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agricultural vehicles
Zhijian Chen1, Yijun Fang1, Jianjun Yin1*, Shiyu Lv1,
Farhan Sheikh Muhammad1 and Lu Liu2

1School of Agricultural Engineering, Jiangsu University, Zhenjiang, China, 2Institute of Technology,
Anhui Agricultural University, Hefei, China
Introduction: The rapid urbanization of rural regions, along with an aging

population, has resulted in a substantial manpower scarcity for agricultural

output, necessitating the urgent development of highly intelligent and accurate

agricultural equipment technologies.

Methods: This research introduces YOLOv8-PSS, an enhanced lightweight

obstacle detection model, to increase the effectiveness and safety of

unmanned agricultural robots in intricate field situations. This YOLOv8-based

model incorporates a depth camera to precisely identify and locate impediments

in the way of autonomous agricultural equipment. Firstly, this work integrates

partial convolution (PConv) into the C2f module of the backbone network to

improve inference performance and minimize computing load. PConv

significantly reduces processing load during convolution operations, enhancing

the model's real-time detection performance. Second, a Slim-neck lightweight

neck network is introduced, replacing the original neck network's conventional

convolution with GSConv, to further improve detection efficiency and accuracy.

This adjustment preserves accuracy while reducing the complexity of the model.

After optimization, the bounding box loss function is finally upgraded to Shape-

IoU (Shape Intersection over Union), which improves both model accuracy

and generalization.

Results: The experimental results demonstrate that the improved YOLOv8_PSS

model achieves a precision of 85.3%, a recall of 88.4%, and an average accuracy

of 90.6%. Compared to the original base network, it reduces the number of

parameters by 55.8%, decreases the model size by 59.5%, and lowers

computational cost by 51.2%. When compared with other algorithms, such as

Faster RCNN, SSD, YOLOv3-tiny, and YOLOv5, the improved model strikes an

optimal balance between parameter count, computational efficiency, detection

speed, and accuracy, yielding superior results. In positioning accuracy tests, the,

average and maximum errors in the measured distances between the camera

and typical obstacles (within a range of 2-15 meters) were 2.73% and

4.44%, respectively.
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Discussion: The model performed effectively under real-world conditions,

providing robust technical support for future research on autonomous

obstacle avoidance in unmanned agricultural machinery.
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1 Introduction

The fast rate of urbanization, along with an aging rural

population and migration of agricultural workers, has resulted in a

considerable labor shortage in rural regions. These issues make it

increasingly difficult to sustain high-quality farming techniques while

failing to fulfill the expectations of modern agricultural growth. As a

result, the automation of agricultural technology has become an

absolute requirement for agricultural advancement. At present, such

difficulties can be effectively solved through the development of smart

agriculture (Garg and Alam, 2023) and unmanned farms are an

important way to realize smart agriculture (Ming et al., 2023). Many

developed countries in Europe and the United States have

streamlined operations using unmanned farm technologies such as

automated navigation for smart farm machinery (Yang et al., 2022; Ji

et al., 2023). Compared to conventional agricultural production

techniques, automation can increase operating hours, reduce

operator labor intensity, and enhance overall efficiency (Wang

et al., 2022). However, the unstructured features of agricultural

landscapes create considerable obstacles. The random and discrete

distribution of obstacles, such as pedestrians in the field or other

agricultural machinery operating simultaneously, poses serious risks

to the autonomous navigation of agricultural equipment. Accurate

obstacle detection during operation is essential for effective path

planning and obstacle avoidance (Zhao et al., 2023). It is significant

to ensure the operational efficiency and driving safety of

agricultural machinery.

Obstacle detection can be achieved by employing various

obstacle detection sensors, including vision sensors (Fu et al.,

2020)、laser radar (Yang et al., 2022)、and ultrasonic sensors (Li

et al., 2018). Among these methods, vision-based detection methods

have the advantages of low price, rich information, and wide

detection range, which are widely used in theoretical research and

practical application exploration. Traditional target detection

algorithms rely on feature extraction and sliding window

techniques to identify specific objects in an image and determine

their location (Dong et al., 2023). However, in complex and

dynamic environments manually extracted features may not

effectively describe and distinguish, objects, affecting the accuracy

and robustness of detection. With the rise of deep learning

technology, target detection algorithms based on this technology

have gradually replaced traditional algorithms, becoming
02
mainstream, emerging and widely used in the agricultural field in

recent years (Ren et al., 2016; Ji et al., 2022). These algorithms are

mainly categorized into two-stage target detection algorithms

represented by Faster R-CNN and one-stage target detection

algorithms SSD and YOLO detection algorithms, which are now

widely used in target detection (Wang et al., 2021). To address

obstacle detection in complex orchard environments, Liu et al (Hui

et al., 2019). proposed a real-time pedestrian identification

approach based on an enhanced SSD architecture that utilizes

MobileNetV2 as the backbone. To anticipate position, the

auxiliary network layer uses an inverted residual structure and

null convolution. When tested on an open dataset, the upgraded

SSD model obtained an average accuracy of 97.46% and a recall of

89.72% in pedestrian recognition, despite only identifying

pedestrians as a single obstacle type. Chen et al (Bin et al., 2021).

created an enhanced YOLOv3-tiny target detection model to

facilitate in obstacle avoidance during autonomous agricultural

machinery navigation. This model incorporates shallow

characteristics via a splicing layer before the second prediction

layer, as well as a residual module, to improve the depth and

learning capacity of the YOLOv3-tiny backbone. This advancement

makes it possible to use a panoramic camera installed on the

agricultural machine to detect impediments in real time with

greater accuracy. The results show that the average accuracy and

recall rates increased by 5.6% and 5.2%, respectively, satisfying the

requirement for real-time obstacle detection while moving. Wei

et al (Jiansheng et al., 2021). developed an obstacle sensing system

for autonomous tractors based on an upgraded YOLOv3 model for

field detection and binocular vision for obstacle localization. The

experimental findings demonstrated an average accuracy of 89.54%,

a recall of 90.18%, a depth estimate error of 4.66% for dynamic

situations, and an average processing time of 0.573 seconds.

However, the large number of YOLOv3 model parameters

reduces its speed on embedded systems, emphasizing the need for

a more lightweight model to increase inference speed. Su et al (Su

et al., 2022). enhanced the YOLOv5s model for real-time detection

of orchard obstacles, such as people, by using K-means clustering,

the Senet module, and pruning. Experimental findings indicated

that the revised model decreased size by 13.6 MB while boosting

accuracy and average accuracy by 5.60% and 1.30%, respectively.

The average detection time reaches 33 ms, which meets the

requirements for obstacle detection in orchards.
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The above research has promoted the development of obstacle

detection technology, and a certain degree of progress has beenmade in

terms of detection accuracy, detection speed, and lightweight. However,

the unstructured field environment also brings huge challenges. The

obstacles in the field are not single types of objects, usually composed of

static and dynamic types of obstacles. This often leads to the model

ignoring some objects during detection, which poses certain safety

hazards; In addition, most existing obstacle detection models are

complex large models that cannot run when deployed on low

performance embedded devices on agricultural machinery.

Considering the safety and work efficiency of unmanned agricultural

machines in the process of travelling, it is particularly important to

achieve fast and accurate detection and localization of different types of

obstacles. To address the problem that the complexity of the model

leads to difficulties in mobile deployment, from the perspective of

balancing the detection speed and detection accuracy, this paper

proposes an improved network model based on YOLOv8, which

achieves obstacle detection and localization after the model is

deployed in the edge computer, to better leave a safe distance for the

unmanned agricultural vehicle to avoid obstacles. The main

contributions of our paper are summarized as follows:
Fron
• This article constructs an obstacle dataset suitable for

unmanned agricultural vehicle driving scenarios by

collecting images of different types of obstacles.

• In order to reduce the model size and maintain high

detection speed while ensuring accuracy, this paper

proposes a lightweight YOLOv8-PSS model.

• This article deploys the model on agricultural machinery

and detects and locates different types of obstacles, verifying

that the proposed YOLOv8-PSS model can maintain good

detection performance after deployment, laying the

foundation of the subsequent unmanned agricultural

vehicle intelligentsia.
2 Materials and methods

2.1 Dataset creation

2.1.1 Data source
To increase dataset variety and assure robust detection and

generalization during real-world operations, this research combines

experimental data from both open-source and self-constructed

datasets. The open-source data is sourced from Carnegie Mellon

University’s National Robotics Engineering Center (https://

www.nrec.ri.cmu.edu/solutions/agriculture/human-detection-and-

tracking-2/), Flying Plasma AI Studio’s public dataset, and images

collected from the web. The self-constructed field obstacle dataset

was collected from Rungo Farm Co. in Zhenjiang City, Jingkou

District, Jiangsu Province, China (Longitude 119°43’55.664″ East,

Latitude 32°8’12.998″North) and Green Spring Leisure Agricultural
Demonstration Park in Huimin County, Binzhou City, Shandong

Province, China (Longitude 117°32’5.136″ East, Latitude 37°

27’32.342″ North), between June 2023 and early November 2023.
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Images were captured from 8:00 to 18:00, and the acquisition

equipment was an iPhone XS and Canon camcorder with lens

resolutions of 3624 × 2448 and 3456 × 2304 pixels, respectively

(https://www.kaggle.com/datasets/chenzhijian37/agricultural-

obstacles). All data images were collected in the natural

environments along farm roads, and unclear images caused by

weather or human error were removed. An example of the dataset is

shown in Figure 1, which mainly includes common obstacles such

as people, farm machinery, trees, vehicles, and utility poles.

2.1.2 Image pre-processing
To further enrich the dataset, this research uses online data

enhancement techniques to augment the data volume, specifically

including luminance degradation adjustment, random colors,

random noise, etc. Considering that the obstacles are normal during

the agricultural machine operation, this research does not add other

data enhancement methods, such as rotation and flip. LabelImg

software is used to label the obstacles in the image with the

minimum outer rectangular box, and the format of the LabelImg is a

Txt file in YOLO format (Ji et al., 2021; Hu et al., 2023). The dataset was

randomly divided into a training set (7344 images), validation set (909

images), and test set (908 images) in a 7:2:1 ratio, as detailed in Table 1.
2.2 YOLOv8

The YOLOv8 network, launched by Ultralytics in January 2023,

introduces several improvements over the widely used YOLOv5. It

consists of four main components: input, backbone, neck, and head

(Yang et al., 2023). YOLOv8 officially provides a series of models in

various sizes (Zhang et al., 2024), including YOLOv8n, YOLOv8s,

YOLOv8m, YOLOv8l, and YOLOv8x, which differ in network

width (number of channels) and depth (number of layers),

aiming to satisfy the speed and accuracy requirements in different

scenarios. In this research, the smallest YOLOv8n is selected as the

baseline model for target detection due to its speed, stability, and

efficiency. It also offers scalability, making it well-suited for real-

time obstacle detection in various target detection scenarios.
2.3 Obstacle recognition based on
lightweight YOLOv8-PSS model

The key improvements of the model presented in this paper

include: the incorporation of PConv in the backbone network, which

reduces redundant computations and memory accesses while

efficiently extracting feature information; the introduction of a

Slim-neck in the neck network, replacing the original convolution

module with GSConv, and designing a cross-level local network,

VoVGSCSP, based on it. This reduces computational complexity and

network structure while maintaining sufficient accuracy.

Additionally, the original YOLOv8’s CIoU loss function is replaced

with the Shape-IoU loss function, enhancing both detection accuracy

and convergence speed. The structure of the improved detection

model is shown in Figure 2, with the marked areas indicating

the improvements.
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2.3.1 PConv
The C2F module in YOLOv8 was originally designed to extract

effective features. However, in certain cases, feature redundancy may

still occur, leading to wasted model parameters and computational

resources, ultimately affecting the model’s generalization ability.

While many lightweight network improvements focus on reducing

computation, this often increases the number of memory accesses

required during image processing, thereby reducing computational

efficiency. This trade-off can not only slow down the model’s overall

speed but also degrade its accuracy to some extent. Therefore, this

research introduces the partial convolution (PConv) proposed in

FasterNet, PConv (Chen et al., 2023) compared to conventional

convolutional operations. In partial convolution, regular
Frontiers in Plant Science 04
convolution is applied to only a subset of the input feature map’s

channel, while the remaining channels remain unchanged. This

enables PConv to more efficiently select the first or last consecutive

channels as representatives of the entire feature map for computation

when performing consecutive memory accesses. By doing so, it

optimizes the use of the device’s computational power, reduces the

amount of model computation and memory consumption, avoids

performance degradation caused by inter-channel redundancy, and

improves the model’s generalization ability. During calculations,

simplifying the PConv calculation as h� w � k2 � c2p , reduces the

need for memory accesses with the following expression for memory

accesses:

h� w � k2 � 2cp + k2 � c2p ≈ h� w � 2cp (1)

where h and w denote the length and width of the input feature

map, c denotes the number of input channels, cp denotes the

channels involved in convolution, and k is the convolution

kernel size.

In this paper, PConv is used to streamline and improve the C2f

module, maintaining the extended feature extraction capabilities of

C2f. A Faster Block is introduced to replace the Bottleneck in C2f,

further reducing the computational load during the calculation

process. The structure of PConv and the modified module is shown

in Figure 3.
TABLE 1 Classification of different obstacle samples.

Type Train Validation Test

Person 1679 190 187

Tree 1154 168 173

Pole 1226 177 175

Agm 1536 186 181

Vehicle 1749 188 192
FIGURE 1

Sample of obstacles ((A) person, (B) tree, (C) pole, (D) agm, (E) vehicle).
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2.3.2 Slim neck
In traditional CNNs, spatial information is gradually transformed

into channel information, leading to a partial loss of semantic data

during spatial compression and channel expansion at each feature map

layer. When using standard convolution (SC) for feature extraction, the

number of parameters grows with the increasing depth of the network,

impacting detection efficiency. Depth-wise separable convolution

(DSC) has become popular in many lightweight designs to reduce

computation and improve efficiency. DSC minimizes parameters by

performing stepwise convolution, which processes channel

information separately. However, this approach captures complex

spatial information and feature relationships less effectively than SC.

Therefore, a balance must be struck between the computational

efficiency of DSC and the performance of SC. Li et al (Li et al.,

2024). proposed GSConv, a novel approach designed to maintain

hidden connections between channels as much as possible while

keeping the time complexity low. The core idea of GSConv is to

enhance the fusion of feature information between different groups by

introducing a shuffle operation that mixes the information generated

by the SC operation into each part of the information generated by the

DSC. The shuffle operation improves the performance of the model by

mixing information from different groups by exchanging local feature

information uniformly over different channels. Therefore. In this paper,

GSConv is adopted as a lightweight convolution method, replacing

both SC and DSC convolutions and integrating the Slim-neck

lightweight neck network. This ensures a balance between the

detection accuracy and computational efficiency of the network. The

structure of GSConv is shown in Figure 4. The Slim-Neck module
Frontiers in Plant Science 05
introduces a GS bottleneck and VoVGSCSP lightweight module based

on GSConv, to solve the problem of increased computation caused by

many C2Fmodules extracting features in the YOLOv8 neck network as

well as solving the problem of difficulty in real-time detection of the

deployed devices at runtime.

To enhance the inference speed of the network model while

preserving its detection accuracy, the cross-level partial network

module VoV-GSCSP was designed to replace the original C3

module, utilizing the GSConv module. This design cleverly

integrates GSConv with VoVNet, reducing the number of

parameters and computational complexity. The VoV-GSCSP

module ensures high computational efficiency while improving

the overall network performance and maintaining sufficient

accuracy. Figure 5A illustrates the structure of the GS bottleneck,

and Figure 5B shows the structure of the VoV-GSCSP.

2.3.3 Shape-IoU
The loss function serves to quantify the difference or error between

themodel’s predicted labels and the actual labels. By calculating the loss

value, it is clear howwell themodel performs on a given dataset, i.e., the

accuracy of the model prediction. The CIoU loss function used in

YOLOv8 only considers the overlapping area of the two bounding

boxes but does not consider the target’s size, shape, and positional

feature information. In some cases, it may not accurately reflect the

actual situation, leading to a decrease in detection accuracy.

In contrast to CIoU, the Shape-IoU loss function calculates the loss

by focusing on the shape and scale of the bounding box, resulting in

more precise border regression and enhanced detection accuracy and
FIGURE 2

YOLOv8-PSS model structure diagram.
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robustness (Zhang and Zhang, 2023), as shown in Figure 6. Therefore,

in this paper, Shape-IoU is used to replace CIoU in the original model.

This modification not only improves the network’s convergence

performance but also enhances its ability to detect obstacles more

accurately. The expression for Shape-IoU is shown below.

LShape−loU = 1 − IoU + disanceshape + 0:5 �Wshape (2)

distanceshape = hh� (xc − xgtc )2

c2
+ ww � (yc − ygtc )2

c2
(3)

Wshape = o
t=w,h

(1 − e−wt )q (4)
Frontiers in Plant Science 06
ww =
2� (wgt)scale

(wgt)scale + (hgt)scale
(5)

hh =
2� (hgt)scale

(wgt)scale + (hgt)scale
(6)

Wshape = o
t=w,h

(1 − e−wt )q (7)

ww = hh� w−wgtj j
max(w,wgt )

wh = ww � h−hgtj j
max(h,hgt )

8<
: (8)
FIGURE 4

GSConv structure diagram.
FIGURE 3

(A) Processing of the output feature maps from the regular convolution module; (B) Diagram of the structure of the C2f-PConv module; * denotes
convolution processing.
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Where Wshape is the shape loss; wgt , hgt denotes the width and

height of the real bounding box, respectively; q is the degree of

control attention to shape loss and takes the value of 4.
2.4 Visualization of heat maps

Gradient-weighted Class Activation Heatmap (Grad-CAM) can

be used to interpret the results predicted by the model by visualizing

the heatmap that the model considers most significant. In obstacle

detection, Grad-CAM generates heatmaps for the key regions

making it evident where the model focuses its attention on the

obstacle’s critical information. The basic idea of Grad-CAM (Liu

et al., 2024) is to use the gradient of the neural network in the output

layer for a specific class to determine which feature maps are the

most important for predicting a specific class by calculating the

gradient weight of the feature map of the last convectional layer. To

showcase the improved detection performance of the model, Grad-

CAM is applied to visualize the feature extraction at various layers,

with red representing higher weights, where the model pays more

attention to the region, and blue represents lower weights, which

means that the model pays less attention to the region. To observe

the heat maps more clearly, the heat maps are superimposed on top

of the original maps. Thus, the different features and the areas on

which the model focuses can be seen clearly. As shown in Figure 7,
Frontiers in Plant Science 07
the embodiment of the improved model’s focus on features at

different stages can be seen, and the experimental results show that

the algorithm can better solve the obstacle recognition problem in

different scenarios.
2.5 Experimental platforms

In this paper, we use our own paired workstation for the training

and validation of the deep learning part, the hardware configuration

includes: In this study, the training and validation of the deep learning

model were conducted on a custom-built workstation. CPU is Intel

Core i9 -13900kf, running memory is 32GB, GPU is NVIDIA RTX

4090 graphic card, 1T solid state hard drive; the software is running on

the 64-bit operating system of Windows 10 (22H2)All programs are

written in python language using the Pytorch1.12 deep learning

framework with training acceleration powered by NVIDIA CUDA

11.6 parallel computing driver. Deep learning framework PyTorch

2.1.2, programming platform PyCharm, programming language

Python 3.8, CUDA version 11.3, and CUDNN version 7.6 were

utilized. These optimizations contribute to improved model accuracy

and generalization after applying lightweight techniques.

The training parameters were all adopted from the default

hyper-parameters of The input image resolution was set to

640×640 pixels with a batch size of 32, and pre-trained weights

were utilized. Stochastic Gradient Descent (SGD) was employed to

optimize the network and accelerate the convergence process. The

learning rate was set at 0.01, with weight decay coefficients of

0.0005, and a momentum factor of 0.937 A total of 300 rounds of

iterations were conducted followed by an optimal results analysis.
2.6 Evaluation metrics

This research utilizes standard performance evaluation metrics

commonly used in target detection, including precision (P), recall (R),

mean average precision (mAP), the number of parameters, floating

point operations (FLOPs), model size, and frames per second (FPS)

(Zhang et al., 2023). mAP is particularly important for assessing the

overall detection performance of the target detection model; a higher

mAP value indicates better obstacle detection capability. To evaluate
FIGURE 5

(A) Structure of GS bottleneck; (B) Structure of VoV-GSCSP.
FIGURE 6

Schematic diagram of the intersection of the true and
predicted boxes.
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model complexity, three main metrics are considered: the number of

parameters, FLOPs, and the model size. P and R are calculated using

true positive (TP), false positive (FP), true negative (TN) and false

negative (FN). mAP is particularly important for assessing the overall

detection performance of the target detection model; a higher mAP

value indicates better obstacle detection capability. To evaluate model

complexity, three main metrics are considered: the number of

parameters, FLOPs, and the model size. FLOPs represent the speed

of floating-point operations, which can be used to measure the

complexity of a model. Parameters represent the computational

memory resources consumed by the model. The formulas are as

follows:

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

AP =
Z 1

0
P(R)dR (11)

mAP =
o
N

n=1
APn

N
(12)

Parameters = r2 � a� n + n (13)
Frontiers in Plant Science 08
FLOPS = 2� H �W � Cout � (Cin � K2 + 1) (14)

where N is the number of categories. where a is the input size, r

is the size of the convolution kernel, v is the output size,H ×W is the

size of the output feature map, Cin is the input channel, K is the

kernel size, and Cout is the output channel.
2.7 Detection and positioning
system design

In this study, the OAK-D-Pro camera from Luxonis is selected

for the study, featuring two infrared cameras, one RGB camera, and

an infrared laser dot-matrix transmitter. The depth measurement

principle mainly relies on the parallax generated by the infrared

cameras in the imaging plane to calculate the distance to the object.

Firstly, the RGB and depth images of the front view are captured by

the two IR cameras and the RGB camera. The improved YOLOv8

model is then applied to detect obstacles within the RGB image. The

parameters of the OAK-D-Pro camera are shown in Table 2.

To obtain the precise position point of the obstacle in real space,

it is necessary to go through the conversion from the pixel

coordinate system, and image coordinate system to the camera

coordinate system, and finally transform the 2-D image coordinates

into 3-D spatial coordinates. In the obstacle positioning system, the

camera is used as the origin of the coordinate system to locate the

obstacle, and after identifying the pixel coordinates of the obstacle,
FIGURE 7

Visualization results of heat maps under different network modules ((A) Original image, (B) PConv, (C) Slim-neck).
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the 3-D coordinates of the obstacle in the camera coordinate system

combined with the depth information are used to compute the

absolute coordinates in the world coordinate system after the final

coordinate transformation, to realize the detection and positioning.

To ensure the accuracy of camera positioning, OAK-D-Pro needs

to be calibrated by displaying a checkerboard calibration image on a 24

inch flat display, capturing a total of 13 multi border positions for

calibration. After capturing images of all multi border positions, the

calibration image processing step will begin. Upon successful

completion, a green background interface will pop up at the end.

The checkerboard positions at different calibration angles and the

interface after successful calibration are shown in Figure 8.

After calibration is completed, generate the cam_chain.yaml

file, which contains the internal and external parameters of the

camera after calibration, as shown in Table 3.

To simulate real-world conditions, the OAK-D-Pro camera was

mounted on a tracked rice and wheat harvester capturing the video
Frontiers in Plant Science 09
information in the actual field environment. The improved YOLOv8

model was then deployed on the NVIDIA Jetson TX2 to detect and

identify the obstacle targets, which still rely on the manually driving

operation in the process. The overall framework of the system is shown

in Figure 9.
3 Discussion and analysis

3.1 Ablation experiment

The ablation test results, using the same obstacle dataset and

training environment, are presented in Table 4. The model

incorporating the PConv module is referred to as YOLOv8_P,

and the model utilizing the Slim-neck module is designated as

YOLOv8_S, with other models named similarly based on their

improvements. As observed in Table 4, replacing the C2f module in

YOLOv8 with the C2f-PConv in Test 1 resulted in the YOLOv8_P

model. While there was a slight decrease in precision, recall, and

average precision compared to the original YOLOv8, the model’s

weight was reduced by 36.2%. Additionally, the number of

parameters and computational load were reduced to 67.3% and

79.3%, respectively, of the original model. The main reason for the

decrease in the precision rate and other values is that only some

channels are involved in the convolution operation of PConv, which

has a certain feature extraction effect, but at the same time reduced

the amount of computation and size of the model, it also loses some

of the feature information in the remaining channels, leading to a

reduction in the precision of the training. It is worth noting that the

results of experiment 2 show that although there is a slight decrease
FIGURE 8

Camera calibration diagram.
TABLE 2 OAK-D-Pro Parameters.

Parameters of OAK-
D-Pro

RGB
camera

Infrared
camera

Resolution 4032×3040 1280× 800

Baseline length / 75 mm

Camera focal length 4.81 2.35

FOV 81°D/69°H/55°V 81°D/72°H/49°V

Size 97 × 29.5 × 22.9 mm

Power 2 ~ 5.5 W
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in the model detection performance after adding PConv, the

magnitude of the decrease is within an acceptable range. By

sacrificing a small part of the accuracy, the computational

complexity and complexity of the model are greatly reduced,

which is more conducive to the deployment of the model on the

platform in the future. Experiment 3 based on experiment 1, the

neck network was redesigned using the Slim-neck network. At that

time, the precision, recall, and average accuracy of the model were

84.3%, 88.1%, and 89.5%, compared with the baseline model, the

precision and detection speed of the redesigned model were slightly

improved. The number of participants, the amount of computation,

and the size of the model were 51.9% of that of the original model,

respectively, 55.3%, and 48.3%, indicating that the Slim-neck

lightweight network used in this research can meet the demand of
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real-time detection in terms of model detection accuracy. The main

reason for the improved performance is the replacement of

traditional convolution and the C3 module in the original model

with GSConv and VoV-GSCSP modules. This modification allows

the structure of the Slim-neck network to preserve the important

channel connections in the neck structure. The GSConv module can

effectively process channel feature information to avoid redundant

information from being compressed repeatedly. As a result, the

model’s feature extraction capability and detection speed are

enhanced without sacrificing accuracy. Experiment 4 is based on

experiment 2, and the original model neck network and backbone

network are simultaneously improved by light-weighting, which

greatly reduces the complexity and computation amount of the

model while maintaining a slight decrease in model accuracy. The

size of the improved model is 4.7 MB, the number of parameters is

6.0 G, the number of model parameters is 2.3 × 106 M, the

precision, recall, and average accuracy are 83.9%, 85.8% and

89.4%, the mAP decreases by 0.5%, and the detection speed is

113 frames/s. The number of parameters, the amount of

computation, and the size of the improved model are about half

of the previous ones, and the detection speed is increased by 14%.

Experiment 5 based on Experiment 4; the original loss function is

further replaced by Shape-IoU. The model has improved precision,

recall, and average precision compared with the previous one. The

complexity of the model remains unchanged, which indicates that

Shape-IoU can improve the fitting effect of the model and further

improve the detection accuracy of the model.

The detection performance across different obstacle types in

complex scenes is a key factor affecting the accuracy of the

detection task. The detection results of the improved model for

different obstacle types are shown in Table 5. From Table 5, the

model’s detection effect for dynamic obstacles is better than that for

static ones, the model has the best detection effect for pedestrians,

with P, R, and AP of 88.5%, 90.2%, and 92.3%, respectively, and the

model has the worst detection effect for utility poles, with P, R and AP

of 81.3%, 86.7% and 88.4%, respectively. There are some differences

in the model’s handling of different obstacles, and the known static

obstacles detected during travelling can be labelled in subsequent

obstacle avoidance studies to further enhance the safety of travelling.
FIGURE 9

Overall framework diagram.
TABLE 3 Calibration parameters.

Calibration
parameters

center
camera

parameters

Right
camera

parameters

Radial distortion
parameter/k1

0.0281 0.0129

Radial distortion
parameter/k2

-0.0682 -0.0458

Tangential distortion
coefficient/p1

-0.0013 -0.0014

Tangential distortion
coefficient/p2

0.0024 0.0047

U-axis scale factor/fx 806.2 797.1

V-axis scale factor/fy 665.4 642.6

Rotation matrix/R

0:9999 0:0027 0:014

−0:0023 0:9999 0:0031

−0:0056 −0:0029 0:9999

2
66664

3
77775

Offset matrix/T

3:7351

−0:1476

0:0041

2
66664

3
77775
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3.2 Comparison of results from different
detection models

To further verify the actual performance of the improved model

proposed in this paper, this paper compares the improved model

with the mainstream two-stage target detection algorithm Faster R-

CNN and the one-stage target detection algorithms SSD, YOLOv3-

tiny and YOLOv5 models under the same conditions of test

parameters and configuration environments, and the comparison

results are shown in Table 6.

As demonstrated in Table 6, the enhanced YOLOv8 model

outperforms Faster R-CNN, SSD, YOLOv3-tiny, and YOLOv5 by

11%, 0.7%, 2.5%, and 4.6%, respectively. Furthermore, the mean

Average Precision (mAP) increases by 46.9%, 10.5%, 11.1%, and

6.7% when compared to these models. The improved YOLOv8

model also exhibits a significant reduction in model size, number of

parameters, and computational load. Although the recall rate of Faster

R-CNN is higher than that of YOLOv8-PSS during obstacle detection,

the other performance metrics of YOLOv8-PSS are superior. Despite

being a two-stage target detection model, Faster R-CNN’s substantial

parameter count renders it unsuitable for lightweight deployment

requirements. The SSD algorithm demonstrates higher precision and

accuracy compared to Faster R-CNN. Furthermore, YOLOv3-tiny and

YOLOv5 have a greater number of parameters and higher floating-

point computation requirements than the proposed improved method,

and they also exhibit lower average accuracy, which is not conducive to

the lightweight design of the network. The model in this research is

improved based on YOLOV8, compared with other mainstream

models, the improved algorithm proposed in this research achieves

the lowest number of parameters and the computational requirements,

and shows the highest detection accuracy, which meets the lightweight
Frontiers in Plant Science 11
network at the same time, and meets the deployment requirements of

the obstacle detection effect. It is worth noting that the YOLOv8-PSS

model proposed in this article has certain limitations in detecting

objects with similar shapes, and there is still room for improvement in

the detection performance of the model. The main reason may be that

many obstacles in the self-built dataset in this article were collected in

different scenarios, and in order to run the model on mobile platforms,

the focus of this article is more on the lightweight research of the

model. Therefore, in the subsequent research process, in order to

further improve the detection performance of the model, more datasets

will be obtained for training, and attention mechanisms will be added

to the model to enhance detection performance. In summary, this

article introduces a lightweight YOLOv8-PSS model for obstacle

detection in agricultural machinery during operation, which has high

efficiency and accuracy. This is of great significance for the research of

obstacle avoidance in unmanned agricultural machinery.

To check whether the model can recognize the obstacle

information, various scene input models were tested for obstacle

detection, and the detection results are shown in Figure 10 From the

figure, Faster R-CNN and YOLOV8_PSS performed better for the

detection of obstacle information, SSD, YOLOv3-tiny and YOLOv5

have some degree of omission when recognizing different scenes,

including people, poles, and trees. Notably, YOLOv5 encountered

issues with misidentification, mistakenly recognizing a single farm

machine as two separate entities. Although the algorithm proposed in

this paper demonstrates strong performance in obstacle detection, it

still faces challenges with tree detection. This is mainly because when

the tree overlaps or occludes the phenomenon. This overlap

complicates the model’s ability to extract distinguishing features,

ultimately leading to instances of missed detection.
3.3 Comparison of different modules

To verify the effectiveness of the PConv and Slim neck modules

used, this paper uses an improved YOLOv8 object detection network as

the base network. By replacing the mainstream lightweight backbone

network and neck network, while maintaining the same parameters

except for the backbone or neck network, the effects of different

modules on target training are compared. The specific results are

shown in Tables 7 and 8. According to Table 1, PConv has better

advantages in mAP compared to ShuffleNetV2, MobileNetV2, and

GhostNet backbone networks, with improvements of 9.2%, 6.4%, and

2.7%, respectively. Although MobileNetV2 has lower computational
TABLE 5 Information on different obstacle detection accuracy.

Type P(%) R(%) mAP(%)

Person 88.5 90.2 92.3

Tree 82.1 86.2 89.6

Poles 81.3 86.7 88.4

Vehicle 86.7 88.6 90.9

Agm 87.9 90.3 91.8

Average value 85.3 88.4 90.6
TABLE 4 Improved model ablation test results.

Number Model PConv
Slim-
neck

Shape-
IoU

P
%

R/
%

mAP/
%

Size/
MB

Parameters/
×106M

Computation/
G

FPS

1 YOLOv8 × × × 83.5 86.7 88.9 11.6 5.2 12.3 92

2 YOLOv8_P √ × × 83.2 86.4 88.3 7.4 3.5 7.5 107

3 YOLOv8_S × √ × 84.3 88.1 89.5 5.6 2.7 6.8 101

4 YOLOv8_PS √ √ × 83.9 85.8 89.4 4.7 2.3 6.0 113

5 YOLOv8_PSS √ √ √ 85.3 88.4 90.6 4.7 2.3 6.0 111
frontier
√ represents the use of the module, and x represents that the module has not been used.
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complexity and model size than PConv, its obstacle calibration

performance is poor and it is not suitable for practical deployment

situations. According to Table 3, the Slim neck module has a certain

improvement effect compared to other neck network improvement

methods, with mAP increased by 10.3%, 10.9%, and 4.1%, respectively.

Therefore, the use of Slim neck for lightweight improvement of the

neck network has significantly improved the overall detection

performance of the model compared to the original network, which

can meet real-time detection requirements and is more suitable for

mobile deployment of later models.
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To further assess the effectiveness of the Shape-IoU bounding box

loss function, we compared its convergence with that of the SIoU,

CIoU, EIoU, and WIoU loss functions in enhancing the network’s

performance. The improved model comprises 2.3 × 106 parameters,

with a computational load of 6.0 G and a model size of 4.7 MB when

different bounding box loss functions are employed. The results

indicate that substituting these loss functions does not impact the

model’s complexity. From Table 9, changing the bounding box loss

function affects the precision, accuracy, and recall of the model to a

certain extent. The recall of the improved model using Shape-IoU is
FIGURE 10

Comparison of the effectiveness of different detection models ((A) original image, (B) Faster RCNN, (C) SSD, (D) YOLOv3, (D) YOLOv5,
(F) YOLOv8_PSS).
TABLE 6 Comparison of detection results of different models.

References Model P/% R% mAP/% Size/MB Parameters/×106M Computation/G FPS

(Ren et al., 2016) Faster RCNN 74.3 91.9 43.7 108 86.9 129.8 41

(Hui et al., 2019) SSD 84.6 80.3 80.1 93.1 31.4 58.7 65

(Bin et al., 2021) YOLOv3-tiny 82.8 81.2 79.5 24.5 20.7 46.3 77

(Su et al., 2022) YOLOv5 80.7 84.6 83.9 13.2 9.0 15.2 86

YOLOv8_PSS 85.3 88.4 90.6 4.7 2.3 6.0 111
fro
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88.4%, which is 2.8%, 2.7%, 3.3%, and 4.6% higher than that of CIoU,

SIoU, EIoU, and WIoU, respectively. Additionally, the mAP for the

shape-IoU is 90.6%, which is 1.2%, 2.1%, 1.9%, and 0.7% higher than

the corresponding values of other models. Although Shape-IoU

precision is 0.9, 0.1, and 0.2% lower than SIoU, EIoU and WIoU,

respectively, the optimal equilibrium between recall and mean

average precision is achieved.

As shown in Figure 11, it is the convergence of YOLOv8

lightweight improved model respectively using different bounding

box loss functions during training. As depicted, the loss values for

the various bounding box loss functions begin to converge after 50

iterations on the validation set. Notably, the regression optimization

of the bounding box using the EIoU loss function proves inefficient

for datasets with complex scenarios, resulting in the highest

bounding box loss value and the slowest convergence speed. In

contrast, the SIoU, CIoU, WIoU, and Shape-IoU loss functions

converge at a similar rate, achieving significantly lower convergence

values compared to EIoU. Among these, the Shape-IoU loss

function exhibits a smaller loss value upon convergence,

indicating reduced susceptibility to overfitting and stronger

generalization ability. Therefore, the Shape-IoU loss function

demonstrates the best overall performance in this study.
3.4 Model positioning
accuracy experiments

To further verify the positioning accuracy of the model in real

scenarios, the YOLOv8_PSS model training file was converted into

a blob file for compilation operation. Testing was conducted on

June 12, 2024, at Rungo Farm Co. in Jingkou District, Zhenjiang

City, Jiangsu Province, China. The obstacle detection and

positioning distances ranged from 2 to 15 meters. Depth distance

measurements were utilized for evaluation and analysis, with the

DM120 laser rangefinder produced by DELIXI employed to detect
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obstacles (measurement accuracy of ± 2 mm and a measurement

range of 120 m). The measured results were subsequently analyzed,

and the experimental findings are presented in Table 10, where Z

represents the measurements from the camera and Zd corresponds

to the measurements from the laser rangefinder.

The test results show that within a distance range of 2 to 15 m, the

maximum average relative error of the measured distance is 2.73%

while the maximum relative error of the measured distance is 4.44%,

respectively. Meanwhile, from Table 10, the measurement accuracy for

obstacles at middle and near distances is relatively high. However, with

the increase of the distance between the obstacles and the camera, the

measurement error also increases gradually. This is mainly due to the

low maximum resolution of the camera itself during the acquisition,

which makes the feature information collected in the collection of

information on the objects at a distance is not rich enough.

Additionally, outdoor lighting conditions contribute to background

noise in the captured images, further affecting positioning accuracy.

Positioning accuracy, as can be seen from the table, the overall accuracy

of positioning during the test meets the needs of real-time detection.

The results of on-site detection are shown in Figure Before testing, the

depth camera is mounted on top of the agricultural machine. During

operation, the depth camera identifies and detects objects in its field of

view, providing their corresponding category, confidence level, and 3D

spatial coordinates. As shown in Figure 12A, the detected object is

identified as a person, with a confidence level of 0.86 and spatial 3D
TABLE 8 Comparison of improvements in different neck networks.

Backbone P/
%

R/
%

mAP/
%

Size Computation/
G

Bifpn 77.7 82.1 80.3 6.3 8.2

RepGFPN 79.4 83.5 79.7 5.7 7.6

GD-YOLO 80.2 81.9 86.5 5.8 6.3

Slim neck 85.3 88.4 90.6 4.7 6.0
TABLE 9 Performance comparison of different bounding box
loss functions.

Loss function P/% R/% mAP/%

CIoU 83.9 85.6 89.4

SIoU 86.2 85.7 88.5

EIoU 85.4 85.1 88.7

WIoU 85.5 83.8 89.9

Shape-IoU 85.3 88.4 90.6
TABLE 7 Comparison of different lightweight backbone networks.

Backbone P/
%

R/
%

mAP/
%

Size Computation/
G

MobileNetV2 83.4 73.9 81.4 4.5 5.8

ShuffleNetV2 82.1 76.6 84.2 6.9 8.1

GhostNet 82.3 83.6 87.9 6.7 8.4

PConv 85.3 88.4 90.6 4.7 6.0
FIGURE 11

Iterative variation curves of the bounding box loss function.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1509746
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2024.1509746
coordinates of (-0.04, -0.28, 4.24) (Figures 12A–E). During testing, the

detection targets including people, farm machinery, vehicles, utility

poles, and trees were 44, 33, 36, 37, and 42, respectively. The number of

successfully detected targets was 44, 31, 35 and 38, with the success

rates of 100%, 93.9%, 97.2%, 94.5%, and 90.4%, respectively, and the

overall success rate of detection was 95.2%.
3.5 Research contribution
to phytoprotection

Plants are often affected by pests, diseases and factors such as

drought and salinity during their complex and varied growth
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process. To ensure their survival and fulfill environmental

protection requirements, it is essential to investigate and develop

effective pest and weed control strategies, as well as plant protection

technologies, to achieve optimal pest management (ZFrische et al.,

2018). With the increasing demand for mechanization in

agricultural production, the role of agricultural machinery has

gradually shifted from manual to autonomous operation. The use

of unmanned agricultural machinery for plant protection has

become increasingly widespread. However, due to the complexity

and diversity of the unstructured farmland environment, the

autonomous operation task of plant protection by unmanned

agricultural vehicles require additional attention on obstacle

avoidance, in addition to the challenge of achieving full-coverage
TABLE 10 Obstacle positioning accuracy test results.

Number
Tree Person Pole Vehicle Agm

Z/m Zd/m E/% Z/m Zd/m E/% Z/m Zd/m E/% Z/m Zd/m E/% Z/m Zd/m E/%

1 2.42 2.43 0.41 2.66 2.64 0.75 2.47 2.48 0.40 2.48 2.49 0.40 2.86 2.88 0.42

2 3.25 3.28 0.91 3.48 3.52 1.13 3.87 3.83 1.04 3.69 3.72 0.81 3.88 3.92 1.02

3 4.37 4.31 1.39 4.23 4.29 0.93 4.59 4.65 1.29 4.63 4.55 1.76 4.54 4.59 1.09

4 5.41 5.52 1.99 5.48 5.57 1.62 5.09 5.21 2.30 5.81 5.72 1.57 5.34 5.23 2.10

5 6.59 6.73 2.08 6.47 6.65 2.71 6.24 6.03 3.48 6.87 7.03 2.26 6.15 6.34 2.99

6 7.39 7.56 2.25 7.09 7.26 2.34 7.21 7.37 2.17 7.35 7.21 1.94 7.12 7.27 2.06

7 8.23 8.48 2.95 8.87 9.11 2.63 8.56 8.80 2.72 8.52 8.76 2.74 8.96 9.23 2.93

8 9.51 9.78 2.76 9.85 10.15 2.95 9.38 9.66 2.89 9.60 9.91 3.13 9.76 10.12 3.56

9 10.63 10.98 3.19 10.01 10.36 3.39 10.74 11.09 3.15 10.61 10.92 2.84 10.56 10.84 2.58

10 11.02 11.42 3.50 11.25 11.66 3.52 11.71 12.13 3.46 11.03 11.46 3.75 11.82 12.21 3.19

11 12.10 12.55 3.59 12.29 12.74 3.53 12.82 13.28 3.46 12.37 12.81 3.43 12.39 12.84 3.50

12 13.97 14.53 3.85 13.60 14.11 3.61 13.96 14.45 3.39 13.33 13.83 3.62 13.14 13.65 3.73

13 14.77 15.39 4.03 14.39 15.04 4.32 14.94 15.62 4.35 14.86 15.54 4.38 14.68 15.31 4.11

14 15.05 15.75 4.44 15.42 16.12 4.34 15.10 15.77 4.25 15.92 16.63 4.27 15.33 15.99 4.13

Average 2.67 2.69 2.73 2.64 2.67

Maximum 4.44 4.34 4.35 4.27 4.13
frontie
FIGURE 12

Visualization of the results of field detection and positioning ((A) person, (B) agm, (C) vehicle, (D) pole, (E) tree).
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path planning. Farmland obstacles are not only diverse but also

widely distributed, posing a significant threat to the traveling safety

of unmanned agricultural vehicles. After detecting obstacles using

the YOLOv8-PSS model proposed in this paper, the unmanned

farm machine can adjust its travelling path based on the detection

results to avoid damaging crops or equipment. For example, an

unmanned sprayer used for plant protection can adjust its route

according to the location of the obstacle, thus ensuring precise

operation and preventing conflicts with crops or other agricultural

machinery. The YOLOv8-PSS model is ideal for unmanned

agricultural platforms with high efficiency, real-time processing

and improved precision in farmland obstacle identification. By

accurately identifying obstacles the model enables agricultural

equipment to perform precise obstacle avoidance, optimize

pesticide application, and enhance crop protection. This improves

the intelligence of plant protection machinery and addresses

challenges such as high operational precision requirements,

complex operating environments, and safety risks associated with

unmanned plant protection systems.
4 Conclusions

In this research work, to enable rapid obstacle detection

during the autonomous navigation of unmanned agricultural

machines in complex environments, an obstacle recognition

method based on an improved YOLOv8 model is proposed.

This approach offers a novel solution for obstacle detection and

positioning in agricultural machinery and holds significant

theoretical and practical implications for advancing intelligent

unmanned agricultural systems. The key conclusions of this study

are as follows:

1. Through the construction of farmland obstacle datasets, the

YOLOv8_PSS obstacle detection model is proposed. The C2f-

PConv module is added to the backbone to reduce network size,

while the original neck is replaced by the lightweight Slim-Neck

with GSConv and the VoVGSCSP module, cutting model

parameters, computation, and size to 55.8%, 51.2%, and 59.5% of

the original. Shape-IoU loss is also introduced to stabilize training,

reduce regression and shape deviation, and improve convergence

speed. The final model achieves 85.3% accuracy, 88.4% recall, and

90.6% mAP, balancing speed and precision better than Faster R-

CNN, SSD, YOLOv3-tiny, and YOLOv5, making it ideal for

mobile deployment

2. In the obstacle positioning accuracy test, the maximum

average error and maximum error for the distance between five

types of obstacles and the camera, measured within a range of 2 to

15 meters, were 2.73% and 4.44%, respectively. In the detection test,

the model achieved a combined detection rate of 95.2% for

obstacles. These results demonstrate the model’s excellent

performance in both positioning accuracy and obstacle detection,

fulfilling the requirements for precise detection and localization of

common obstacles in practical applications. Furthermore, this study

sets a benchmark for obstacle detection and localization in

unmanned agricultural vehicle environments, offering valuable
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insights for technological innovation and advancements in related

fields. In practical applications, the improved model experiences

some degree of obstacle detection failure, particularly in

environments with strong or backlighting, where obstacles may

blend with the background due to insufficient contrast.

Additionally, the model demonstrates lower success rates in

recognizing static obstacles compared to dynamic ones. To

address these issues, the dataset used in this study primarily

consists of images captured during moderate daylight conditions.

Future research will aim to enhance the model by expanding the

dataset with more diverse samples and further optimizing the

model’s architecture.

3. In this study, obstacle detection relied solely on a single

stereo camera, which has a limited field of view. The detection

system has certain limitations and can only obtain obstacle

information on the front side of the agricultural unmanned

operation platform. However, in actual road environments, many

dynamic obstacles may move towards agricultural machinery from

the side. In subsequent research, it is necessary to combine other

sensors to detect obstacles, in order to improve the robustness and

comprehensiveness of the perception system as much as possible.

Different speed ranges and behavioral orientations should be

matched for different obstacles, and obstacle avoidance strategies

corresponding to different obstacles should be studied to increase

the universality of the obstacle avoidance system. These

improvements will strengthen obstacle detection in real-world

scenarios, especially for dynamic obstacles. This will enhance

safety during obstacle avoidance maneuvers, ensuring

safer navigation.
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