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Ensuring global food security and achieving sustainable agricultural productivity

remains one of the foremost challenges of the contemporary era. The increasing

impacts of climate change and environmental stressors like drought, salinity, and

heavy metal (HM) toxicity threaten crop productivity worldwide. Addressing

these challenges demands the development of innovative technologies that

can increase food production, reduce environmental impacts, and bolster the

resilience of agroecosystems against climate variation. Nanotechnology,

particularly the application of nanoparticles (NPs), represents an innovative

approach to strengthen crop resilience and enhance the sustainability of

agriculture. NPs have special physicochemical properties, including a high

surface-area-to-volume ratio and the ability to penetrate plant tissues, which

enhances nutrient uptake, stress resistance, and photosynthetic efficiency. This

review paper explores how abiotic stressors impact crops and the role of NPs in

bolstering crop resistance to these challenges. The main emphasis is on the

potential of NPs potential to boost plant stress tolerance by triggering the plant

defense mechanisms, improving growth under stress, and increasing agricultural

yield. NPs have demonstrated potential in addressing key agricultural challenges,

such as nutrient leaching, declining soil fertility, and reduced crop yield due to

poor water management. However, applying NPs must consider regulatory and

environmental concerns, including soil accumulation, toxicity to non-target

organisms, and consumer perceptions of NP-enhanced products. To mitigate

land and water impacts, NPs should be integrated with precision agriculture
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technologies, allowing targeted application of nano-fertilizers and nano-

pesticides. Although further research is necessary to assess their advantages

and address concerns, NPs present a promising and cost-effective approach for

enhancing food security in the future.
KEYWORDS

climate change, nanotechnology, abiotic stress, nanoparticles, sustainable agriculture,
plant stress mitigation
Introduction

Climate change and agriculture

Abrupt environmental changes are intensifying their negative

impacts on the negative impacts on crop physiology, growth,

development, and productivity. Environmental stressors such as

drought, salt, temperature stress, and HM toxicity have become

more frequent and severe, leading to a substantial decline in global

agricultural output. This situation is further compounded by the

growing global population, projected to exceed 9 billion by 2050,

intensifying the demand for food systems to sustainably

increase production.

Traditional chemical-based farming practices have been proven

proven insufficient in meeting these demands. The extensive

dependence on agrochemicals and pesticides has significant

adverse effects, including soil degradation, a decline in

biodiversity, and environmental pollution (Tripathi et al., 2020;

Brunelle et al., 2024). For example, excessive use of nitrogen-based

fertilizers, induces soil acidification, which reduces nutrient

availability and disrupts the soil’s microbial ecosystem, ultimately

lowering soil productivity. Pesticide use, particularly with

organophosphates and carbamates, has reduced populations of

beneficial soil microorganisms, weakening soil structure and

fertility. In addition, traditional irrigation practices have

exacerbated issues like water scarcity and soil salinity

(Mohanavelu et al., 2021; Tarolli et al., 2024). These challenges

highlight the urgent need for sustainable agricultural technologies

to enhance crop resilience to environmental stressors and

improve yield.
Impacts of abiotic stress on
crop production

Agriculture is essential for maintaining global food security and

supporting the livelihoods of a large segment of the global

population. Therefore, protecting this vital sector from

environmental stressors, particularly those intensified by climate

change, is crucial. Abiotic stresses, such as drought, salinity, and

HM toxicity, are responsible for 20-50% of annual global crop yield
02
losses. Under adverse conditions, plants experience impaired

physiological functions, including reduced photosynthesis,

nutrient absorption, and water uptake, which can slow growth

and, in extreme cases, lead to complete crop failure, especially in

sensitive species like maize (Li et al., 2021b).

Abiotic stress encompasses external factors that disrupt normal

plant processes and cause physiological and biochemical changes

that impact agricultural yield. These stressors, such as severe

climatic conditions, including drought, salinity, and temperature

fluctuations, disrupt normal plant processes and lead to

physiological and biochemical changes, ultimately impacting

agricultural yield (Ghani et al., 2022; Kareem et al., 2022; Hassan

et al., 2023). Drought stress, for instance, significantly decreases

nitrogen uptake efficiency, diminishing the effectiveness of

fertilization, while salinity stress imposes osmotic pressure on

plants, increasing their vulnerability to other abiotic factors.

These combined environmental stressors can significantly reduce

the adaptive capacity of ecosystems to respond to fluctuating

environmental conditions (Han et al., 2022; Anwar et al., 2023).

Climate change poses significant threats to agriculture in the

modern world, impacting crop physiology, growth, development,

and productivity.
Role of nanotechnology in agriculture

Nanotechnology, particularly the use of NPs, has emerged as a

key player with significant potential to enhance crop resilience and

productivity. NPs exhibit special physicochemical properties,

including a large surface-area-to-volume ratio and the ability to

cross biological membranes, facilitating targeted nutrient delivery

and stress resistance (Singh et al., 2024). NPs can enhance nutrient

uptake, improve stress resistance, and increase photosynthetic

efficiency (Figure 1), resulting in better growth and yield even in

challenging conditions (Singh et al., 2024).

Advancement in agriculture, particularly via the adoption of

nanotechnology, is essential in the modern world. NPs possess

exceptional chemical and physical properties that enable them to

penetrate cellular membranes and interact effectively with biological

systems. In agriculture, nanoscale products, such as nano-pesticides,

nano-fungicides, nano-herbicides, and nano-fertilizers, offer significant
frontiersin.org
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benefits. They can improve plant growth and reduce the environmental

footprint of conventional agricultural chemicals (Wahab et al., 2024).

These nanoparticles are effective even at low concentrations, and can be

delivered through various methods, including seed treatment, foliar

spraying, and hydroponic delivery (Nile et al., 2022;Mawale et al., 2024).

Unlike traditional fertilizers that often leach into water bodies and cause

pollution, nanoparticles provide controlled, efficient nutrient release,

ensuring plants receive the necessary elements over time (Easwaran

et al., 2024; Haydar et al., 2024). For instance, they can improve the

delivery of vital nutrients like nitrogen (N), phosphorus (P), and

potassium (K), reducing environmental runoff and eutrophication

(Sheikhalipour et al., 2021; Jakhar et al., 2022). Nanotechnology also

offers potential in mitigating specific abiotic stresses, such as drought

and salinity, by enhancing water-use efficiency and osmotic adjustment

in plants. Although the application of NPs in agriculture is still in its

developmental stages, it holds promise for increasing crop resilience

against various stressors (Su et al., 2019; Haydar et al., 2024) (Table 1).

An overview of studies investigating the impact of various NPs on

different plant components is provided.
Challenges and considerations for
nanotechnology use in agriculture

NPs are gaining attention in agriculture as a highly effective

strategy for reducing abiotic stresses and serving as nano-fertilizers.

They can stimulate plant growth, enhance nutrient uptake, and

strengthen resilience to environmental stressors.

Despite their potential, the widespread adoption of nanoparticles in

agriculture faces challenges. Concerns remain about the long-term

effects of NPs on plant systems, soil microorganisms, and human

health. For instance, while nanoparticles can enhance plant health, their

impact on non-target organisms and overall ecosystem balance is not

fully understood. Additionally, the cost-effectiveness of nanoparticle

production is a critical factor that influences their feasibility for large-

scale agricultural use. Addressing these concerns is vital for the

responsible integration of NPs in agriculture. Ensuring the safety,

environmental compatibility, and economic viability of

nanotechnology will be essential to its sustainable implementation.
Frontiers in Plant Science 03
This review aims to explore how nanoparticles can address agricultural

challenges and identify environmentally friendly solutions. The main

objectives are: (1) to analyze the adverse effects of abiotic stresses, such

as drought, salinity, HM, and temperature changes, on crop yield and

assess whether nanoparticles can mitigate these stressors and enhance

yield; (2) to discuss the role of nanomaterials, including stable synthetic

variants, in agriculture and evaluate their safety for humans and the

environment; (3) to examine the cost-effectiveness of producing and

utilizing nanoparticles in agricultural activities and determine their

efficacy; and (4) to propose strategies for the safe incorporation of

nanotechnology into agricultural practices and measures to optimize

nanoparticle use.
Mechanisms of nanoparticles in enhancing
crop resilience

Nanoparticles physicochemical properties
NPs, due to their distinct characteristics, are considered effective

in alleviating abiotic stress in plants. Their large surface area relative

to volume increases reactivity, facilitating more efficient interactions

with plant cells (El-Saadony et al., 2022). This property allows NPs

to dissolve readily and penetrate plant cell membranes, thereby

enabling the targeted delivery of nutrients and stress-mitigating

agents (Yadav et al., 2023). Once NPs penetrate plant tissues either

through root uptake or foliar retention, they translocate throughout

the plant using via both apoplastic and symplastic routes. This

localization and movement within plant tissues contribute to

increased resistance against various abiotic stress factors,

ultimately stimulating plant growth under challenging conditions

(Ali et al., 2021b). By reaching intracellular targets, NPs can directly

influence metabolic processes directly, improving nutrient uptake

and stress resistance. This capability is particularly beneficial in

enhancing photosynthetic efficiency and promoting plant growth

under adverse environmental conditions (Singh et al., 2021b).

Defense mechanism
Plants have developed various defense mechanisms to cope with

environmental stressors, utilizing both biochemical and
FIGURE 1

Effect of different NPs and their different applications on seed germination, performance and physiological parameters and photosynthetic rate.
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physiological pathways to minimize damage (Haile et al., 2020;

Hassan et al., 2023). While ongoing research continues to unravel

these complex protective processes, certain mechanisms have been

identified as essential for plant resilience. NPs are emerging as a

promising tool for enhancing these defenses, as they help to

strengthen plant defense by boosting the antioxidant activity,

promoting, osmolyte accumulation, and activating genes

associated with stress tolerance (Ali et al., 2019; Ahmed et al., 2021).

One of the primary ways NPs aid plant defenses is by enhancing

antioxidant systems, which are crucial for neutralizing reactive

oxygen species (ROS). Under conditions of environmental stress,

such as drought, salinity, and UV exposure plants produce higher

levels of ROS, which can damage cellular components like lipids,

proteins, and DNA. NPs, particularly those containing titanium

dioxide (TiO₂) and silicon (SiO₂), have shown the ability to alleviate

oxidative stress by increasing the activity of key antioxidant

enzymes, including superoxide dismutase (SOD) and catalase

(CAT) (Ye et al., 2019). For example, TiO₂ NPs can function as

catalysts in redox reactions, helping to detoxify ROS and protect

plant tissues from UV-induced damage. Similarly, SiO₂ NPs have

been found to enhance antioxidant defenses in wheat, helping to

mitigate the damage caused by UV-B radiation. This enhancement
Frontiers in Plant Science 04
of antioxidant activity helps maintain cellular integrity under stress,

enabling plants to better endure challenging conditions.

In addition, to bolstering antioxidant defenses, NPs stimulate

the accumulation of osmolytes, small organic compounds such as

trehalose, proline, and glycine betaine, that play a crucial role in

osmoregulation. These compounds help plants retain water,

stabilize proteins, and protect cell membranes during periods of

water deficit and high salinity conditions (Sarkar et al., 2024).

Proline, for instance, acts as an osmoprotectant by maintaining

cell turgor and facilitating cellular functions in low-water

conditions. Similarly, glycine betaine and trehalose support

membrane stability and protein structure under stress. By

promoting osmolyte buildup, NPs help plants manage osmotic

stress, improving their resilience in arid and saline environments.

NPs also appear to enhance stress tolerance at the genetic level by

activating the expression of certain stress-related genes. Research has

shown that NPs like silicon (SiO₂) and TiO₂ can trigger the

transcription of genes involved in stress responses, including those

that encode heat-shock proteins (HSPs) and late embryogenesis

abundant (LEA) proteins (Zulfiqar and Ashraf, 2021a). These

proteins play a critical role in protecting cellular structures under

extreme stress conditions, further enhancing the plants ability to
TABLE 1 Impacts of nanoparticles on different growth levels of plants.

Nanoparticles Plants Plants response References

CeO2

Sorghum Improve seed yield and carbon assimilation rates in leaves (Djanaguiraman et al. 2018)

Glycine max Improve plants growth (Cao et al. 2018)

Triticum aestivum Improve biomass, grain yield, and shoot growth (Kusiak et al. 2022)

Ag

Eruca sativa Enhanced length of roots (Bhattacharjee et al. 2022)

Oryza sativa Improved root growth, biomass (Yang et al. 2018)

Lolium multifolium Improve plant growth and enzymatic activity (Faizan et al., 2023)

Vigna sinensis
Increased growth and biomass through encouraging root growing and
bacterial diversity in the soil

(Pallavi et al. 2016)

Triticum aestivum Better growth and heat stress resistance (Iqbal et al. 2019)

TiO2

Cicer arietinum Change the status of redox reaction, improve photosynthetic content (Verma et al. 2022)

Spinacia oleracea Enhanced chlorophyll content, plant growth (Wani et al. 2023)

Oryza sativa
Increased antioxidant capacity and decreased Cd translocation to reduce
Cd toxicity and enhance growth

(Rizwan et al. 2019)

Citrullus lanatus Increased the roots activity, MDA level (Rui et al. 2016)

Al2O3

Glycine max Improve plant growth, enzyme activity (Hossain et al. 2016)

Raphanus sativus Increased root length, root shoot biomass (Ahmad et al., 2023)

Solanum lycopersicum
Effectively in control
Fungus-induced tomato root rot

(Shenashen et al. 2017)

Zea mays Root length increased, reduced attack of pathogens (Aparato & Suh 2022)

ZnO

Cyamopsis tetragonoloba Impressive rise in chlorophyll, leaf protein, and alkaline phosphate content (Ragab et al., 2022)

Arachis hypogaea Improved seed germination rate, chlorophyll content (Al Jabri et al. 2022)

Prunus domestica fruits B.cinerea's suppressed symptoms of grey mold and soil-borne diseases (Malandrakis et al. 2019)

Cicer arientum The plant's weight increased, reducing ROS production (Srivastav et al. 2023)
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survive in harsh environments. By influencing these molecular

pathways, NPs not only improve immediate stress resistance but

may also contribute to longer-term adaptation to adverse conditions.

In general, the application of NPs in agriculture presents a

potential approach for increasing crop resilience by bolstering plant

defenses by using their distinct physicochemical characteristics and

capacity to trigger the plant defense response. This approach

improves nutrient delivery, stress resistance, and supports

sustainable agricultural productivity in the face of increasing

environmental challenges.
UV radiation and oxidative stress in plants

Ultraviolet (UV) radiation is a significant abiotic stressor that

induces oxidative stress in plants. Exposure to UV-B light leads to

abnormal leaf structure and reduced photosynthetic efficiency,

prompting plant cells to produce ROS. Additionally, UV-B

exposure increases lipid peroxidation and the extracellular release

of electrolytes through the generation of H2O2 and O2
- radicals. The

elevated levels of ROS may result from the inhibition of SOD and

APX activities due to UV-B (Takshak and Agrawal, 2014). TiO2

nanoparticles operate as catalysts in an oxidation-reduction process

that produces superoxide anion radicals and hydroxide when

exposed to light (Zou et al., 2013). Si NPs boost antioxidant

activity in wheat, helping to reduce oxidative damage induced by

UV-B exposure (MS et al., 2021). This can be inferred that Si NPs

provide protection to plants by triggering the antioxidant defense

system and mitigating the photosynthetic damage caused by ROS.

Si NPs are more effective than bulk silicon in reducing UV-B stress

in wheat seedlings (Ayub et al., 2022).

Multi-walled carbon nanotubes (MWCNTs) protect the model

plant Arabidopsis thaliana by alleviating paraquat-induced

oxidative stress. MWCNTs enhance photosynthetic efficiency and

stimulate plant lateral root growth, and mitigate the bioavailability

of toxic substances (Fan et al., 2018; Igiebor et al., 2023). NPs have

demonstrated beneficial effects in mitigating oxidative stress in

plants, but it is essential to carefully design approaches to

minimize their possible toxicity and optimize their properties.

Factors such as size, shape, and surface characteristics should be

tailored to ensure the optimal performance of NPs while

minimizing environmental risks (Chen et al., 2023).
Optimizing nanoparticle properties for
enhanced efficacy and reduced toxicity

NPs have shown the potential to mitigate oxidative stress in

plants, improving their tolerance to environmental stressors

(Thiruvengadam et al., 2024). However, careful design is crucial

to minimize any risks associated with toxicity, ensuring NPs deliver

their benefits without harmful side effects to plants or ecosystems.

Therefore, safe and efficient production strategies should emphasize

refining nanoparticle properties to maximize beneficial effects while

minimizing adverse impacts (Iavicoli et al., 2017). In this regard,
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developing nanoparticles with optimized properties such as size,

shape, and surface characteristics becomes essential for maximizing

benefits while minimizing environmental risks. Smaller

nanoparticles tend to be more efficiently absorbed and

transported within plant tissues, and specific shapes, such as rod-

like or tubular structures, can enhance interactions with plant cells

(Zuverza-Mena et al., 2017; Wang et al., 2023). Additionally, surface

modifications, such as applying biocompatible coatings, further

improve nanoparticle stability, reduce aggregation, and lower

toxicity by regulating how these particles interact with cell

membranes (Mansouri et al., 2023). By carefully customizing

these features, researchers can create nanoparticles that support

plant health in a safer, more sustainable way, advancing eco-

friendly applications of nanotechnology in agriculture (Yang

et al., 2017a).
Dose-dependent effects of nanoparticles
on plant growth and toxicity

Previous research has demonstrated that the toxicity of NPs is

highly dependent on their concentration, exposure time, and

specific plant species (Ma et al., 2015; Cox et al., 2016; Khan

et al., 2021). Certain NPs, such as TiO2, have demonstrated the

ability to enhance plant development at low concentrations, while

excessive accumulation at higher concentrations can lead to the

overproduction of ROS, ultimately inhibiting growth. This dose-

dependent response underscores the importance of carefully

controlling NP exposure levels to achieve the desired beneficial

effects while avoiding potential phytotoxicity (Yang et al., 2017b).

TiO2 NPs were also demonstrated to increase SOD activity, with the

influence increasing with NPs concentration. At 40 and 50 mg/mL

concentrations, TiO2 NPs resulted in the lowest CAT and POD

activity, whereas POD and amylase enzyme secretion were highest

and lowest, respectively (Javed et al., 2022). The findings of these

studies suggest that NPs are important for enhancing agricultural

productivity, however, a full understanding of the right process and

how NPs interact with plants at different levels is still evolving

(Fincheira et al., 2020).

Jampıĺek and Králǒvá (2022) investigation has shown that

CuNPs exert an impact on the development of Oryza sativa (rice)

and Lactuca sativa (lettuce). At low concentrations (0.8 to 798.9

mg/L), CuNPs promoted root growth. However, the phytotoxicity

of this substance escalated with increasing concentration, leading to

a reduction in the number of thylakoids and stomatal conductivity.

This indicates that while low and medium doses are beneficial to

plants, high doses can be toxic.

Various metal oxide nanoparticles, including those of copper, zinc,

and silver, have been found to exhibit phytotoxic effects on plants. The

magnitude of these hazards may vary across the crop, species, and

cultivars (Xiong et al., 2017; Mahawar et al., 2024). Understanding the

specific phytotoxic thresholds and mechanisms for each type of NP is

crucial for developing safe and effective applications in agriculture

(Tuga et al., 2023). CuNPs stressedOryza sativa, resulting in a decrease

in the rate of photosynthetic activity, the number of thylakoids in each
frontiersin.org
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granum, the rate of transpiration, and the conductivity of the stomatal

cells (Aqeel et al., 2022).

ZnO NPs also exhibit phytotoxicity. Exposure to 100 and 1000

mg/L ZnO NPs in Salicornia persica resulted in a 50% reduction in

shoot length, accompanied by increased levels of ROS production

and lipid peroxidation compared to untreated plants. Similar effects

on growth parameters were observed in Cajanus cajan seeds

exposed to varying concentrations of ZnO NPs (Tortella et al.,

2023). Additionally, the phytotoxicity of ZnO NPs is influenced by

soil pH and plant species. Notably, acidic soils exhibited more

pronounced toxic effects compared to alkaline soils, where the

presence of Zn is restricted. The aforementioned observation

suggests that environmental variables substantially influence the

phytotoxic reaction to ZnO NPs (Fasake et al., 2021). It is crucial to

emphasize that both soil pH and plant species significantly affect the

phytotoxicity of ZnO NPs, as well as the damage caused by metal or

metal oxide nanoparticles (Sturikova et al., 2018).

Cytotoxicity and phytotoxicity are also associated with silver

nanoparticles (AgNPs). For instance, biogenic AgNPs synthesized

using Aloe vera extract caused significant injury to Brassica

seedlings in hydroponic systems. This stress resulted from

oxidative effects that led to cell death and DNA damage.

Although the toxicity of AgNPs was not as pronounced as that of

silver nitrate, they still exhibited significant toxicity in certain

concentrations (Feregrino-Pérez et al., 2023).

The surface characteristics of AgNPs significantly influence

their phytotoxicity. NPs with a negative charge and Ag⁺ ions are

particularly detrimental to plants (Sarkar et al., 2022). In contrast,

titanium dioxide (TiO2NPs) are generally less phytotoxic than

many other metal oxide nanoparticles, making them safer for

plant applications (Irshad et al., 2021).

AgNPs with distinct properties can restrict the growth in model

monocot and dicot plants to varying degrees. The synthesis of these

AgNPs involved the use of trisodium citrate, tannic acid, and

cysteamine hydrochloride, leading to the formation of

nanoparticles with well-defined surface charges. Exposure to these

silver nanoparticles adversely affected the roots and shoots of both

monocot and dicot plants. Notably, negatively charged AgNPs and

silver ions derived from silver nitrate (AgNO3) exhibited greater

toxicity to plants (Cox et al., 2016).

Although TiO2 NPs have been assessed for their phytotoxic effects,

they are generally less harmful to plants compared to metal or metal

oxide NPs (Rastogi et al., 2017). The application of TiO2 NPs may pose

less risk in terms of phytotoxicity, particularly if growth inhibition,

alterations in root water transport, cell membrane damage, ROS

generation, or chlorophyll synthesis inhibition are observed (Mir

et al., 2021). Recent studies suggest that while TiO2 NPs can be

phytotoxic, they may also exhibit hormetic effects, promoting shoot

and root elongation as well as overall biomass growth at specific

concentrations, such as 100 mg/L. However, these beneficial effects

diminish at higher concentrations, particularly beyond 1000 mg/L

(Maluin et al., 2021). However, there was a noticeable limitation at

concentrations over 1000 mg/L. The use of NPs in plants has shown a

number of favorable impacts. To avoid harm and unfavorable effects on

non-target species, the dose must be calculated based on crop type, soil,

and other considerations (Tortella et al., 2023).
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Long-term impacts of nanoparticles on
soil ecosystem

While the integration of nanoparticles (NPs) into agricultural

practices offers promising benefits for crop resilience and

productivity, understanding their long-term effects on soil ecosystems

remains crucial. Research has shown that NPs can persist in the

environment and accumulate in soil, potentially altering the soil’s

chemical and biological properties. The interactions between NPs

and soil microorganisms, which play a pivotal role in maintaining

soil health and nutrient cycles, are particularly concerning. Changes in

microbial community structures can affect soil fertility, organic matter

decomposition, and nutrient availability, potentially leading to

disruptions in ecosystem services over time (Bakshi et al., 2015;

Donia and Carbone, 2019).

The behavior of NPs in soil is influenced by several factors,

including their size, surface charge, and coating, as well as soil pH

and organic matter content. Studies indicate that certain metal and

metal oxide nanoparticles, such as zinc oxide (ZnO) and TiO2, can

exert phytotoxic effects that may vary with soil type and plant

species (Ghori et al., 2019). Additionally, the formation of a protein

corona around NPs can affect their absorption and movement

through soil matrices, potentially impacting the bioavailability of

essential nutrients and toxic metals (Huang et al., 2017).

Understanding the cumulative effects of NPs on soil ecosystems is

vital for assessing their long-term sustainability. Potential outcomes

include reduced microbial diversity, shifts in enzymatic activity, and

altered soil-plant interactions, which could compromise agricultural

productivity in the long run. These impacts necessitate further

investigation through long-term field studies that assess NP behavior,

transport, and transformation in soil environments under different

climatic conditions.
Management of abiotic stress
from nanoparticles

Plants encounter numerous challenges from abiotic stressors,

including drought, salinity, alkalinity, submersion, and deficiencies in

minerals and metals. These environmental factors hinder plant growth

and significantly reduce agricultural productivity (Ma et al., 2015; Li

et al., 2021b; Kareem et al., 2022; Mahawar et al., 2024). Among these,

salinity, drought, extreme temperatures, and heavy metals (HMs) are

the predominant factors contributing to decreased agricultural

productivity. Plants experience a range of abiotic stressors

throughout their life cycle and have evolved sophisticated

physiological processes to withstand these challenges (Ma et al., 2015;

Ghani et al., 2022; Anwar et al., 2023). In response to these stressors,

plants modulate gene expression to adapt and alleviate their impact,

therefore facilitating their ability to handle unfavorable environmental

conditions (Pathak et al., 2021).

Plants have to deal with several forms of abiotic stress throughout

their life cycle and have developed various defense mechanisms to

address them via various physiological pathways. Plants reduce and

adapt to varied stressors by altering gene expressions. Experiments

have demonstrated that nanoparticles help plants survive abiotic
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stresses by exerting a concentration-dependent result on plant growth.

NPs enhance plants’ ability to withstand certain toxic metals, such as

chromium (Cr), cadmium (Cd), iron (Fe), aluminum (Al), and

manganese (Mn) (Faizan et al., 2023).

The absorption and movement of Cd, Mn, and Pb in plant

tissues have also been shown to be decreased by the management of

NPs. Furthermore, through increasing antioxidant activity,

osmolyte accumulation, synthesis of free amino acids, and

nutritional improvements, NPs help plants resist environmental

challenges (Khalid et al., 2022). NPs are used to mitigate the harm

caused by abiotic stress. Metal nanoparticles have several uses in

plants. Si NPs encourage plant development and increase plant

resilience to biotic stress (Yang et al., 2017b). The use of Cu, ZnO,

and Se NPs as nano-fertilizers has shown great results. Additionally,

nanoparticles have demonstrated the capacity to act as inducers of

phytohormone production, controlling plant improvement and

metabolism in response to abiotic stress (Zulfiqar and Ashraf,

2021b) Figure 2. illustrates abiotic stress management by

modulating different morphological and physiological parameters.
Drought stress

Drought is a significant challenge for agriculture, affecting

farmers worldwide due to insufficient irrigation and reduced
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rainfall (Orimoloye et al., 2022). This natural phenomenon is

complex and not limited to specific regions or timeframes, making

it difficult to monitor and manage (Faiz et al., 2021). Drought stress is

primarily caused by a decrease in precipitation, leading to prolonged

dry periods. It manifests in four distinct forms: meteorological,

hydrological, agricultural, and socio-economic (Haile et al., 2020).

Dry weather conditions characterize meteorological drought, while

hydrological drought is characterized by low water supply affecting

surface and groundwater levels. Agricultural drought results from

decreased soil moisture, leading to crop failures and impacting global

food production. Socio-economic drought results from limited water

supply, which affects economic activities (Swain et al., 2022).

Plant physiological, biochemical, molecular, and genetic

responses to drought and salinity are quite similar (Abdelaal

et al., 2021; Ghani et al., 2022). Because water intake becomes

constrained when soluble solute levels rise due to a drop in water

potential, drought conditions start to occur more often in high-

salinity locations (Ahluwalia et al., 2021). Plants respond to these

stresses by generating phytohormones, adjusting osmotically,

reducing transpiration, and altering growth, photosynthesis,

carbon absorption, and leaf turgor (Hamid et al., 2021). Figure 3

shows drought stress mitigation through different physiological and

biochemical mechanisms.

NPs like Si, Ag, Zn, TiO2, and Fe enhance photosynthetic rates,

reduce malondialdehyde levels, raise relative water content, and
FIGURE 2

Flowchart demonstrating abiotic stress management by NPs and plants show response on different levels like morphological, yield related,
physiological, and biochemical.
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strengthen root and shoot systems, promoting plant growth and

development (Chandrashekar et al., 2023) (Table 2). Summarize

recent research on the role of NPs in alleviating drought stress.

Although the precise methods by which nanoparticles provide

drought resistance are not completely known, research indicates

that they influence aquaporins—water channel proteins responsible

for water transport and seed germination. This mechanism

increases the availability of water and nutrients, enhancing

germination rates even under dry situations (Zia et al., 2021).
NPs mediated molecular responses to
drought stress in plants

NPs influence drought stress responses in plants by regulating

specific genes and pathways involved in stress tolerance. The P5CS

gene, essential for proline biosynthesis, enhances drought resistance

by improving osmotic balance under water deficit conditions

(Pérez-Labrada et al., 2020). Similarly, AREB/ABF transcription

factors, regulated by abscisic acid, play a pivotal role in activating

drought-responsive genes (Yoshida et al., 2015). Downregulation of

the ZFHD gene alleviates drought stress by modulating the abscisic

acid biosynthesis pathway, while TAS14 downregulation reduces

osmotic pressure and increases solute aggregation, including

potassium ions and sugars, enhancing drought resilience (Pérez-
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Labrada et al., 2020). These molecular mechanisms collectively

strengthen plant tolerance to drought stress.
Temperature stress

Rising temperatures are among themost detrimental environmental

stressors impacting agricultural plants (Fahad et al., 2017). Heat stress

induces oxidative stress, producing ROS; these ROS drive the

peroxidation of membrane lipids, disturb cellular homeostasis, and

hinder several metabolic processes, finally manifesting as cell death

(Fahad et al., 2017; Afzal et al., 2020). Additionally, heat stress adversely

affects photosystem II, electron transport, carbon fixation, and

chlorophyll stability, all of which are essential for the development

and production of plants (Shang et al., 2019b).

The application of SeNPs has shown potential in enhancing the

morphological characteristics of wheat under heat stress morphological

features of wheat under heat stress (Omar et al., 2023). As nano-

fertilizers, metallic NPs can enhance plant resilience by improving

nutrient uptake and physiological responses. When applied in varying

doses, NPs have been found to promote plant growth and hydration

under heat-stress conditions. NPs exhibit antioxidative properties at

low concentrations, while high concentrations may lead to oxidative

stress (Ali et al., 2021a). Under heat stress, AgNPs dramatically

improve the morphological features of wheat plants. Metallic NPs
FIGURE 3

Impacts of drought stress and NPs on plants, showing morphological, physiological, and biochemical changes at different growth levels.
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used as nano-fertilizers for sustainable agriculture may help plants

withstand heat stress (Arora et al., 2022) (Table 3). Provided a detailed

summary of NPs and their effects on heat stress.
Molecular mechanisms of nanoparticle-
mediated heat stress tolerance in plants

Plants respond to heat stress by synthesizing heat shock proteins

(HSPs) andmolecular chaperones that stabilize proteins under extreme

conditions (Rawat et al., 2021). When NPs were applied to plants in

various doses to reduce the effects of heat stress, an enhancement in

plant growth and hydration was observed. When NPs are delivered to

plants in low concentrations, they exhibit antioxidant properties;

however, at high concentrations, oxidative stress occurs. Numerous

studies have documented that multiwall carbon nanotubes facilitate the

production of HSPs, including HSP90, and augment the expression of

heat shock genes (Khan et al., 2017; Zhao et al., 2023). Additionally, it

has been demonstrated that cerium oxide nanoparticles (CeO2NPs)
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increase HSP70 levels in maize, contributing to improved heat stress

tolerance. NPs also mitigate heat stress by regulating stomatal opening,

thus enhancing transpiration and cooling (Ali et al., 2021a).

In soybean, ZnO NPs enhanced photosynthetic pigments,

proline accumulation, and antioxidant enzyme activity by

upregulating stress-related genes like HSF-34 and WRKY1

(Mirakhorli et al., 2021). Copper-based NPs modulate genes

involved in oxidative stress, brassinosteroid biosynthesis, and root

formation, while also influencing secondary metabolite production

for signaling and defense (Ali et al., 2019). Similarly, silicon and

lanthanum oxide (La₂O₃) NPs regulate aquaporin gene expression,

improving water content and stress tolerance in wheat and maize

(Yue et al., 2017; Ali et al., 2019).
Salinity stress

Global warming has exacerbated water shortages, leading to the

increased reliance on saline water for irrigation in agricultural
TABLE 2 Role of nanoparticles in alleviating drought stress in plants.

NPs Plants Effect on plants References

Chitosan Triticum aestivum Enhanced chlorophyll and relative water content (Behboudi et al. 2019)

Si Triticum aestivum Decreased oxidative stress and increased chlorophyll concentration (Khan et al. 2020)

Fe-CTs Mentha piperita Increases peppermint growth and yield, especially during drought conditions (Giglou et al. 2022)

ZnO Mangifera indica L. Increased NPK in the leaves and total soluble sugar, carbohydrates, and proline (Elsheery et al. 2020)

SiO2 Solanum tuberosum
Reduce the negative impact of water shortage on potato output and improve the
growth parameters

(Seleiman et al. 2023)

ZnO Solanum melongena Increased chlorophyll and relative water content, biomass (Semida et al. 2021)

ZnO
Solanum
lycopersicum

Improves tomato growth and antioxidant enzyme activity under stress conditions. (El-Zohri et al. 2021)

Fe Fragaria ananassa
PEG-induced water stress hurts morphological and physiological features by boosting antioxidant
enzyme activity and decreasing MDA and H2O2

(Yosefi et al. 2022)

Si Coriandrum sativum
Coriander plants provided a rapid and very effective approach for determining content and
enzyme activity in both stressed and non-stressed plants

(Afshari et al. 2021)

SiO2 Pisum sativum
Increase pea growth under drought conditions via activating antioxidant mechanisms, lowering
ROS, increasing water content and leaf area, and decreasing root-to-shoot ratio

(Sutulienė et al. 2021)

ZnO Zea mays
Melatonin production and antioxidant enzyme system activity are increased, as is the relative
transcript abundance of SOD, CAT, APX, CAT, TDC, and SNAT

(Sun et al. 2020)

TiO2 Triticum aestivum
Increased germination rate, as well as root and shoot fresh weight and vigor index. Reduced
average germination time, increased seedling development

(Faraji & Sepehri 2019)

C Capsicum annuum
Under drought stress, exogenous application enhanced relative water content, chlorophyll-related
parameters, proline content, and antioxidant activities

(Alluqmani &
Alabdallah, 2023)

Co Glycine max
Relative water content, drought tolerance index, and biomass reduction rate all improved.
Upregulation of drought-responsive gene expression, particularly GmERD1, in both roots
and shoots

(Linh et al. 2020)

SiO2 Triticum aestivum PSII shoot biomass, root biomass, shoot water content, and quantum yield were all reduced (Potter et al. 2021)

TiO2 Linum usitatissimum Avoid cell membrane damage and increased protein content (Aghdam et al. 2016)

Fe Triticum aestivum Reduced oxidative stress by switching antioxidative mechanism (Arikan et al. 2022)

SiO2 Fragaria ananassa Enhanced enzymatic activity, root, and shoot biomass (Zahedi et al. 2020)
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regions, which in turn increases soil salinity. This practice, however,

contributes to rising soil salinity levels, posing a substantial

challenge in modern agriculture. High salinity impairs plant

growth by disrupting water and nutrient uptake, and prolonged

exposure can ultimately result in plant mortality (Al-Khayri et al.,

2023). When sodium chloride (NaCl) concentrations exceed 200

mM, salinity affects all stages of a plant’s life cycle, such as seed

development, seedling growth, vegetative growth, and flowering

(Yuan et al., 2019).

Salinity is a critical abiotic stressor that limits food production

and adversely affects the quality of crops, hindering their ongoing

development. It remains a major obstacle to achieving sustainable

agricultural production, as recognized by the scientific community.

Salinity stress affects 20% of all cultivated land globally, and the

proportion is increasing on a daily basis (Kumar et al., 2022). The

great majority of agricultural plant species are glycophytes, which
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are especially subject to salt stress and, hence, constitute the most

significant environmental abiotic stress that may significantly affect

crop yield (Munns and Tester, 2008). The majority of salinity issues

are excessive sodium chloride, widely found in soils and water

supplies in coastal and arid regions (Hailu and Mehari, 2021).

Elevated NaCl concentrations present several challenges for higher

plants. These include (i) it increases osmotic pressure in the external

solution, necessitating osmotic adjustment by plant cells to prevent

dehydration; (ii) Potential interference of excess sodium with the

absorption and transportation of vital ions like potassium (K+) and

calcium (Ca+2); and (iii) causing direct toxic effects on cell

membranes and enzymes due to the presence of sodium (Na+)

and chloride (Cl-) (Knop et al., 2023).

Salinity stress diminishes the soil’s osmotic potential, disrupts

the nutritional equilibrium, and elevates ionic toxicity (Truscă et al.,

2023). NPs play a significant role in mitigating salt stress in plants.
TABLE 3 Effect of nanoparticles on enhancing plant responses to salinity stress.

NPs Plants Effect on plants References

SiO2 Ocimum basilicum Enhanced fresh and dry weight and increased chlorophyll content (Farouk et al., 2020)

SiO2 Lens culinaris Medik Increased seeds germination rate and improve plants growth (Sarkar et al. 2022)

Cu Solanum lycopersicum
Cu-NPs sprayed on fruits can mitigate the harmful effects of NaCl treatment. This benefit is most
significant when the fruits are stored at approximately 24°C

(Hernández-Fuentes
et al. 2017)

nSiO2 Fragaria ananassa Improves water loss, keeps chlorophyll levels stable, and helps in water retention (Avestan et al. 2019)

Cs–Se Momordica charantia Boosting photosynthetic pigments, photosynthesis, growth, and yield (Sheikhalipour et al., 2021)

Carbon Lactuca sativa Reduce the negative influence of salt stress on seed germination (Baz et al. 2020)

ZnO Solanum melongena Improve growth, chlorophyll contents, total soluble sugars, proteins, and free amino acids. (Anwar et al., 2023)

Se Fragaria ananassa
Improved antioxidant enzyme activity in strawberries, leading to lower stress-induced lipid
peroxidation and H2O2 levels

(Zahedi et al. 2020)

CeO2 Oryza sativa Shoot length, chlorophyll content, and fresh and grain weight are all increased (Zhang et al., 2021)

Mn Vigna radiata
The indicator of membrane stability, chlorophyll concentration, and nitrate reductase activity
all improved

(Etesami et al. 2021)

CeO2 Brassica napus Increasing chlorophyll content, carbon absorption, fresh weight, and leaf size (Li et al. 2022)

TiO2 Solanum lycopersicon Inhibition of growth, increase in growth, yield, and quality (Khan et al., 2017)

Au Triticum aestivum Improved chlorophyll content, defense system, growth properties (Wahid et al. 2022)

ZnO Vicia faba Enhanced the accumulation of photosynthetic pigments, nutrients, amino acids, antioxidants (Mogazy & Hanafy 2022)

Fe2O3 Eucalyptus tereticornis
Increased growth, biochemical alterations, increased SOD, sugar, and proline levels, improved gene
expression of antioxidant enzymes, increased shoot length

(Singh et al., 2021a)

SiO2 Cucumis sativus
Ion homeostasis, stomatal opening control, increased K+ absorption and K+/Na+ ratio, and
improved water and intake of nutrients

(Alsaeedi & Show 2019)

Ag Pennisetum glaucum
Decreased oxidative damage by boosting antioxidant enzyme activity, up-regulating
metabolic processes

(Khan et al. 2023)

ZnO Vicia faba Enhanced the accumulation of photosynthetic pigments, nutrients, amino acids, antioxidants (Shah et al. 2022)

Fe2O3 Helianthus annus Improved activities of APX, CAT, and POD enzymes, chlorophyll, photosynthetic rate (Nawaz et al. 2023)

ZnO Brassica napus Boosted the amounts of chlorophyll MDA, H2O2, and proline (Farouk et al., 2020)

CuO Solanum lycopersicon
Increased amounts of vitamin C, phenols, glutathione, increased antioxidant activity, better Na+/K
+ ratio

(Pérez-Labrada et al. 2019)

ZnO Gossypium barbadense Improve mineral contents and growth rate (Hussein & Abou-Baker 2018)

ZnO Solanum lycopersicum Decreased stress, improve growth, photosynthesis and antioxidant enzymes (Faizan et al. 2021)
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They help regulate ion balance, reduce sodium ion toxicity, and

enhance potassium ion absorption. Additionally, NPs activate

antioxidant defense systems and improve pigment composition,

solute levels, and stomatal conductance. For instance, magnetite

NPs increase chlorophyll content and antioxidative enzyme activity,

contributing to salinity resistance in wheat (Rawat et al., 2021).

Similarly, nano-silicon dioxide (SiO2) has been demonstrated to

enhance growth and antioxidant activities in Glycine max and

improve seed germination and growth in wheat cultivars under

salt stress (Dhakate et al., 2022).

ZnO NPs were applied to salt-stressed Brassica napus plants to

mitigate the harmful effects of salinity by enhancing the antioxidative

system, promoting osmolyte production, and regulating ionic balance

(Zulfiqar and Ashraf, 2021b). Cu NPs foliage sprayed on Solanum

lycopersicum boosted growth while reducing the impact of salt stress.

Cu NPs increased levels of glutathione, polyphenols, and vitamin C,

and altered the activity of APX, GPX, and SOD, contributing to

improved overall plant growth and development (Fu et al., 2023).

Seed priming with ZnO NPs minimized the adverse effects of NaCl

treatment on Lupinus termss by increasing pigment levels, modulating

osmoregulation, and lowering stress-related metabolite concentrations.

According to another report, seed priming T. aestivum L. with AgNPs

reduced salt stress (Hossain et al., 2021) (Table 4). represents the role of

NPs in mitigating salinity stress.
Molecular modifications in plants mediated
by NPs under salinity stress

Molecular processes in plants play a critical role in determining

their biological functions, particularly under stress conditions

(Figure 4). The impact of NPs on these processes, including gene

expression and cellular activities, is evident and essential for their

effectiveness. For example, salinity stress alters gene expression,

which in turn affects plant growth and cellular functions. In NP-

mediated root development, reduced miR164 expression influences

auxin hormone signaling, while increased miR169 and decreased

miR167 expression promote lateral root formation and accelerate

flowering (Tolaymat et al., 2017). Foliar application of Zn NPs in

rapeseed (Brassica napus L.) under salinity stress downregulated

stress-related genes such as SKRD2, MYC, and MPK4, while

upregulating ARP and MPK, which regulate hormonal and

physiological responses (Hezaveh et al., 2019). Similarly, silicon

nanoparticles (Si NPs) enhanced growth and molecular adaptations

in Cannabis sativa L. under salinity stress (Guerriero et al., 2021). In

tomato plants, proteomic studies revealed that Si NPs affected genes

involved in light-harvesting complexes, cytochrome b6f (Cytb6f),

and ATP synthesis (Guerriero et al., 2021).
Role of NPs in modulating HM transport
and stress alleviation in plants

Agriculture faces persistent issues with the buildup of HMs in the

soil as a result of increasing industrialization, notably in mining and

tanning industries (Sarwar et al., 2017). HM in soil is a contemporary
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issue since it is difficult to dissolve, readily translatable, and extremely

hazardous to public health and the environment. HMs changes the

natural composition of the soil (Yan et al., 2020; Thakare et al., 2021).

The main contaminants that negatively impacting plant’s agro-

biological systems are Cr, Cd, Ni, HG, Pb, and Cu (Yaashikaa et al.,

2022). Due to their oxidative states, HM are very reactive and induce

molecular and cellular alterations, such as changes in plant physiology

with enzyme deactivation and protein denaturation, as well as

substituting essential metals and damaging membranes (Ghori et al.,

2019). These changes reduce photosynthesis and affect plant

enzyme activity.

HM-induced oxidative stress causes plant HM resistance due to

the high reactivity of HM, which drives at both molecular and

cellular levels. HMs can disrupt plant physiology by inactivating

enzymes, denaturing proteins, substituting essential metals, and

damaging cellular membranes (Ghori et al., 2019). These

disruptions lead to reduced photosynthesis and impaired enzyme

activity, ultimately affecting plant growth and survival.

NPs present a great potential to improve plant tolerance to HM

stress. NPs can be supplied to plants via foliar sprays or soil

amendments. For example, selenium and silicon nanoparticles

have been shown to alleviate Cd and lead (Pb) stress in Oryza

sativa L. by reducing metal uptake and toxicity (Ahmad et al., 2022).

By adding to being treated through the soil, NPs can also be applied

to plants through the foliage. For example, selenium and silicon

nanoparticles applied to leaves have been shown to reduce Cd and

Pb stress in Oryza sativa L (Ahmad et al., 2023).

Plants have evolved mechanisms to maintain homeostasis in

managing metal absorption, detoxification, and transport. NPs

enhance these mechanisms by lowering the bioavailability of metal

pollutants, influencing the regulation of genes responsible for metal

transport, and strengthening the apoplastic barrier that prevents metals

from entering the roots. The binding of NPs to HMs in plant cell walls

primarily occurs through adsorption and complexation processes.

Plant cell walls contain a variety of functional groups, including

hydroxyl, carboxyl, and amino groups, which have a high affinity for

binding metal ions (Zhao et al., 2012). When NPs are introduced, they

interact with these functional groups and increase the cell wall’s

capacity to immobilize HMs through ionic and covalent bonds (Ma

et al., 2019). This binding reduces the bioavailability and mobility of

metals within plant tissues, effectively sequestering them in a non-

bioactive form (Wang et al., 2021). NPs can form stable complexes with

metals like Cd, which minimizes their transport across cellular

membranes and thus reduces their toxicity. This stabilization is

crucial for the plant’s detoxification mechanisms, as it limits the

potential of HMs to disrupt cellular functions (Li et al., 2023). By

enhancing these metal-binding interactions within the cell wall matrix,

NPs support the plant’s natural defense mechanisms against metal

stress (Khan et al., 2021).

Although it does not completely block contaminants, the

apoplastic barrier performs crucial protective activities in plant

roots by managing the passage of ions, oxygen, and water (Fiol

et al., 2021). The apoplastic barriers prevent HMs from entering plant

roots, and their effectiveness can be increased by NPs (Singh et al.,

2021a). By forming complexes with the HMs in the cell walls, NPs

bind to them and render them inactive. Studying the many aspects of
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HM stress relief requires interaction between NPs and HMs. The

application of NPs has been supported due to the decreased mobility

and resulting bioavailability of metal pollutants in the soil. For

instance, adding Si NPs and Fe3O4 NPs makes Cd more stable and

reduces its mobility (Rahman et al., 2022). When NPs complexes are

adsorbed, they become stationary and inhibit the movement of HMs

inside plants, which lowers the biological activity of the plants

(Alghanem et al., 2022). NPs improved the biosynthesis of these

protective organic acids, as it was demonstrated when Si NPs were

utilized to lessen the harm brought on by Cd (Mukarram et al., 2022).

Additionally, NPs enhance the properties of soil; for instance,

hydroxyapatite NPs can increase soil pH and releases phosphate,

which lowers HM toxicity. NPs with a high surface-to-volume ratio,

NPs can interact with specific cellular biomolecules and activate

several biochemical pathways (Nel et al., 2009).

Similar outcomes were shown when Cd was remedied in coriander

using nano-TiO2. These findings included decreased Cd concentration,

decreased oxidative injuries brought on by Cd stress, and enhanced

agronomic features. In soybeans, the application of nano-TiO2 enhanced

photosynthetic rate and growth metrics. The use of Si NPs resulted in an

increase in biomass due to a reduction in Cd stress (Memari-Tabrizi

et al., 2021). To mitigate the effects of Cd on rice, graphite carbon nitride

was generated; as a consequence, there was a large rise in plant biomass

and a major decrease in Cd-induced toxicity (Hao et al., 2021).

NPs influence HM transport in plants through species-specific

mechanisms that regulate stress responses. For example, silicon

nanoparticles (Si NPs) reduce Cd toxicity in rice by downregulating

Cd uptake and transport genes, such as low-affinity cation transporter

(LCT1) and natural resistance-associated macrophage protein 5

(NRAMP5), while upregulating genes like HM ATPase 3 (HMA3)

for Cd sequestration in vacuoles (Cong et al., 2019). Si NPs also

enhance silicon uptake via the LSI1 gene, further mitigating Cd
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accumulation. Similarly, iron oxide (FeO) and hydrogel NPs reduce

the expression of key Cd transporters, including OsHMA2,

OsHMA3, and OsLCT1, lowering Cd translocation in rice (Ahmed

et al., 2021). The NRAMP gene family, responsible for HM transport

across species, is also influenced by NPs. Nanoscale zero-valent iron

(nZVI) has been shown to alleviate HM buildup by downregulating

metal uptake genes (e.g., IRT1, IRT2, YSL2, YSL15), promoting plant

growth and reducing metal stress (Guha et al., 2020). (Table 5)

summarizes the influence of NPs on alleviating HM stress.
Environmental risks of nanoparticles in
agriculture: coping with abiotic stress

The potential for nanotechnology is to boost agricultural

production and output, protect crops from environmental

challenges, and lessen the release of chemicals into the

environment. The distinct effects of nanoparticles (NPs) are

significantly impacted by various factors, including their genotype

or cultivar, size, dosage, composition, surface area, surface coatings,

redox state, and the methods used for their application. However,

some plant species, such as soybean, sorghum, broad bean, sweet

basil, tomato, wheat, onion, and barley, have shown toxicity to NPs

like CeO2, Se, TiO2, and ZnO (Vasseghian et al., 2022).

An increasing amount of research indicates that NPs could

potentially impact higher-level consumers, including humans.

Recent studies are exploring not only the toxicity of NPs to plants

but also their wider implications (Rajpal et al., 2023). E171

(TiO2 NPs-based food additive) has recently been demonstrated

to enhance gastrointestinal tumor development and progression in

a mouse model by altering systems such as inflammation,

immunological responses, cancer signaling, and cell cycle (Li
TABLE 4 Effect of Nanoparticles on Enhancing Plant Responses to Temperature Stress.

NPs Plants Effect on plants References

Se Lycopersicum esculentum Enhanced morphological growth characteristics (Ishtiaq et al. 2023)

Se Sorghum bicolor Increased thylakoid and photosynthetic apparatus integrity (Haghighi et al. 2014)

TiO2 Cicer arietinum MDA levels and the electrolyte leakage index were reduced (Noohpisheh et al. 2020)

Ag Triticum aestivum The genes responsible for antioxidant activity were upregulated (Azimi et al. 2014)

Si Agropyron elongatum Seed dormancy was reduced, seed germination was raised, and seedling weight was increased (Khan et al., 2017)

ZnO Oryza Sativa
Plant growth was stimulated, oxidative stress was minimized, and antioxidative system gene
expression was increased

(Song et al. 2021)

TiO2 Cicer arietinum Lessened membrane damage indexes, improved redox status (Ghabel & Karamian 2020)

Zn Triticum aestivum Increased antioxidant enzyme activity and yield (Hassan et al. 2018)

ZnO Triticum aestivum
Biomass, photosynthetic pigments, soluble sugars, protein, and indole acetic acid levels have
all increased

(Azmat et al. 2022)

Ag Triticum aestivum Enhanced plant morphological characteristics (Iqbal et al. 2020)

TiO2 Cicer arietinum Reduced H2O2 content, Photosynthetic activity increased (Hasanpour et al. 2015)

ZnO Oryza Sativa Decrease oxidative stress, improve antioxidative system's gene expression (Song et al. 2021)

Fe Triticum aestivum Reduced oxidative stress and increased production and activity of antioxidant enzymes (Naeem et al. 2022)
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et al., 2021a). Plants suffer a range of adverse effects from NPs, such

as, reduced seed germination and root elongation, biomass, growth

inhibition, limited mineral uptake, ROS, generation of electron-hole

pairs, damage to the cell wall and cell membrane, impairment of

cellular structures, and NP aggregation, which leads to increased

ROS levels and tissue toxicity (Ghori et al., 2019). However,

observations showed that the toxicity of NPs is conditional on

things like the plant species and genotype involved, the NPs’

concentration and size, and the length of time the plants are

exposed to them (Zhou et al., 2023b).

Researchers in medicine and ecology have gained substantial

insights into the protein corona, but its role in plants has only

recently been clarified. The absorption, translocation, effects, and

ultimate fate of NPs in plants are influenced by various factors,

including the protein corona that surrounds them (Huang et al.,

2017). The protein corona refers to a dynamic layer of proteins and

other biomolecules that adsorb onto the surface of NPs when they enter

biological environments, including plant systems. The formation of the

protein corona is critical because it alters the physicochemical

properties of NPs, such as their size, charge, and surface

characteristics, which can impact how they are recognized and

transported within plant tissues (Wang et al., 2020). In particular,

the protein corona affects the uptake, translocation, and bioavailability

of NPs in plants by modulating their interaction with cell walls and

membranes (Figure 5). For instance, certain proteins in the coronamay

facilitate or inhibit NP entry into cells by interacting with membrane

receptors or transporters, impacting the NP’s eventual localization
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within plant tissues (Kumar et al., 2022). Additionally, the protein

corona can influence the biocompatibility and potential toxicity of NPs

in plants, as specific proteins may reduce or increase the plant’s stress

response to foreign particles (Petersen et al., 2016). Thus,

understanding the formation and composition of the protein corona

in plant systems provides valuable insights into the behavior and fate of

NPs in agricultural and environmental contexts. This knowledge helps

to better predict how NPs interact with plants at the cellular and

molecular levels, which is essential for assessing their risks and benefits

in agricultural applications.

Before nanobiotechnology can be commercially applied,

thorough research is essential, as cells respond differently to

various aspects of the technology, such as its introduction, uptake,

translocation, accumulation, concentration, surface activity,

variability, and most importantly, the association of NPs with

cellular organelles and their impact on cellular metabolism (Ali

et al., 2021a). Given these limitations, future research efforts should

investigate ways to make agricultural NP usage safer and more

productive. To reduce the potential for ecotoxicological risks to

humans and plants, greater research into nano-bio interaction and

impact evaluations is needed. The safe disposal of NPs is another

critical issue that requires the focus of the scientific community. If

not burned, NPs should be disposed of in sealed containers in a

specially designated place for hazardous waste. Unfortunately, NPs

are being employed at several labs/institutions worldwide that do

not have access to suitable technology. The usage and disposal of

NPs require rigorous safety standards and regulations. The current
FIGURE 4

Different types of abiotic stresses like temperature, drought, heavy metals, salinity and flooding effects on plants and their response in various ways.
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evaluation stresses the need for precautionary measures while using

NPs in the present setting (Donia and Carbone, 2019).
Future challenges

Environmental degradation poses a major risk to global food

security, influenced by issues such as soil erosion, nutrient loss,

pesticide pollution, and diminishing biodiversity. These obstacles,

combined with the continuous reliance on conventional agricultural

techniques, highlight the need for innovative approaches.

Nanotechnology emerges as a viable solution, capable of bolstering

crop resilience, improving nutrient distribution, and alleviating the

effects of environmental challenges, thus supporting sustainable

farming practices.in addition, abiotic stressors such as drought,
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salinity, and temperature extremes are becoming more frequent and

severe. These stressors significantly reduce crop yield and compromise

agricultural productivity. NPs have emerged as promising tools to

alleviate plant abiotic stress by enhancing nutrient mobility, providing

protection against damage, and improving stress tolerance. NPs are a

promising new technology for improving agricultural sustainability.

However, there are still some challenges that need to be addressed

before NPs are widely adopted (Figure 6). These challenges include:
Regulatory and ethical aspects

Nanotechnology’s integration into agriculture, an emerging field,

requires thorough attention to both regulatory and ethical concerns.

Developing well-defined guidelines and regulations is essential to
TABLE 5 Role of nanoparticles in alleviating heavy metal stress in plants.

NPs Plants Effect on plants References

ZnO Oryza sativa Lower level of Cd and as in roots and leaves (Ma et al. 2020)

Si Pisum sativum Cr phytotoxicity and oxidative stress were reduced (Tripathi et al. 2015)

Fe2O3 Vigna radiata Lowered As uptake and toxicity, improve chlorophyll content (Shabnam et al. 2019)

TiO2 Coriandrum sativum L. Reduced oxidative stress, ROS scavengers (Sardar et al. 2022)

Si Satureja hortensis L. Reduce Cd level and increase plant growth (Memari-Tabrizi et al., 2021)

Cu Brassica Enhanced photosynthetic rate, antioxidant enzymes activity (Wang et al. 2022)

ZnO Abelmoschus esculentus Chlorophyll, proline, and antioxidant enzyme levels rise (Rajpal et al., 2023)

CeO2 Oryza sativa Shoot length, chlorophyll content, and fresh and grain weight are all increased (Zhou et al. 2020)

Ag Lilium
Increased leaf and bulb biomass, improved development, and blooming Chlorophyll content in
leaves has increased

(Salachna et al. 2019)

Fe2O3 Dracocephalum moldavica
Increase in root and shoot fresh and dry weight, leaf length and leaf area, increased amino acids
and enzyme activity

(Moradbeygi et al. 2020)

TiO2 Phaseolus vulgaris
Mycorrhizal colonization in root tissues, arbuscular frequency, and AMF relative density
all increased

(El-Gazzar et al. 2020)

MgO Daucus carota
Detoxify ROS to reduce lead (Pb) stress and boost plant development through increased
antioxidant enzyme activity

(Faiz et al. 2021)

Si Coriandrum sativum
Reduced the harmful effects of lead (Pb) on coriander plants by lowering Pb concentrations and
strengthening the plant's defensive mechanism.

(Fatemi et al. 2021)

Si Triticum aestivum
Enhanced plant growth, photosynthesis, and SOD and POD activity; decreased H2O2, EL, MDA,
and Cd content

(Thind et al. 2021)

SiO2 Glycine max Increased chlorophyll concentration; decreased Hg deposits in roots (Li et al., 2021b)

Fe2O3 Oryza sativa Increased plants height; improved fresh and dry biomass (Ahmed et al., 2021)

Cu Triticum aestivum Decreased Cr availability, increased nutritional absorption, antioxidant content (Noman et al. 2020)

ZnO Oryza sativa ZnO treatment boosted seedling growth (Yan et al. 2021)

TiO2 Zea mays Cd buildup is reduced, and antioxidant enzyme activity is increased (Lian et al. 2020)

MgO Zea mays Reduced HM toxicity and increased plant growth (Fouda et al. 2021)

FeO Oryza sativa Reduced As deposits, Fe uptake increased, and photosynthetic pigments were restored (Bidi et al. 2021)

TiO2 Coriandrum sativum Reduced oxidative damage and increased proline and yield biosynthesis (Sardar et al. 2022)

TiO2 Glycine max Improve the root, shoots biomass and boost yield (Hussain et al. 2021)

FeO Triticum aestivum Cd toxicity was reduced, and growth, yield, and chlorophyll content were all enhanced (Manzoor et al. 2021)
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guarantee the safe application of NPs in agricultural systems. These

measures are crucial for minimizing possible environmental and health

risks related to NP applications. Ethical considerations include the

impact of large-scale NP use on food safety, biodiversity, and ecosystem

health. Collaboration among governments, regulatory bodies, and

researchers is vital to determine safe NP concentration thresholds for

various agricultural applications.
Integration with other
agricultural technologies

Nanotechnology can be integrated with other emerging

agricultural technologies, such as Precision Agriculture, to enhance

efficiency. Technologies like drones, sensors, and satellite imagery

facilitate targeted nutrient and pesticide delivery. However, there is

ongoing debate about the environmental impact and efficiency of

these technologies, partly due to NP concentrations. Precision

Agriculture could benefit from NP-enhanced nutrients, allowing for

more efficient and less polluting delivery systems. Additionally, smart

fertilizers using NPs can provide variable delivery routes and

amounts based on plant needs, promoting sustainability.

Integrating nanotechnology with other advanced agricultural

technologies, particularly within the framework of Precision

Agriculture, holds significant potential for improving efficiency

and sustainability in farming. Precision Agriculture technologies,

such as drones, soil sensors, and satellite imagery, enable real-time

monitoring of crop health, soil quality, and environmental

conditions. These tools facilitate targeted applications of fertilizers

and pesticides, reducing waste and limiting environmental impact

(Getahun et al., 2024). NPs could further enhance these

technologies by improving the formulation of agrochemicals,
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enabling controlled-release fertilizers, and offering nano-based

pesticides that are more precise and require lower doses than

traditional formulations (Zain et al., 2023).

One promising application is the use of NP-enhanced nutrients,

which could allow for more efficient delivery systems by controlling the

release of nutrients directly into the root zones, minimizing runoff and

reducing groundwater contamination (Shanmugavel et al., 2023). This

approach aligns with sustainable practices by delivering nutrients in a

manner that minimizes pollution. Additionally, integrating NPs with

smart fertilizers that respond to environmental cues or plant needs

could provide tailored nutrient delivery. For instance, NPs can be

engineered to release nutrients in response to soil moisture levels or pH

changes, thus ensuring that plants receive the right nutrients at the

right time (Wang et al., 2020).

However, concerns regarding the long-term environmental and

ecological impact of NPs persist, especially with respect to NP

accumulation in soil and water systems. Research has indicated that

while nanomaterials offer efficiency, their interactions with various

environmental factors are complex and not fully understood,

raising questions about their fate and effects in ecosystems (Lead

et al., 2018). Ongoing studies aim to address these uncertainties by

examining the biodegradability, persistence, and toxicity of NPs

used in agricultural settings, aiming to establish guidelines for safe

concentrations and applications.

Through strategic integration, nanotechnology could enhance

the effectiveness of Precision Agriculture by ensuring that nutrients

and pesticides are applied only where and when needed, promoting

sustainable agricultural practices. This synergy between

nanotechnology and digital farming tools could ultimately lead to

a more environmentally conscious approach to food production,

potentially mitigating some of the environmental pressures posed

by conventional agricultural methods (Zhang et al., 2021).
FIGURE 5

Pathways of nanoparticle uptake, transport, and distribution in plants: from root absorption to foliar application.
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Advance methodologies to track and
observe the NPs delivery in plants

Advanced methodologies for tracking and observing NPs delivery

within plants have significantly progressed, enabling detailed insights

into NPs uptake, distribution, and transformation. Techniques such as

confocal microscopy with intrinsically fluorescent or dye-labeled NPs

(Demirer et al., 2020; Santana et al., 2020), provide real-time tracking of

NPs, allowing visualization of their transport across cellular barriers

and into specific plant structures, including roots and leaves (Santana

et al., 2020; Jeon et al., 2024). Another powerful approach involves laser

ablation coupled with inductively coupled plasma mass spectrometry

(ICP-MS), which can quantitatively analyze elemental composition and

map the distribution of metal-based NPs within different plant tissues,

providing spatial resolution of NP presence in roots, stems, and leaves

(Avellan et al., 2019).

Synchrotron-based X-ray fluorescence (XRF) imaging (Stegemeier

et al., 2017) and X-ray absorption spectroscopy (López-Moreno et al.,

2010) offer high-resolution elemental mapping, enabling researchers to

observe the exact location and chemical state of NPs within plant cells

and organelles. These techniques are especially useful for assessing NP

translocation and transformations at cellular and subcellular levels

(Lombi et al., 2016). For three-dimensional analysis, methods like X-

ray tomography, magnetic resonance imaging (MRI), and advanced

confocal microscopy allow for 3D reconstructions, which facilitate a

comprehensive understanding of NP penetration pathways and

localization within plant tissues (Staedler et al., 2013; Santana

et al., 2020).

Additional techniques such as Fourier-transform infrared

(FTIR) spectroscopy, Raman spectroscopy, and microparticle-

induced X-ray emission (µ-Pixe) are essential for examining

chemical changes in NP surfaces (Larue et al., 2014). These tools

help to monitor how NPs interact with plant biomolecules, thus
Frontiers in Plant Science 16
providing insight into the stability and transformations of NPs once

inside the plant environment (Larue et al., 2014). Furthermore,

single-particle ICP-MS is used to characterize individual NPs within

plant tissues, offering data on size, distribution, and potential

aggregation, which are critical for understanding NP behavior

after uptake (Keller et al., 2018). Collectively, these advanced

methodologies allow researchers to accurately track, quantify, and

analyze NPs within plants, which is essential for optimizing nano-

enabled delivery systems in agricultural applications.

These innovative tracking tools thus support a detailed

understanding of NP delivery, behavior, and impact within plant

systems, addressing essential concerns for the development of

sustainable and effective NP applications in agriculture.
Public considerations

Public perception of NPs in agriculture is an important

consideration. Concerns often stem from a deficiency of

information and fears around the ingestion of NPs in food

production. Educational campaigns and collaboration among

researchers, policymakers, and the public are essential to foster

informed and acceptable NP use in agriculture.
Long-term studies and
environmental effects

Long term studies are crucial for understanding how NPs

persist, move, and affect ecosystems within agricultural systems.

While short-term studies provide insight into initial effects, only

extended-duration research can reveal how NPs behave over time in

complex agricultural systems and ecosystems. These studies are
FIGURE 6

A schematic diagram illustrate the uptake and translocation mechanism of Nps in plants.
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especially valuable for organic and sustainable farming systems,

where minimal synthetic inputs are emphasized. In such contexts,

the introduction of nanoparticles could have unexpected

consequences for soil health, water quality, and crop quality.

Long-term field studies examining the environmental impacts

of nanoparticles (NPs) indicate that NPs undergo complex

transformations influenced by soil chemistry, redox potential, and

interactions with plant and microbial metabolites, leading to

significant environmental implications. For instance, metal-based

NPs such as copper oxide (CuO) can be reduced in acidic, low-

oxygen environments, forming stable compounds that persist in

soil, thereby altering soil chemistry and affecting nutrient

bioavailability over time (Shang et al., 2019a; Arshad et al., 2021).

Additionally, transformations within plant systems vary with

environmental factors like ionic strength and pH, impacting NP

dissolution rates and, consequently, nutrient cycling in the

surrounding soil and plant ecosystem (Lv et al., 2019; Zhang

et al., 2020).

Studies reveal that these transformations affect the entire plant

life cycle, with effects extending across generations. For example,

nanoparticles such as silver (Ag) and cerium oxide (CeO₂) have

been shown to enhance stress responses in plants, which can be

inherited by subsequent generations (Zhao et al., 2022; Zhou et al.,

2023a). However, the potential for bioaccumulation and

biomagnification of NPs in food chains remains a significant

concern, as these particles can migrate from soil to crops and

subsequently into higher trophic levels, posing ecosystem health

risks (Werlin et al., 2011; Wu et al., 2023).

Long-term environmental exposure studies in realistic soil

systems underscore the complex interactions of NPs with soil

microbiomes, groundwater, and higher organisms, emphasizing

the need for sustainable NP application practices. For example,

NPs can aggregate or bind with soil components, forming eco-

coronas that mitigate toxicity, but complicate environmental fate

and impact based on NP composition and environmental context

(Kurepa et al., 2020; Borgatta et al., 2021). Understanding these

transformations in agriculareral systems is thus crucial for safe and

sustainable nano-enabled agricultural technologies.
Outstanding questions
Fron
1. Which plant developmental stages and species should be

prioritized for nanoparticle research to better understand the

mechanisms driving plant responses to abiotic stress? How do

these responses change across different growth phases?

2. How can we improve the incorporation of nanoparticle

methods to get a deeper awareness of the growth processes

that control plant responses to severe abiotic stress

conditions, hence improving the development of stress-

resistant plants?
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3. How can we develop advanced climate simulation systems

that accurately reflect the impact of nanoparticles on crops

in field conditions?

4. What are the environmental and safety risks of

nanotechnology, and how may they reduced in order to

accelerate agricultural development?

5. What are the long-term effects on stressed plants in

changing climates, especially in practical farming

environments, and how can these outcomes be predicted

and managed?

6. How can we promote nanotechnology cooperation among

plant scientists, geneticists, data experts, and agronomists

to tackle the challenges involved in cultivating stress-

resistant plants using nanotechnology?

7. What policies and strategies can be introduced at both

national and international levels to encourage the adoption

of nanotechnology in agriculture and contribute to achieving

global food security goals, such as the ‘zero hunger’ initiative

by the Food and Agriculture Organization (FAO)?
Conclusion

Scientists must design and implement sustainable solutions to

minimize agricultural production losses due to abiotic stress.

Nanotechnology is a novel and effective way to raise agricultural

productivity and quality and manage global food demand. Several

NPs are being researched for their potential role in minimizing

abiotic stress-induced loss and enhancing plant development and

agricultural output. NPs mitigate abiotic stress by triggering plant

defense systems such as ROS production and phytotoxicity. NPs

easily permeate plant tissues due to their tiny size, impacting plant

morphological, physiological, and biochemical processes,

enhancing plant development, and boosting crop output in plants

exposed to various abiotic challenges.

Further research is necessary to maximize the benefits of NPs in

agriculture and mitigate their potential negative impacts; key areas for

investigation include: It is crucial to understand how NPs interact with

plants at molecular and cellular stages. This includes studying their

effects on metabolic processes and optimizing NPs size and

concentration for effective field application. Research should focus on

the potential toxic effects of NPs across different plant species.

Understanding these effects is essential for developing safe

application protocols. Exploring how NPs influence gene expression

can provide insights into their role in enhancing plant stress tolerance

and resilience.

While NPs offer promising solutions for enhancing agricultural

sustainability and resilience, their implementation must be

approached with caution. By addressing regulatory, ethical, and

environmental considerations, nanotechnology can be safely and

effectively integrated into agricultural practices, contributing to

global food security and environmental health.
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(2019). Stimulatory effect of silver nanoparticles on the growth and flowering of potted
oriental lilies. Agronomy 9 (10), 610. doi: 10.3390/agronomy9100610
frontiersin.org

https://doi.org/10.1007/s44154-022-00065-y
https://doi.org/10.1016/j.envpol.2023.122340
https://doi.org/10.1155/2020/4056563
https://doi.org/10.1016/j.chemosphere.2019.124794
https://doi.org/10.1021/jf904472e
https://doi.org/10.1039/C8EN00645H
https://doi.org/10.1021/acs.est.5b00685
https://doi.org/10.1016/j.cej.2019.123802
https://doi.org/10.1016/j.plaphy.2023.108281
https://doi.org/10.1016/j.scitotenv.2019.03.210
https://doi.org/10.3390/agronomy11061213
https://doi.org/10.1186/s13065-023-01099-7
https://doi.org/10.1016/j.scitotenv.2021.145221
https://doi.org/10.1021/acsomega.3c06961
https://doi.org/10.1016/j.plaphy.2021.04.040
https://doi.org/10.1016/j.plaphy.2021.04.040
https://doi.org/10.1007/s10534-021-00306-z
https://doi.org/10.1007/s10534-021-00306-z
https://doi.org/10.1371/journal.pone.0256905
https://doi.org/10.1007/s42729-022-00833-9
https://doi.org/10.3390/agriculture11100983
https://doi.org/10.1016/j.scienta.2020.109537
https://doi.org/10.1021/acs.jafc.1c03673
https://doi.org/10.1016/j.envpol.2022.119855
https://doi.org/10.1146/annurev.arplant.59.032607.092911
https://doi.org/10.1016/j.chemosphere.2021.133203
https://doi.org/10.1016/j.chemosphere.2021.133203
https://doi.org/10.5772/intechopen.110201
https://doi.org/10.1038/nmat2442
https://doi.org/10.1186/s12951-022-01423-8
https://doi.org/10.1016/j.ecoenv.2020.110303
https://doi.org/10.1080/11263504.2020.1739160
https://doi.org/10.3390/nano13060998
https://doi.org/10.3390/atmos13010111
https://doi.org/10.1007/s13205-016-0567-7
https://doi.org/10.35709/ory.2019.56.2
https://doi.org/10.35709/ory.2019.56.2
https://doi.org/10.3390/plants8060151
https://doi.org/10.1021/acs.est.1c00453
https://doi.org/10.5897/AJB2022.17485
https://doi.org/10.1016/j.envpol.2022.119916
https://doi.org/10.1007/s10098-023-02561-9
https://doi.org/10.3389/fchem.2017.00078
https://doi.org/10.1111/ppl.v171.4
https://doi.org/10.1007/s11738-019-2828-7
https://doi.org/10.3389/fpls.2016.00815
https://doi.org/10.3390/agronomy9100610
https://doi.org/10.3389/fpls.2024.1510482
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cao et al. 10.3389/fpls.2024.1510482
Santana, I., Wu, H., Hu, P., and Giraldo, J. P. (2020). Targeted delivery of
nanomaterials with chemical cargoes in plants enabled by a biorecognition motif.
Nat. Commun. 11, 2045. doi: 10.1038/s41467-020-15731-w

Sardar, R., Ahmed, S., and Yasin, N. A. (2022). Titanium dioxide nanoparticles
mitigate cadmium toxicity in coriandrum sativum l. through modulating antioxidant
system, stress markers and reducing cadmium uptake. Environ. pollut. 292, 118373.
doi: 10.1016/j.envpol.2021.118373

Sarkar, M., Rashid, H. O., Rahman, A., Kafi, M. A., and Hosen, I. (2022). Recent
advances in nanomaterials based sustainable agriculture: An overview. Environ.
Nanotechnology Monit. Manage. 18, 100687. doi: 10.1016/j.enmm.2022.100687

Sarkar, M. M., Rudra, P., Paul, P., Dua, T. K., and Roy, S. (2024). Enhanced adaptation to
salinity stress in lentil seedlings through the use of trehalose-functionalized silica
nanoparticles (TSiNPs): Exploring silica-sugar absorption and oxidative balance. Plant
Physiol. Biochem. 206, 108309. doi: 10.1016/j.plaphy.2023.108309

Sarkar, M. M., Mukherjee, S., Mathur, P., and Roy, S. (2022). Exogenous nano-silicon
application improves ion homeostasis, osmolyte accumulation and palliates oxidative
stress in lens culinaris under NaCl stress. Plant Physiol. Biochem. 192, 143–161.
doi: 10.1016/j.plaphy.2022.10.001

Sarwar, N., Imran, M., Shaheen, M., Ishaque, W., Kamran, A., Matloob, A., et al. (2017).
Phytoremediation strategies for soils contaminated with heavy metals: Modifications and
future perspectives. Chemosphere 171, 710–721. doi: 10.1016/j.chemosphere.2016.12.116

Seleiman,M. F., Al-Selwey,W. A., Ibrahim, A. A., Shady, M., and Alsadon, A. A. (2023).
Foliar applications of ZnO and SiO2 nanoparticles mitigate water deficit and enhance
potato yield and quality traits. Agronomy 13 (2), 466. doi: 10.3390/agronomy13020466

Semida, W. M., Abdelkhalik, A., Mohamed, G. F., Abd El-Mageed, T. A., Abd El-
Mageed, S. A., Rady, M. M., et al. (2021). Foliar application of zinc oxide nanoparticles
promotes drought stress tolerance in eggplant (Solanum melongena l.). Plants 10 (2),
421. doi: 10.3390/plants10020421

Shabnam, N., Kim, M., and Kim, H. (2019). Iron (III) oxide nanoparticles alleviate
arsenic induced stunting in vigna radiata. Ecotoxicology Environ. Saf. 183, 109496.
doi: 10.1016/j.ecoenv.2019.109496

Shah, A. A., Ahmed, S., Malik, A., Naheed, K., Hussain, S., Yasin, N. A., et al. (2022).
Potassium silicate and zinc oxide nanoparticles modulate antioxidant system,
membranous h+-ATPase and nitric oxide content in faba bean (Vicia faba) seedlings
exposed to arsenic toxicity. Funct. Plant Biol. doi: 10.1071/FP21301

Shang, H., Guo, H., Ma, C., Li, C., Chefetz, B., Polubesova, T., et al. (2019a). Maize
(Zea mays L.) root exudates modify the surface chemistry of CuO nanoparticles:
Altered aggregation, dissolution and toxicity. Sci. Total Environ. 690, 502–510.
doi: 10.1016/j.scitotenv.2019.07.017

Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., and Zhou, J. (2019b).
Applications of nanotechnology in plant growth and crop protection: A review.
Molecules 24, 2558. doi: 10.3390/molecules24142558

Shanmugavel, D., Rusyn, I., Solorza-Feria, O., and Kamaraj, S.-K. (2023). Sustainable
SMART fertilizers in agriculture systems: A review on fundamentals to in-field
applications. Sci. Total Environ. 904, 166729. doi: 10.1016/j.scitotenv.2023.166729

Sheikhalipour, M., Esmaielpour, B., Gohari, G., Haghighi, M., Jafari, H., Farhadi, H.,
et al. (2021). Salt Stress Mitigation via the Foliar Application of Chitosan-
Functionalized Selenium and Anatase Titanium Dioxide Nanoparticles in Stevia
(Stevia rebaudiana Bertoni). Molecules 26, 4090. doi: 10.3390/molecules26134090

Shenashen, M., Derbalah, A., Hamza, A., Mohamed, A., and El Safty, S. (2017).
Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot
disease of tomato caused by fusarium oxysporium. Pest Manage. Sci. 73 (6), 1121–1126.
doi: 10.1002/ps.4420

Singh, A., Sharma, A., Singh, O., Rajput, V. D., Movsesyan, H. S., Minkina, T., et al.
(2024). In-depth exploration of nanoparticles for enhanced nutrient use efficiency and
abiotic stresses management: present insights and future horizons. Plant Stress, 100576.
doi: 10.1016/j.stress.2024.100576

Singh, A., Tiwari, S., Pandey, J., Lata, C., and Singh, I. (2021a). Role of nanoparticles
in crop improvement and abiotic stress management. J. Biotechnol. 337, 57–70.
doi: 10.1016/j.jbiotec.2021.06.022

Singh, A., Tiwari, S., Pandey, J., Lata, C., and Singh, I. K. (2021b). Role of
nanoparticles in crop improvement and abiotic stress management. J. Biotechnol.
337, 57–70. doi: 10.1016/j.jbiotec.2021.06.022

Song, Y., Jiang, M., Zhang, H., and Li, R. (2021). Zinc oxide nanoparticles alleviate
chilling stress in rice (Oryza sativa l.) by regulating antioxidative system and chilling
response transcription factors.Molecules 26 (8), 2196. doi: 10.3390/molecules26082196

Srivastav, A., Shukla, A., Singhal, R. K., Srivastav, S., Ganjewala, D., and Shrivastava,
M. (2023). Soil and plant enzymes responses to zinc oxide nanoparticles in submerged
rice (Oryza sativa l.) ecosystem. Trends Sci. 20 (9), 5558–5558. doi: 10.48048/
tis.2023.5558

Staedler, Y. M., Masson, D., and Schönenberger, J. (2013). Plant tissues in 3D via X-
ray tomography: simple contrasting methods allow high resolution imaging. PloS One
8, e75295. doi: 10.1371/journal.pone.0075295

Stegemeier, J. P., Colman, B. P., Schwab, F., Wiesner, M. R., and Lowry, G. V. (2017).
Uptake and distribution of silver in the aquatic plant Landoltia punctata (duckweed)
exposed to silver and silver sulfide nanoparticles. Environ. Sci. Technol. 51, 4936–4943.
doi: 10.1021/acs.est.6b06491
Frontiers in Plant Science 22
Sturikova, H., Krystofova, O., Huska, D., and Adam, V. (2018). Zinc, zinc nanoparticles
and plants. J. Hazard Mater 349, 101–110. doi: 10.1016/j.jhazmat.2018.01.040

Su, Y., Ashworth, V., Kim, C., Adeleye, A. S., Rolshausen, P., Roper, C., et al. (2019).
Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical
review and data analysis. Environ. Science: Nano 6, 2311–2331. doi: 10.1039/
C9EN00461K

Sun, L., Song, F., Guo, J., Zhu, X., Liu, S., Liu, F., et al. (2020). Nano-ZnO-induced
drought tolerance is associated with melatonin synthesis and metabolism in maize. Int.
J. Mol. Sci. 21 (3), 782. doi: 10.3390/ijms21030782
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