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LWheatNet: a lightweight
convolutional neural network
with mixed attention mechanism
for wheat seed classification
Xiaojuan Guo*, Jianping Wang, Guohong Gao, Zihao Cheng,
Zongjie Qiao, Ranran Zhang, Zhanpeng Ma and Xing Wang

School of Computer Science and Technology, Henan Institute of Science and Technology,
Xinxiang, China
Introduction: With the advent of technologies such as deep learning in

agriculture, a novel approach to classifying wheat seed varieties has emerged.

However, some existing deep learning models encounter challenges, including

long processing times, high computational demands, and low classification

accuracy when analyzing wheat seed images, which can hinder their ability to

meet real-time requirements.

Methods: To address these challenges, we propose a lightweight wheat seed

classification model called LWheatNet. This model integrates a mixed attention

module with multiple stacked inverted residual convolutional networks. First, we

introduce a mixed attention mechanism that combines channel attention and

spatial attention in parallel. This approach enhances the feature representation of

wheat seed images. Secondly, we design stacked inverted residual networks to

extract features from wheat seed images. Each network consists of three core

layers, with each core layer is comprising one downsampling unit and multiple

basic units. To minimize model parameters and computational load without

sacrificing performance, each unit utilizes depthwise separable convolutions,

channel shuffle, and channel split techniques.

Results: To validate the effectiveness of the proposed model, we conducted

comparative experiments with five classic network models: AlexNet, VGG16,

MobileNet V2, MobileNet V3, and ShuffleNet V2. The results demonstrate that

LWheatNet achieves the highest performance, with an accuracy of 98.59% on the

test set and a model size of just 1.33 M. This model not only surpasses traditional

CNN networks but also offers significant advantages for lightweight networks.

Discussion: The LWheatNet model proposed in this paper maintains high

recognition accuracy while occupying minimal storage space. This makes it

well-suited for real-time classification and recognition of wheat seed images on

low-performance devices in the future.
KEYWORDS

wheat seed image, wheat seed classification, mixed attention mechanism, lightweight
CNN, machine vision
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1 Introduction

With the continuous development of global agricultural

production, the classification of crop seed varieties has become

particularly important in both agricultural scientific research and

practical production (Chen et al., 2024). Wheat, one of the most

crucial agricultural products worldwide, is cultivated across a vast

area globally. It is also a major crop in China’s grain production,

with substantial cultivation areas and total output. The stable

development of wheat is vital for China’s food security reserves

(Jiang et al., 2021). Accurately identifying and classifying different

varieties of wheat seeds not only aids in controlling and improving

seed quality but also provides a scientific basis for crop management

and optimization. In this context, image classification technology,

as an efficient and precise tool, is being increasingly utilized in the

agricultural sector.

The classification of wheat seed varieties is a crucial aspect of

agricultural production, encompassing various stages from seed

selection to sowing, fertilizing, and harvesting. Accurate

identification of seed varieties is essential at each step. Traditional

methods for seed classification primarily rely on manual

observation and empirical judgment, which are both time-

consuming and labor-intensive, with limited accuracy. However,

the rapid advancements in computer vision and machine learning

technologies have introduced automated recognition methods

based on image classification, offering new possibilities for crop

seed variety classification. These advanced methods not only

substantially enhance classification efficiency but also significantly

improve accuracy, thereby providing robust support for the

scientific management of agricultural production.

Traditional machine learning methods, such as Support Vector

Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest

(RF) (Zhang et al., 2019; Tang et al., 2020; Panda et al., 2023), were

widely employed in early research on crop seed variety

classification. These methods typically rely on manually extracted

features, such as color, shape, and texture, which serve as input data

for classification. For instance, the classification of different seed

varieties can be achieved by extracting their color and shape

features. However, manual feature extraction demands substantial

domain knowledge and experience, and it exhibits limitations when

dealing with complex and diverse seed grain image data.

In recent years, image classification using deep learning has

achieved remarkable results in various fields (Zhang et al., 2024a;

Wang et al., 2024; Li et al., 2024; Zhang et al., 2024b). Particularly in
Abbreviations: ANN, Artificial Neural Networks; BN, BayesNet; BP, Back

Propagation; CBAM, Convolutional Block Attention Module; CNN,

Convolutional Neural Networks; ECA, Efficient Channel Attention; FC, Fully

Connected; FN, False Negative; FP, False Positive; KNN, K-Nearest Neighbors;

LB, LogitBoost; LDA, Linear Discriminant Analysis; MAM, Mixed Attention

Module; MLP, Multilayer Perceptron; PCA, Principal Component Analysis; PSO,

Particle Swarm Optimization; RF, Random Forest; RNN, Recurrent Neural

Networks; SGD, Stochastic Gradient Descent; SVM, Support Vector Machine;

TN, True Negative; TP, True Positive; TPSA, Two-Path Spatial Attention.
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the field of agriculture, the application of deep learning techniques

has shown great potential and advantages. For example, classical

deep learning models such as AlexNet, VGG, and ResNet have been

successfully ap-plied to various crop seed variety classification tasks,

demonstrating excellent classification performance (Xu et al., 2022;

Sabanci, 2023). Traditional crop seed classification methods usually

rely on manual feature extraction and rule-based classifiers, which

are not only time-consuming and laborious but also have low

accuracy and robustness. In contrast, deep learning models can

automatically extract and learn the features of different seed types

by training on a large number of seed images, thus achieving

efficient and accurate classification (Gulzar et al., 2023; Zhang

et al., 2023). This not only improves the automation of

agricultural production but also provides strong technical support

for the quality control and variety improvement of crop seeds.

Although deep learning has made significant strides in crop

seed variety classification, several challenges and issues remain.

Firstly, deep learning models typically require a large amount of

labeled data for training. In the agricultural domain, obtaining

large-scale, high-quality labeled data is more challenging, and there

are fewer publicly available wheat seed image datasets for deep

learning. Secondly, the training and inference processes of deep

learning models demand substantial computational resources,

which can be difficult to achieve in resource-limited agricultural

environments. Our re-search aims to address these challenges, the

main contributions of this paper are as follows:
1. We constructed a dataset comprising single-seed images of

five different wheat varieties to provide a robust database

for subsequent model training and testing.

2. We proposed a lightweight convolutional neural network,

LWheatNet, which integrates a mixed attention mechanism

with stacked inverse residual convolutional net-work. This

model not only enhances the classification performance of

wheat images but also maintains a small number

of parameters.

3. We designed comparative, classification, and generalization

experiments to demonstrate the superiority of our proposed

model using various evaluation metrics.
The remainder of this paper is organized as follows. section 2

analyzes the related work; Section 3 introduces the materials and

methods; Section 4 illustrates the experimental results and analysis;

Section 5 offers the discussion; and finally, Section 6 concludes the

paper and provides future prospects.
2 Related work

2.1 Machine learning-based approach for
crop seed classification

The traditional machine learning process for image

classification and recognition primarily involves several steps:

image preprocessing, feature extraction, feature selection, and

classifier construction. Scholars in the agricultural field have
frontiersin.org
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achieved notable success using machine learning methods. For

instance, Punn et al. (Punn and Bhalla, 2013) and colleagues

employed machine learning algorithms to classify and recognize

wheat seeds and varieties, achieving an accuracy of 86.8% with

Support Vector Machines (SVM) and 94.5% with neural networks.

Deng et al. (Deng et al., 2013) and his team used Artificial Neural

Networks (ANN) and SVM algorithms to extract 48 features,

including morphology, color, and texture, from each sample

image. They successfully recognized 83% of wheat varieties in a

test dataset comprising 12 varieties. Meng et al. (Meng et al., 2017)

and other researchers utilized an improved Back Propagation (BP)

network combined with Principal Component Analysis (PCA) for

dimensionality reduction, achieving an average recognition rate of

91.58% for wheat varieties. After optimizing with the Particle

Swarm Optimization (PSO) algorithm, the recognition rate

increased to 94.3%. Zhu et al. (Zhu et al., 2019) and colleagues

combined spectroscopy and im-age-based detection techniques to

identify crop seed varieties, employing five different classifiers and

achieving an identification accuracy of 99.8%. Ali et al. (Ali et al.,

2020) employed various classification models, including Random

Forest (RF), BayesNet (BN), LogitBoost (LB), and Multilayer

Perceptron (MLP), to classify corn seeds. In their comparative

analysis of these four machine learning classifiers, the MLP

demonstrated outstanding classification accuracy, achieving

98.93% on regions of interest (ROIs) sized 150 x 150 pixels.

Specifically, the MLP achieved accuracy values of 99.8% for Desi

Makkai, 97% for Sygenta ST-6142, 98.5% for Kashmiri Makkai,

98.6% for Pioneer P-1429, 99.9% for NeelamMakkai, and 99.4% for

ICI-339. Feng et al. (Feng et al., 2022) extracted color,

morphological, and texture features from wheat grains, resulting

in a total of 28 feature values. they constructed various feature

fusion models, as well as data degradation and data enhancement

models. Experimental results demonstrated that the average

recognition accuracy based on the fusion of the three feature

sets—texture, morphology, and color—was 91.02%. Nansen et al.

(Nansen et al., 2022) used Linear Discriminant Analysis (LDA) and

SVM to classify crop seeds. Their experimental results

demonstrated that the classification accuracy of both LDA and

SVM de-creased linearly in response to the introduction of object

assignment error and the experimental reduction of spectral

repeatability. Bhavana et al. (Bhavana and Jayaraju, 2024) utilized

the SVM and Random Forest (RF) algorithms to identify

boundaries within classified crop areas. The pro-posed algorithm

yielded impressive results with a high level of accuracy.

In conclusion, traditional machine learning methods require

manual selection and extraction of features from images, which lack

adaptivity and make it difficult to model complex data structures.

This limitation affects the performance of machine learning

algorithms. In practical applications, determining which features

are useful is challenging. Currently, the identification of different

wheat varieties primarily relies on manual methods, where people

observe the morphology, color, size, and other features of wheat

grains to differentiate between varieties. This manual identification

process is labor-intensive and requires extensive practical

experience, thereby limiting its application in production practices.
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2.2 Deep learning-based approach for crop
seed classification

Deep learning-based image classification and recognition

methods primarily include Convolutional Neural Networks

(CNN), Recurrent Neural Networks (RNN), with CNN being one

of the most widely used techniques. In recent years, deep learning

recognition methods have become significant in the field of image

recognition and have been extensively applied to the study of crop

species (Qiu et al., 2019). Chen et al. (Chen et al., 2018) utilized a

deep convolutional network for the automatic extraction of wheat

features, achieving an average accuracy of 97.78% in wheat variety

recognition tasks. The classification confusion matrix exhibited a

diagonal array trend, indicating high accuracy. Xie et al. (Xie et al.,

2020) proposed an algorithm for recognizing the integrity of oil tea

seeds using convolutional neural networks. By employing

techniques such as network simplification and hyper-parameter

optimization, the optimized network achieved an accuracy of

98.05% in recognizing the integrity of oil tea seed grains. Chen

et al. (2021) introduced an attention mechanism into the model,

which enhanced the model’s focus on important features, thereby

improving recognition performance. This method was successfully

applied to rice pest image recognition tasks, achieving a recognition

rate of up to 99.67% on a public dataset, with experiments vali-

dating the procedure’s effectiveness. Javanmardi et al. (Javanmardi

et al., 2021) proposed a novel approach for recognizing and

classifying maize seeds using a deep convolutional network as a

feature ex-tractor. When compared to traditional classifiers, the

deep convolutional neural network approach achieved a recognition

accuracy of 98.2% for maize seeds. Wu et al. (Wu et al., 2021) de-

signed three deep neural networks with typical structures based on a

sample-rich pea dataset, achieving the highest accuracy of 99.57%.

The VGGmodel was then transferred to classify four target datasets

(rice, oat, wheat, and cotton) with limited samples. The accuracies

of the deep transferred model on these four datasets were 95%, 99%,

80.8%, and 83.86%, respectively. Luo et al. (Luo et al., 2023) and

colleagues utilized deep learning to efficiently classify weed seeds by

selecting appropriate classification models. This approach is crucial

for effective weed management and control. Tugrul et al. (Tugrul

et al., 2023) developed an improved Convolutional Neural

Networks (CNNs) model by adding new layers to the final layers

of well-known CNN architectures from the literature. The accuracy

of this custom CNN model for seed classification ranged between

91% and 94%. Li et al. (Li et al., 2023) used VGG16, ResNet-50,

Inception-V3 and other convolutional neural networks to establish

a wheat seed variety identification and classification model through

migration learning, and recognized six types of wheat varieties, and

the highest recognition accuracy of the validation set was 99.35%.

Que et al. (Que et al., 2023) proposed a convolutional neural

network (CR-CNN) based on envelope removal based on the

problem of detection of large-volume seeds, and showed that the

classification accuracy could reach 96.125% after using the envelope

removal method. For the problem of hyperspectral image detection

efficiency is difficult to meet the large number of seed detection,

based on the envelope removal - convolutional neural network (CR-
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CNN) is proposed, and the study shows that after using the

envelope removal method, the classification accuracy can reach

up to 96.125%. Wang et al. (Wang et al., 2023) proposed a novel

deep learning approach for multi-scenario crop classification called

Cropformer. The results demonstrated that Cropformer could build

up a priori knowledge using unlabeled data and learn generalized

features using labeled data, making it applicable to crop

classification in multiple scenarios. Zhang et al. (2024c) proposed

a wheat variety identification framework called generate

adversarial-driven cross-aware network (GACNet), comprising a

semi-supervised generative adversarial network for data

augmentation and a cross-aware attention network for variety

identification, experiments result demonstrate that the GACNet

outperforms state-of-the-art methods for wheat variety

identification. Gill et al. (Gill et al., 2024) used deep learning

techniques such as CNN, RNN, and LSTM to classify wheat

crops, with test accuracy results ranging around 85%. Sable et al.

(Sable et al., 2024) introduced a lightweight soybean seed defect

identification network (SSDINet). Experimental results

demonstrated that SSDINet achieved the highest accuracy of

98.64%, with 1.15 million parameters in 4.70 milliseconds,

surpassing existing state-of-the-art models.

In summary, it is evident from the findings of numerous

scholars that deep learning-based methods, particularly

convolutional neural networks have significantly advanced crop

seed classification, achieving high accuracy and efficiency. Despite

the considerable progress made by many researchers, several

challenges remain:
Fron
1. The agricultural domain lacks comprehensive image datasets

of various wheat varieties, hindering downstream research;

2. The performance of crop seed image classification still

requires improvement;

3. The computational resource demands of current deep

learning models remain high. Therefore, the development

of lightweight image classification models is imperative to

meet the needs of agricultural experts and farmers. Such

lightweight models can operate on resource-constrained

devices and significantly reduce computational costs and

time consumption while maintaining classification

accuracy. This advancement will facilitate the broader

application of image classification technology in actual

agricultural production, enhance work efficiency, and

promote the development of intelligent agriculture.
3 Materials and methods

3.1 Data construction

3.1.1 Image acquisition
Collected wheat varieties were photographed as single seeds

from multiple angles to build a comprehensive wheat seed image

dataset. The images were captured from two angles: groin up and

groin down, to improve the compatibility and accuracy of variety
tiers in Plant Science 04
identification. A SangNond2K measurement electron microscope

paired with an industrial camera was used for seed imaging. For

each variety, 500 fully developed seeds were selected and prepared

for single-seed image collection. The collection equipment

parameters were set as Table 1.

Photographs were taken against a black light-absorbing flannel

background, with a resolution of 1920 × 1080 pixels. Automatic

white balance (AWB) and wide dynamic range (WDR) were turned

off, and the LED fill light was set to medium. Images were captured

class by class according to the seed variety, and each category was

saved in a folder named after the variety. This process resulted in

5004 photographs across five varieties. Figure 1 shows the original

images of the collected wheat kernels.

3.1.2 Construction the wheat dataset
The original images captured in this study were initially named

using a format that combined the time of capture with an automatic

numbering system, which did not provide information regarding

the variety category or the shooting angle of the wheat. To address

this limitation, we renamed the original image files and organized

them into folders designated by their respective varieties. The new

naming format for the image files is structured as follows: variety

number_particle number_shooting angle (where 1 indicates groin

up and 2 indicates groin down). For instance, for the Xinong 156

variety, if the 78th grain was photographed groin up as the third

grain, the image would be named 78-3-1. In total, 1,000 images

representing both shooting angles for each variety were saved in the

Xinong 156 folder. This naming convention was consistently

applied across all five varieties. Figure 2 illustrates several images

of the Xinong 156 variety.

A dataset of wheat grains has been constructed based on five

categories of wheat that have undergone preprocessing, as

illustrated in Figure 3. From Figure 3, it can be observed that the

images of single wheat grains across the five categories are evenly

distributed. This uniformity is beneficial for enhancing the

generalization capability of the models, helping to mitigate

potential biases that could arise from imbalanced data. The

balanced distribution of the dataset provides solid support for the

subsequent training and validation of related models, allowing them

to effectively learn the characteristics of each wheat type.
TABLE 1 Equipment parameters.

Equipment Parameters

Equipment model SN0745-60U2K

CCD camera 1600 pixel 2K industrial camera

Auxiliary eyepiece 0.5X

Zoom objective 3.5

Main objective magnification 5.0

Electronic magnification 180

Working distance 15 cm

Light source LED ring spotlight
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In addition, the dataset has been carefully developed with an

emphasis on diversity and representativeness, ensuring that samples

from each wheat category exhibit a range of variability in

morphology, color, and texture. This inherent diversity is

expected to enhance the robustness of the models, thereby

improving their accuracy and reliability in practical applications.

The experiments detailed in Section 4 will utilize this dataset for the
Frontiers in Plant Science 05
training, tuning, and evaluation of the models, with the goal of

facilitating efficient recognition and classification of different types

of wheat grains. Through this approach, we aim to contribute

valuable scientific insights and technical support for wheat quality

assessment and cultivation management.

The constructed wheat dataset was thoughtfully partitioned into

training, validation, and test sets, adhering to a ratio of 8:1:1. The
FIGURE 1

Original images of 5 types of wheat varieties. (A) Zhongmain698, (B) Xinong156, (C) Baimai1811, (D) Huaimai40, (E) Kelin201.
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results of this division are illustrated in Table 2. This organized

approach is designed to promote a balanced representation of the

data across the various sets, ultimately supporting robust model

development and evaluation.

To accommodate the diverse input requirements of various

models, the images in the training set were subjected to random

cropping and normalization. In contrast, the validation and test sets

underwent normalization only. This approach ensures that the

training data is well-prepared while maintaining consistency in

the evaluation process for the validation and test sets.
3.2 Model of LWheatNet

3.2.1 The architecture of LWheatNet
To further improve classification accuracy while maintaining a

lightweight model, this paper proposes LWheatNet, a lightweight

classification model. The LWheatNet model is depicted in Figure 4.

The core part of LWheatNet include a Mixed Attention Module

(MAM) and Stacked Inverted Residual Convolution (SIRC) layer

designed to extract wheat seed features. The SIRC significantly

reduces computational overhead and the number of parameters by

incorporating channel split operations, depthwise separable

convolutions, and channel shuffl ing. Considering the

characteristics of the wheat image dataset—such as a uniform

background and subtle feature differences—the model also

integrates a MAM. LWheatNet fully accounts for both local and

global features of wheat seed images, thereby enhancing

classification accuracy under limited computational resources.

As shown in Figure 4, the LWheatNet architecture consists of

the following components: an input layer, a 3x3 convolutional layer,

a max pooling layer, a MAM layer, a SIRC layer, a 1x1 convolutional
Frontiers in Plant Science 06
layer, a global average pooling layer, a fully connected layer, and an

output layer.

The MAM parallelizes channel attention and spatial attention,

while the SIRC consists of three stacked core layers, each containing

a downsampling unit and multiple basic units. The specific

execution process of the LWheatNet is as follows. First, the input,

a 224×224×3 image, undergoes a 3×3 convolution operation,

producing an output feature map of size 112×112×24. This

feature map is then reduced to 56×56×24 by a 3×3 max pooling

layer. Subsequently, the basic and downsampling units in the SIRC

are repeatedly stacked through three layers: Core Layer 1, Core

Layer 2, and Core Layer 3. Following a 1×1 convolution and global

average pooling, the number of feature map channels is reduced to

1,024. Finally, the output is set to 5 through a fully connected

(FC) layer.
FIGURE 2

Partial image of Xinong156.
FIGURE 3

Distribution of the wheat dataset.
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3.2.2 Layers of LWheatNet
1. Input Layer

The LWheatNet model processes wheat seed image as input.

Receive the input image and automatically crop it to 224×224.

Perform normalization to standardize the input image, making it

suitable for subsequent processing.

2. 3x3 convolutional Layer

A 3x3 convolutional layer with 3 convolutional kernels, 24

output channels, and a stride of 2 is applied. This convolution is

followed by normalization and a ReLU activation function for the

initial extraction of low-level features, such as edges and textures, to

reduce the spatial resolution of the wheat seed image.

3. Max Pooling Layer

A 3x3 max pooling layer with a stride of 2 reduces the size of the

feature map and lowers the computational complexity.

4. Mixed Attention Module Layer

This layer integrates channel attention and spatial attention in

parallel. The channel attention employs Efficient Channel Attention

(ECA), which more effectively focuses on the representative features

of wheat grain images. Conversely, spatial attention utilizes Two-

Path Spatial Attention (TPSA), which uses convolutional kernels of

two different scales to extract detailed features from the wheat grain

images. In this study, convolutional kernels of sizes 3x3 and 5x5 are

used to extract features, which are subsequently fused by summing.
Frontiers in Plant Science 07
5. The Stacked Inverted Residual Convolution Layer

The Stacked Inverted Residual Convolution Layer (SIRC)

comprises three core layers, each containing multiple basic units

and a downsampling unit. Each core layer employs operations such

as channel splitting, depthwise separable convolution, channel

shuffling, and residual linking to capture more detailed features of

wheat grain images. The use of grouped convolution and depthwise

separable convolution significantly reduces the computational load,

while channel shuffling enhances the interaction between different

features, thereby improving feature representation capabilities.

Residual linking is utilized to preserve the information in the

input feature map and prevent gradient vanishing.

6. 1x1 Convolution Layer

The 1x1 convolution layer performs nonlinear transformation

through 1x1 convolutions, providing further feature extraction. It

is primarily used to adjust the number of channels in the feature

map, preparing it for subsequent global pooling and fully

connected layers.

7. Global Pooling Layer

This layer performs global average pooling on the feature map,

reducing it to a global feature vector and decreasing the number

of parameters.

8. Fully Connected Layer

The FC performs a linear transformation on the input feature

vectors, mapping the high-dimensional features to the desired

dimensions of the classifier. This transformation renders the

feature vectors suitable for classification purposes.

9. Output Layer

The output from the Fully Connected Layer is forwarded to the

Softmax layer, whose primary role is to transform these outputs into

probability distributions for each class. The Softmax function

achieves this by applying an exponential operation to each

element of the input vector and then normalizing the results so

that the sum of all output probabilities equals 1. This resulting

probability distribution indicates the likelihood that the input text

belongs to each class. The class with the highest probability is
TABLE 2 Partitioning of the wheat dataset.

Category Training Validation Test Total

baimai1811 801 100 99 1000

huaimai40 801 100 99 1000

kelin201 804 100 100 1004

xinong156 801 100 99 1000

zhongmai698 801 100 99 1000

total 4008 500 496 5004
FIGURE 4

Structure of LWheatNet.
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deemed the final classification result of the model. By performing

exponential operations on the input values and normalizing them,

the Softmax function ensures that the output values represent valid

probability distributions.

3.2.3 Loss function and optimizer
During model training, the cross-entropy loss function is used

to measure the difference between the predicted categories and the

actual categories. This function calculates the negative log-

likelihood of the model’s predictions, guiding the optimization of

the model parameters. By assessing the divergence between

predicted probabilities and true labels, the cross-entropy loss

function provides a measure of model performance. LWheatNet

employs this loss function to quantify the discrepancy between its

outputs and the true labels, as defined in (1):

CroessEntropy(y, ŷ ) = −oN
i=1yi � log(ŷ i) (1)

Where N is the number of categories in the dataset, and yi
means the code of the true label category. ŷ i is the distribution

probability of the label category. RLoss is the average value of the loss

function for each sample, as shown in (2).

RLoss =
1
No

N

j=1
Rj(y, ŷ ) (2)

where N is the number of samples in the dataset.

The optimization of model parameters is carried out using the

Momentum stochastic gradient descent (SGD) optimizer. The

momentum SGD detailed as (3) to (5):

g = ∇ qk−1
L(q) (3)

Vt = bVt−1 + (1 − b)g (4)

qk = qk−1 − hwk (5)

where qk−1 refers the model parameter vector at step k-1, mqk−1
L(q) represents the gradient of the loss function L with respect to

the parameter qk−1, h is the learning rate, and b shows the

momentum parameter, which is set to 0.9 in this paper. wk

denotes the momentum, indicating the weighted accumulation of

historical gradients.

In the process of using the gradient descent algorithm to

optimize the objective function, when the loss value of the

objective function is approaching the global optimal solution, the

update step size should be reduced. This allows the objective

function to get closer to the global optimal solution. This

technique is known as the learning rate decay strategy. Various

methods exist for adjusting the learning rate, including equal

interval adjustment, exponential decay adjustment, cosine

annealing adjustment, adaptive adjustment, and customized

adjustment. In this paper, we use cosine annealing adjustment as

the learning rate decay strategy.

The cosine annealing algorithm reduces the learning rate using

the cosine function. Initially, the cosine function decreases slowly to

determine the correct direction of optimization, and then it

decreases rapidly to accelerate the convergence of the function. If
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the gradient descent algorithm falls into a local optimal solution

during the training process, the second half of the cosine function

can be used to suddenly increase the learning rate. This helps to

jump out of the local optimal solution and find the path to the

global optimal solution. This method is a stochastic gradient

descent approach with restarts. The cosine annealing algorithm is

represented in Equation 6.

ht = hi
min +

hi
max − hi

min

� �
1 + cos Tcur

Ti
p

� �� �
2

(6)

where the i denotes the index, hi
max , hi

min   represent the range of

the learning rate, which we set to 1 and 0.01, respectively.,Tcur

indicates the current epoch, while Ti refers to the epochs of i-

th cycle.

By leveraging the combined influence of the cross-entropy loss

function and the SGD optimizer, the model persistently adjusts and

fine-tunes its parameters to boost classification accuracy and stability.

These adjustments take place during the training phase, ensuring a

gradual enhancement in the model’s classification performance.
3.3 Mixed attention module

The attention mechanism in deep learning processes data by

selectively focusing on relevant elements, automatically learning

and calculating each input’s contribution to the output. In the task

of wheat seed classification, the network model extracts feature

information through a series of convolution operations. However,

the impact of different feature information on distinguishing

various types of wheat seeds is not uniform. The attention

mechanism can process information from different regions of the

input image differently. To enhance the network model’s focus on

specific regions and reduce interference from other factors in wheat

seed recognition, we build upon the Convolutional Block Attention

Module (CBAM) (Woo et al., 2018), which uses a serial connection

between channel and spatial attention modules. This serial

connection may affect the feature ex-traction capability of

subsequent modules to a certain extent. To address this issue, this

paper proposes a Mixed Attention Module (MAM), which connects

the channel attention and spatial attention modules in parallel,

ensuring that the two modules do not interfere with each other, and

ultimately performs feature fusion. The structure of MAM is shown

in Figure 5.

As depicted in Figure 5, the Mixed Attention Module (MAM)

comprises channel attention and dual-path spatial attention

modules. The following sections will provide a detailed

explanation of these two attention modules.

1. Channel attention module

The classification and identification of wheat grain images are

challenging due to the relatively uniform backgrounds and subtle

differences among various wheat varieties. However, the channel

attention module effectively emphasizes the most representative

features within the wheat grain images, thereby enhancing the

classification process. Wang et al. (Wang et al., 2020) proposed

an Efficient Channel Attention (ECA) mechanism, which facilitates
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local cross-channel interactions without dimensionality reduction.

This approach utilizes one-dimensional convolution for cross-

channel interactions, resulting in reduced algorithmic complexity

while simultaneously enhancing network performance with only a

minimal increase in the number of parameters. In this study, the

channel attention within the mixed attention module is based on

the ECA mechanism. The operational workflow of ECA is detailed

as follows.

Given an input X ∈ RH�W�C which is transformed to X ∈
R1�1�C through global average pooling, the resulting feature map y

is then reshaped to X ∈ RC�1 to meet the requirements of the

subsequent convolution operation. This is accomplished through

the application of one-dimensional convolution, utilizing the

associated one-dimensional convolution weights. The calculations

are defined in Equations 7-10.

y =
1

H �Wo
H

i=1
o
W

j=1
Fi,j(x) (7)

wi = s o
k

j=1
wj
iy

j
i

 !
, yji ∈ W

k
i (8)

w = s (C1Dk(y)) (9)

k = j(C) =
log2(C)

g
+
b
g

����
����
Odd

(10)

Where, H, W and C represent the height, width, and number of

channels of the input image, respectively. Wk
i denotes the set of k

neighboring channels of yi. C1D stands for one-dimensional

convolution, k is the convolution kernel, s is the sigmoid
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function, tj jOdd denotes the nearest odd number to t, and b and g
are constants with values of 1 and 2, respectively.

The output is subsequently processed through a Sigmoid

activation function. Following this, the normalized output

undergoes a dimensional transformation to yield X ∈ R1�1�C .

Finally, the channel attention weights derived from the previous

step are multiplied with the original feature map of the input,

resulting in the final output.

2. Two-Path Spatial Attention

As shown in Figure 5, TPSA is constructed through operations

such as global average pooling, dimensionality reduction,

convolutions of different scales, feature fusion, dimensionality

expansion, activation, and element-wise multiplication.

First, each channel of the input feature map F undergoes global

average pooling to obtain a global feature vector G. The global

average pooling layer effectively captures global information and

reduces the spatial dimensions of the feature map. Then, a 1×1

convolution is used to reduce the dimensionality of the global

feature vector G, thereby reducing the number of channels. In this

paper, the number of channels is reduced to 1/16 of the original.

Subsequently, the feature map G′ is subjected to convolution

operations using multiple kernels of varying sizes, specifically 3×3

and 5×5 convolution kernels. These two convolution paths are

designed to capture features at different scales, thereby enhancing

the diversity of feature extraction and improving the model’s

expressive capability. The feature maps P1and P2 obtained from

the two convolution paths, are then combined through a

straightforward summation operation.

Third, a 1×1 convolution is used to expand the dimensions of

the fused feature map, and the expanded feature map P′ undergoes
Sigmoid activation to obtain the attention weights A. The Sigmoid

function primarily normalizes the values of the feature map. The
FIGURE 5

Structure of MAM.
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purpose of dimensionality expansion is to restore the original

number of channels to maintain consistency with the input

feature map.

Finally, the original input feature map F is element-wise

multiplied by the attention weights A to produce the final output

feature map F′.
The MAM is designed to significantly enhance the feature

extraction capabilities of wheat seed images by integrating the

ECA and TPSA mechanisms in parallel. This innovative approach

involves summing the outputs of both ECA and TPSA, thereby

capitalizing on the unique strengths of each attention mechanism.

The detailed implementation process of the MAM is presented in

Algorithm 1, which outlines the sequential steps involved in the

integration and application of these attention techniques.
Fron
1: Begin

2: input: X

//define ECA

3: Begin

4: F ← X

5: y ← 1
H�WoH

i=1oW
j=1Fi,j(x) //Perform global average

pooling

//Compute the weight

6: wi ←s (ok
j=1w

j
iy

j
i),y

j
i ∈ Wk

i

7: w←s (C1Dk(y))

8: k←j(C) = log2(C)
g + b

g

��� ���
Odd

//Compute the k value

9: W ←BN(w) //Transforming dimensions and

recovering original shape

10: YECA ←XW //Results of ECA

11: End

//define TPSA

12: Begin

13: G ← 1
H�W oH

i=1oW
j=1Fi,j(x) //Perform global average

pooling

14: G 0 ←C1D1 (G) //Reduction
tiers in Plant Science 10
//Two path convolution

15: P1 ←C1D3(G
0)

16: P2 ←C1D5(G
0)

17: P←P1 + P2 //Feature

fusion

1 8 : P0 ←C1D1 ( P)

//Expansion

19: A←s(P0)

20: YTPSA ←XA //Results of TPSA

21: End

//Feature Fusion

22: Y ←YECA + YTPSA

23: output: Y

24: End
Algorithm 1. The mixed attention module algorithm.
3.4 The stacked inverted
residual convolution

The SIRC layer of LWheatNet utilizes three stacked core layers,

each comprising two different unit structures, as shown in Figure 6.

One of the structures is a base unit with a stride of 1, while the other

is a downsampling unit with a stride of 2. The main branch of both

structures consists of three convolutional layers: 1 × 1 ordinary

convolution, 3 × 3 depthwise separable convolution, and 1 × 1

ordinary convolution. However, the composition of the inputs and

the side branches differ between the two structures.

In the case of a stride of 1, the base unit structure is used, as

shown in Figure 6A. This structure first divides the input channels

of the feature map equally into two halves using the Channel Split

operation. One branch remains unchanged, while the other branch

undergoes a series of operations: it first passes through a 1 × 1

ordinary convolution, followed by a Batch Normalization (BN)

layer and a ReLU activation function. Next, it goes through a 3 × 3

depthwise separable convolution and another BN layer. Finally, it

completes the sequence with another 1 × 1 ordinary convolution, a

BN layer, and a ReLU activation function.

The feature matrices from the two branches are then

concatenated, and the final output is obtained by channel

rearranging the resulting feature matrices. The convolution

operations on the right branch of this base unit are simplified

compared to those in the ShuffleNet V1 base unit, reducing
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structural fragmentation. Additionally, pointwise convolution is

used instead of pointwise group convolution to lower memory

access costs.

Furthermore, the three convolution operations maintain the

same number of input and output channels, which enhances the

network’s speed. After the convolution operations, the connection

and channel rearrangement performed by the two branches can be

merged with the Channel Split of the next cell, forming an element-

level operation. This reduction in element-level operations

improves computational efficiency.

In the case of a stride of 2, the downsampling unit structure is

used, as shown in Figure 6B. The left branch first passes through a 3 ×

3 depthwise separable convolution and a Batch Normalization (BN)

layer with a stride of 2. It then proceeds through a 1 × 1 ordinary

convolution, another BN layer, and a ReLU activation function. The

right branch structure is similar to the basic unit, with the key

difference being that the 3 × 3 convolution is performed with a stride

of 2. Finally, the two branches are concatenated, and a channel

rearrangement operation is performed to obtain the final output.

The different branches in the two units mentioned above use

depthwise separable convolution and channel shuffle. Depthwise

separable convolution decomposes the standard convolution into

two smaller operations: depthwise convolution and pointwise

convolution. Depthwise convolution applies the convolution

kernel independently to each input channel, while pointwise

convolution uses a 1×1 convolution to combine the outputs of
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these channels. This method significantly reduces the amount of

computation and the number of parameters. The channel shuffle

operation rearranges the channels of the feature map within the

network to facilitate information exchange between the channels.

This operation is usually performed after channel splitting to ensure

that features from different branches can be effectively fused

together, thereby improving the expressive power of the network.

The execution of the basic and downsampling units is shown in

Algorithm 2.
1: Begin

2: input: x

//Define Branch

3: Begin

4: if(stride==2)

5: branch1 ← sequential(DepthWiseConv,
FIGURE 6

The structure base and downsampling unit. (A) Base Unit, (B) Downsampling Unit.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1509656
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2024.1509656

Fron
BatchNorm,

Conv2d,

BatchNorm,

ReLU)

6: else

7: branch1 ← sequential()

8: branch2 ← sequential(Conv2d,

BatchNorm,

ReLU,

DepthWiseConv,

BatchNorm,

Conv2d,

BatchNorm,

ReLU)

9: End

//Implement two unit

10: Begin

11: stride ← [1,2]

12: if(stride==1)

13: x1,x2 ← ChannelSplit(x,2)

14: out ← Concat(x1,branch2(x2))

15: else

16: out ← Concat(branch1(x), branch2(x))

17: End

18: out ← ChannelShuffle(out,2)

19: output: out

20: End
Algorithm 2. The execution of the basic and downsampling units.
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4 Results

We utilize Python 3.8 and CUDA 11.7 within the PyCharm

2021 environment, running on a 64-bit Windows 10 operating

system. Our hardware setup includes an Intel Xeon® W-2255 CPU

and an NVIDIA RTX A4000 GPU with 16GB of GDDR6 memory.

We made extensive use of the PyTorch framework and the

Torchvision library, as well as various other image processing

tools. This capability enabled us to construct, modify, and debug

our model in real-time, thereby facilitating the development of an

efficient wheat image classification system.
4.1 Parameter settings

In this study, we employed a lightweight wheat seed image

classification model, LWheatNet. The main parameter settings for

the LWheatNet are shown in Table 3.
4.2 Evaluation metrics

Precision, recall, F1 score, and accuracy are employed as

evaluation metrics for our model. The calculation formulas are

provided in Equations 11-14.

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 =
2� precision� recall
precision + recall

(13)

Accuracy =
TP + TN

TP + TN + FN + FP
(14)

Where, “true positive” (TP) refers to the count of samples where

the actual positive instances are correctly identified as positive.

“False negative” (FN) signifies the instances where positive cases are

mistakenly classified as negative. “False positive” (FP) is used for

instances where negative cases are wrongly labeled as positive.

“True negative” (TN) denotes the instances where negative cases

are accurately classified as negative.

When tackling multi-category classification tasks, it is crucial to

thoroughly evaluate the performance of the classification model

using metrics such as macro average, micro average, and weighted

average. Macro averaging evaluates the model’s performance across

all categories by calculating the arithmetic mean of precision, recall,

and F1 score for each category. Micro averaging combines the

prediction results of all categories to derive overall evaluation

metrics. The weighted average addresses sample size imbalances

across categories by multiplying each category’s metrics by the

proportion of its sample size relative to the total, and then

calculating a weighted mean. In this study, weighted averages are
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employed to evaluate the performance metrics of multiple

comparative models on the wheat seed dataset. The formulas for

weighted average precision (Precisionw), weighted average recall

(Recallw), and weighted average F1 score (F1w) are provided in

Equations 15-18.

Precisionw =oiwiPi (15)

Recallw =oiwiRi (16)

F1w =
2� Precisionw � Recallw
Precisionw + Recallw

(17)

wi =
Si
S

(18)

where Si represents the number of i-th category, and S denotes

the total number of samples; Pi and Ri are the precision and recall

for the i-th category, respectively.
4.3 Ablation experiments

LWheatNet is built upon the foundational WheatNet network

module and incorporates attention components such as Two-Path

Spatial Attention (TPSA) and Efficient Channel Attention (ECA).

To assess the significance of each component within LWheatNet,

we conducted a series of ablation studies:
Fron
1. WheatNet: The core layer of WheatNet consists of stacked

inverted residual convolutions, which include multiple

downsampling units and several basic units. This

architecture is designed to classify wheat images across

training, validation, and test datasets.

2. WheatNet+TPSA: Building uponWheatNet, the TPSA (Two-

Path Spatial Attention)module is incorporated to enhance the

model’s ability to focus on important spatial features. (3)

WheatNet+TPSA+ECA: This model extends WheatNet by

integrating both the TPSA and ECA (Efficient Channel

Attention) modules in parallel, allowing for improved

feature representation and classification performance.
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These experiments provide compelling evidence for the

effectiveness of the LWheatNet model. By systematically integrating

enhanced modules under controlled conditions, we can observe the

progressive improvements in performance metrics at each stage of

development. Various metrics, including accuracy and loss, are

employed to illustrate these performance enhancements. The

results of the ablation experiments, which detail accuracy and loss

on the training dataset, are presented in Figure 7. Additionally, the

performance metrics on the test dataset are summarized in Table 4,

further reinforcing the improvements achieved through the

integration of the Two-Path Spatial Attention (TPSA) and Efficient

Channel Attention (ECA) components.

From Figure 7, it is evident that LWheatNet exhibits the fastest

convergence speed among the models evaluated within the 50

iterations. This rapid convergence is characterized by a significant

reduction in loss and a corresponding improvement in accuracy

across successive iterations. The swift decline in loss indicates that

LWheatNet effectively learns from the training data, quickly

adapting to the underlying patterns in the wheat classification

task. Simultaneously, the increase in accuracy reflects the model’s

ability to make correct predictions more consistently as training

progresses. This efficient learning process not only highlights

LWheatNet’s robustness but also underscores its potential for

practical applications, where rapid model training can lead to

quicker deployment in real-world scenarios.

Table 4 provides a detailed comparison of the performance

metrics for three different wheat classification models, elucidating

their respective strengths and improvements. WheatNet serves as

the baseline model, demonstrating solid performance with a loss of

0.0934 and an accuracy of 96.57%. This establishes a foundational

benchmark for evaluating the subsequent models. The introduction

of the Two-Path Spatial Attention (TPSA) component in the

WheatNet+TPSA model results in a significant enhancement in

performance. The loss decreases to 0.0641, while accuracy improves

to 97.38%. This improvement indicates that TPSA effectively directs

the model’s attention to relevant spatial features, leading to better

classification outcomes. Further advancements are observed in the

LWheatNet model, which integrates both the TPSA and Efficient

Channel Attention (ECA) components. LWheatNet achieves the

best overall performance among the models evaluated, with a loss of

0.0562 and an impressive accuracy of 98.59%. Additionally, the

precision, recall, and F1 score for this model are all approximately

98.59%, reflecting a highly effective and balanced approach to

classification tasks. Importantly, the parameter count for

LWheatNet remains consistent with that of WheatNet+TPSA at

1.33 million parameters. This indicates that the integration of the

ECA component does not significantly increase the model’s

complexity, allowing for enhanced performance without a

corresponding rise in computational demands.

Overall, the results demonstrate that the combination of TPSA

and ECA attention mechanisms leads to substantial improvements

in model efficacy while maintaining efficiency in terms of parameter

count. The progression from WheatNet to WheatNet+TPSA and

finally to LWheatNet (WheatNet+TPSA+ECA) illustrates clear
TABLE 3 LWheatNet parameter settings.

Parameters Value Parameters Value

Data_Size 224×224 Loss Function Cross-
Entropy

Batch_Size 16 Conv Kernel 1×1, 3×3

Momentum 0.9 Optimizer SGD

Weight_Decay 4e-05 Learning_Rate 3e-03

Epoch 50 Dropout 0.4

Activation Fuction ReLU Feature
Dimension

1024
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enhancements in performance metrics, including lower loss and

higher accuracy, precision, recall, and F1 scores. The addition of the

TPSA and ECA components enhances the model’s effectiveness

without a significant increase in parameters, making LWheatNet

the most efficient and high-performing model in this comparison.
4.4 Comparative experiments

Comparative experiments are specifically designed to assess and

compare the performance of distinct models. In this paper, we

utilize the wheat seed dataset to compute the performance of

LWheatNet. We train both widely recognized models and the

LWheatNet across several measures to highlight the superior

performance of the proposed model.

To further establish LWheatNet’s predominance, it is

benchmarked against five other models: AlexNet (Krizhevsky

et al., 2017), VGG16 (Simonyan and Zisserman, 2014),

MobileNetV2 (Sandler et al., 2018), MobileNetV3 (Howard et al.,

2019) and ShuffleNet V2 (Ma et al., 2018).

AlexNet and VGG16 are both seminal architectures in the field

of deep learning, particularly in image classification tasks. AlexNet

was a pioneer in demonstrating the power of deep learning and the

use of GPUs for training, introducing key concepts like ReLU

activations and dropout layers. However, its complexity and

computational demands make it less practical for some

applications. VGG16 built on the success of AlexNet by using

smaller convolution filters and deeper networks to achieve higher

accuracy. Its simplicity and high performance make it a go-to model
Frontiers in Plant Science 14
for transfer learning, but it is also computationally intensive and has

a large number of parameters, leading to potential inefficiencies.

MobileNetV2, MobileNetV3, and ShuffleNetV2 are all designed

with efficiency in mind, making them suitable for mobile and

embedded applications. MobileNetV2 intro-duces inverted residuals

and linear bottlenecks to balance efficiency and performance, but may

require more complex implementation.MobileNetV3 builds on

MobileNetV2 by incorporating state-of-the-art techniques like

squeeze-and-excitation modules and neural architecture search,

offering improved efficiency and performance at the cost of

increased complexity.ShuffleNetV2 focuses on optimizing the

balance between computation and memory access cost using

channel shuffle operations, offering a simpler and highly

efficient architecture.

Table 5 provides a detailed overview of the parameters used for

the comparative models, while Table 6 presents the experimental

results on the test dataset.

Table 6 provides a comprehensive comparison of various

models employed for the wheat seed classification task.

LWheatNet is identified as the most effective model, achieving an

accuracy of 98.99% and a minimal loss of 0.0413, while maintaining

a parameter count of 1.33 million. This performance highlights

LWheatNet’s capability in balancing accuracy and computational

efficiency. MobileNet V2 and MobileNet V3 also exhibit

commendable results, surpassing the performance of AlexNet and

VGG16. Notably, MobileNet V3 achieves an accuracy that is 1.41

percentage points higher than that of AlexNet and 7.06 percentage

points higher than VGG16, demonstrating its efficacy in the

classification task while utilizing fewer parameters and exhibiting
FIGURE 7

The Ablation Experiment Results of Accuracy and Loss on Training Dataset. (A) Accuracy rate, (B) Loss value.
TABLE 4 Results of ablation experiment on test dataset.

Model Loss Accuracy (%) Precisionw (%) Recallw (%) F1w (%) Params

WheatNet 0.0934 96.57 96.89 96.57 96.60 1.26M

WheatNet+TPSA 0.0641 97.38 97.53 97.38 97.38 1.33M

WheatNet+TPSA
+ECA(LWheatNet)

0.0562 98.59 98.61 98.59 98.59 1.33M
Bold values indicate the best values for each evaluation metric.
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lower loss values. ShuffleNet V2 further distinguishes itself through

its efficiency, attaining an accuracy of 98.79% with only 1.26 million

parameters. This makes it one of the most resource-efficient models

in the comparison, although it records a slightly higher loss of
Frontiers in Plant Science 15
0.0545 compared to LWheatNet. Conversely, VGG16 and AlexNet,

despite their larger parameter sizes, do not yield superior

performance in this context. The findings suggest that the

increased complexity of these models does not correlate with

enhanced accuracy, indicating that model architecture and design

are critical factors in determining performance.

In conclusion, LWheatNet emerges as the most robust model

for wheat seed classification, offering an optimal balance of accuracy

and loss. While ShuffleNet V2 is notable for its efficiency,

LWheatNet’s superior precision and recall metrics render it the

preferred choice for this application. Overall, the analysis

underscores the importance of selecting models that effectively

integrate accuracy and computational efficiency, with LWheatNet

and ShuffleNet V2 being the most suitable candidates for high-

performance classification tasks in this domain.

To evaluate the convergence efficiency of LWheatNet in relation

to other models, we analyzed the changes in training loss and

accuracy over several training rounds. Figure 8 illustrates a detailed

comparison of accuracy and loss across 50 epochs using the wheat

seed training dataset. This comparison allows us to observe the

convergence rates of each model towards optimal performance. The

results highlight LWheatNet’s ability to achieve high accuracy and

low loss efficiently within a limited number of epochs, suggesting its

effectiveness in this context.

As shown in Figure 8, LWheatNet exhibits a notably faster

convergence rate compared to other models, while maintaining a

level of classification accuracy that is comparable. Additionally,

LWheatNet achieves a higher classification accuracy at similar

convergence rates, suggesting its enhanced convergence efficiency

for the task of wheat seed image classification. These findings

indicate that LWheatNet is capable of rapidly and accurately

learning from the training data, positioning it as a potentially

effective model for this specific application. The swift convergence

may enhance the model’s practical applicability in real-world

scenarios and suggests the possibility of more efficient training

processes. Overall, these characteristics may contribute to

LWheatNet’s potential role in improving precision agriculture

through advanced image classification techniques.
4.5 Classification experiment

To explore the differences and performance impacts among the

models, we performed a thorough analysis of Precision, Recall, and

F1-score values for each model across various categories. The results

from the wheat seed test dataset are illustrated in Figure 9. This

analysis aims to highlight the relative strengths and weaknesses of

each model, offering a clearer understanding of their effectiveness in

classifying the wheat seed data.

Figure 9 illustrates that the categories Kelin201 and Baimai1811

achieve relatively high scores in both Recall and F1 metrics,

reflecting strong classification performance for these wheat seed

images. In contrast, the categories Huaimai40 and Xinong156

display lower scores in Recall and F1, indicating potential

challenges in feature extraction for these specific types of images.

When assessing the precision metric, it is noteworthy that all
TABLE 5 Parameters of comparative models.

Model Parameters Value

AlexNet

Batch_Size 16

Epoch 50

Learning_Rate 1e-04

Dropout 0.3

Hidden layer 3

Conv layer 16

Conv kernel 3×3

Feature dimension 4096

VGG16

Batch_Size 16

Epoch 50

Learning_Rate 1e-03

Dropout 0.3

Hidden layer 3

Conv layer 5

Conv kernel 3×3, 5×5,11×11

Feature dimension 4096

MobileNetV2

Batch_Size 16

Epoch 50

Learning_Rate 1e-03

Depthwise separable layer 20

Conv layer 30

Conv kernel 3×3

Feature dimension 1280

MobileNetV3

Batch_Size 16

Epoch 50

Learning_Rate 1e-03

Depthwise separable layer 15

Conv layer 20

Conv kernel 3×3

Feature dimension 1024

ShuffleNet V2

Batch_Size 16

Epoch 50

Learning_Rate 1e-03

Dropout 0.4

Conv kernel 1×1,3×3

Feature dimension 1024
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models, except for VGG16, perform well in the 5-class classification

task. This observation suggests that deeper neural networks with

larger training parameters may not necessarily yield better

classification performance for the wheat seed dataset. In terms of

the F1 metric, LWheatNet and ShuffleNet V2 demonstrate the best

classification performance. LWheatNet, in particular, benefits from

the integration of a mixed attention mechanism, which enhances its

ability to extract both local and global features from wheat seed

images. This comprehensive feature extraction capability plays a

significant role in LWheatNet’s superior performance.

To gain a more nuanced understanding of each model’s

classification performance across different categories, we

constructed a confusion matrix based on the classification results

from the test set. The confusion matrix, depicted in Figure 10,

provides a clear representation of the classification outcomes, with

rows corresponding to the true categories and columns

corresponding to the predicted categories. The diagonal elements

indicate the number of correctly identified wheat seed images, while

the off-diagonal elements reflect the number of misclassified images.

This visual representation serves as an effective tool for assessing the

strengths and weaknesses of the models in distinguishing between

various categories of wheat seeds.

Figure 10 illustrates that LWheatNet and ShuffleNet V2 achieve

the lowest misclassification rates, demonstrating strong

performance in classifying the five categories of wheat seeds. The

confusion matrices for the AlexNet and VGG16 models indicate a

higher frequency of misclassifying Xinong156 as Baimai1811. This
Frontiers in Plant Science 16
misclassification may stem from the notable similarity in the

external appearance of these two wheat grain types, which could

have limited the models’ ability to extract sufficiently distinct

features for accurate differentiation. In contrast, MobileNetV2

and MobileNetV3 show a significant improvement in reducing

the misclassification rate for Xinong156, suggesting that these

models are better equipped to distinguish between these visually

similar categories.

Overall, the confusion matrix highlights that LWheatNet

exhibits a higher level of accuracy in identifying various wheat

seed classifications compared to the other models. This

visualization underscores LWheatNet’s effectiveness in accurately

categorizing a diverse range of wheat seed images, indicating its

robustness and reliability for this specific application.
4.6 Generalization experiment

To evaluate the generalization capability of LWheatNet, we

conducted a comparative analysis of accuracy and loss rates across

the training and validation sets of the wheat seed dataset over a span

of 50 epochs. The findings from this analysis are presented

in Figure 11.

The analysis of Figure 11 reveals that the training accuracy

exhibits a steady upward trend over the course of 50 iterations,

suggesting continuous improvements in the model’s performance

on the training set. In contrast, the validation accuracy displays
TABLE 6 Comparative model experimental results on wheat test set.

Model Loss Accuracy (%) Precisionw (%) Recallw (%) F1w (%) Params

AlexNet 0.5379 86.9 87.16 86.9 86.93 14.59M

VGG16 0.7823 81.25 81.31 81.25 81 134.28M

MobileNet V2 0.4125 86.9 87.17 86.9 86.76 2.23M

MobileNet V3 0.2933 88.31 88.76 88.31 88.24 1.52M

ShuffleNet V2 0.0934 96.57 96.89 96.57 96.60 1.26M

LWheatNet 0.0562 98.59 98.61 98.59 98.59 1.33M
Bold values indicate the best values for each evaluation metric.
FIGURE 8

The accuracy and loss of comparative models on training set. (A) Accuracy comparison, (B) Loss comparison.
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minor fluctuations, which may indicate variations in the model’s

performance on unseen data at different stages of training. This

variability suggests a dynamic nature in the model’s generalization

ability as it adapts throughout the training process.

In terms of the Loss metric, the training set’s loss rate

consistently decreases over the 50 iterations, reflecting the

model’s effective adjustments to parameters aimed at minimizing
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training loss. This consistent reduction points to an enhancement in

the model’s fitting capability. Conversely, the validation set’s loss

rate shows slight fluctuations, which may arise from the model’s

varying fit to the validation data at different stages of training. This

behavior underscores the ongoing challenge of maintaining a

balance between preventing overfitting and improving

generalization ability as training progresses.
5 Discussion

The paper introduces a lightweight classification model,

LWheatNet. This model combines the mixed attention

mechanism with stacked inverted residual convolutional

networks. To validate the proposed model, we constructed an

image dataset encompassing five categories of wheat seeds. The

experimental results demonstrate that LWheatNet enhances feature

extraction, improves classification accuracy, and operates with

minimal parameters.

The LWheatNet model successfully addresses some of the key

challenges in wheat seed variety classification by providing a high-

performance, lightweight solution. The construction of a dedicated

dataset and the development of an efficient model architecture

represent significant advancements in this field. LWheatNet’s ability

to deliver high ac-curacy while maintaining a small model size

makes it particularly valuable for real-time applications in

agriculture, especially in resource-limited settings.

While the LWheatNet demonstrates significant advancements

in wheat seed image classification, it is not without its limitations.

One shortcoming of the LWheatNet model is that the dataset used

for classification contains only five wheat varieties. To ensure the

robustness and generalizability of the model, it is essential to

validate its performance on a dataset with a larger number of

categories in future studies. Another limitation arises from the way

the dataset is divided. The training, validation, and test sets are

randomly split, and since the wheat seeds are collected from two

different angles, the same seeds appear in the dataset from different

perspectives. This overlap may introduce fluctuations in the analysis

results and affect the overall performance evaluation of the model.
6 Conclusions

This study aims to address some of the challenges associated

with classifying wheat seed images, specifically long processing

times, high computational demands, and low classification

accuracy. To this end, we introduce a lightweight classification

model called LWheatNet. The key contributions of this research are

outlined as follows:
1. In response to the limited availability of publicly accessible

datasets, we created a comprehensive dataset comprising

single-seed images from five different wheat varieties. This

robust database serves as an essential resource for the

development and validation of deep learning models in
FIGURE 9

Comparative model experimental results of precision, recall and F1.
(A) Precision comparison, (B) Recall comparison, (C) F1 comparison.
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Fron
the realm of wheat seed classification, benefiting both

researchers and practitioners.

2. We proposed LWheatNet, a lightweight convolutional

neural network that integrates a mixed attention module

with stacked inverted residual convolutional networks. This

model not only enhances the classification performance of

wheat images but also maintains a relatively small number

of parameters, making it suitable for deployment in

resource-constrained environments, such as mobile

devices or edge computing.

3. We conducted a series of comparative, classification, and

generalization experiments to demonstrate the efficacy of

our proposed model. Using various evaluation metrics, we
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achieved an accuracy of 98.59% and a loss of 0.0562. The

results indicate that LWheatNet outperforms several

traditional network models, achieving high classification

accuracy while requiring minimal computational resources.
The findings of this study hold significant implications for research

and practical applications in agriculture and food science. By providing

an efficient and accurate tool for wheat seed classification, LWheatNet

could facilitate improved crop management, enhance breeding

programs, and contribute to overall food security. The ability to

classify wheat seeds quickly and accurately may support better

decision-making processes in agricultural practices, enabling farmers

and agronomists to optimize their operations.
FIGURE 10

Confusion matrix of classification effect of each model. (A) AlexNet , (B) VGG16, (C) MobileNetV2, (D) MobileNetV3, (E)ShuffleNetV2, (F)LWheatNet.
FIGURE 11

Comparison of accuracy rate and Loss value. (A) Accuracy, (B) Loss.
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Looking forward, future research could focus on further

optimizing the LWheatNet architecture to reduce computational

complexity and model size while maintaining or even enhancing

classification accuracy. Techniques such as model pruning,

quantization, and knowledge distillation could be explored to create

a more efficient and compact model without sacrificing performance.

Additionally, expanding the dataset to include a broader variety of

wheat species and potentially other crops would improve the model’s

generalization capabilities, making it a more versatile tool for

agricultural research and practice. This approach could ultimately

contribute to advancements in precision agriculture, where tailored

solutions can be developed based on accurate seed classification.
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