved RRT* algorithm based on octree
	2.4 Path tracking

	3 Experiment design
	4 Results
	4.1 Optimization experiment of 3D point cloud map
	4.2 Path planning and path tracking experiment

	5 Discussion
	6 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


