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Xiaobin Guo1,2* and Sheng Xu1,2*

1Guangdong University of Technology, Guangzhou Higher Education Mega Centre,
Guangzhou, China, 2Guangdong University of Technology, Guangdong Provincial Key Laboratory of
Sensing Physics and System Integration Applications, Guangzhou, China, 3College of Engineering,
South China Agricultural University, Guangzhou, China, 4South China Agricultural University, National
Banana Industry Technology System Orchard Production Mechanization Research Laboratory,
Guangzhou, China
Precise segmentation of unmanned aerial vehicle (UAV)-captured images plays a

vital role in tasks such as crop yield estimation and plant health assessment in

banana plantations. By identifying and classifying planted areas, crop areas can be

calculated, which is indispensable for accurate yield predictions. However,

segmenting banana plantation scenes requires a substantial amount of

annotated data, and manual labeling of these images is both timeconsuming

and labor-intensive, limiting the development of large-scale datasets.

Furthermore, challenges such as changing target sizes, complex ground

backgrounds, limited computational resources, and correct identification of crop

categories make segmentation even more difficult. To address these issues, we

propose a comprehensive solution. First, we designed an iterative optimization

annotation pipeline leveraging SAM2’s zero-shot capabilities to generate high-

quality segmentation annotations, thereby reducing the cost and time associated

with data annotation significantly. Second, we developed ALSS-YOLO-Seg, an

efficient lightweight segmentationmodel optimized for UAV imagery. Themodel’s

backbone includes an Adaptive Lightweight Channel Splitting and Shuffling (ALSS)

module to improve information exchange between channels and optimize feature

extraction, aiding accurate crop identification. Additionally, a Multi-Scale Channel

Attention (MSCA) module combines multi-scale feature extraction with channel

attention to tackle challenges of varying target sizes and complex ground

backgrounds. We evaluated the zero-shot segmentation performance of SAM2

on the ADE20K and Javeri datasets. Our iterative optimization annotation pipeline

demonstrated a significant reduction in manual annotation effort while achieving

high-quality segmentation labeling. Extensive experiments on our custom Banana

Plantation segmentation dataset show that ALSS-YOLO-Seg achieves state-of-

the-art performance. Our code is openly available at https://github.com/

helloworlder8/computer_vision.
KEYWORDS

UAV, banana plantations, changing target sizes, complex ground backgrounds, SAM2,
ALSS, MSCA
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1 Introduction

In recent years, the global demand for bananas (Musa spp.) has

surged, establishing bananas as one of the most critical economic

crops in tropical and subtropical regions (De Barros et al., 2009). As a

leading banana producer, China, particularly its southern provinces,

has demonstrated significant advantages in both planting area and

yield, thus playing a vital role in advancing the agricultural economy

(Yang et al., 2022). For banana production, accurately monitoring

plant health and predicting yields are essential for enhancing

production efficiency and promoting sustainable agricultural

practices (de Souza et al., 2019). However, traditional manual

monitoring methods are often costly, inefficient, and lack precision,

making it challenging to satisfy the demands of modern agriculture

for efficient and accurate monitoring (Dıáz et al., 2011).

To address these challenges, Unmanned aerial vehicles (UAVs)

have increasingly emerged as indispensable tools for monitoring

banana plantations, due to their notable efficiency, flexibility, and

costeffectiveness (Zhang et al., 2022). By integrating UAV technology

with advanced deep learning algorithms, instance segmentation can

be applied to automate the identification and classification of various

regions within banana plantations. This methodology significantly

improves both the precision and efficiency of monitoring large-scale

agricultural environments (Mo et al., 2021). The high-resolution

imagery collected by UAVs enables rapid and comprehensive data

gathering on the plantation environment, supporting critical

applications such as crop yield estimation and plant health

assessment. Accurate segmentation of UAV-captured images is

crucial for determining crop area, which is indispensable for

reliable yield predictions. Additionally, the ability to extract crop

features from complex environments opens up new opportunities for

advancing smart agriculture and precision farming.

However, despite the benefits of UAV-based monitoring, the

segmentation of banana plantation scenes requires a substantial

amount of annotated data to train effective models. Manual labeling

of these images is a time-consuming and labor-intensive process,

presenting a significant barrier to the development of large-scale

annotated datasets. For instance, Kirillov et al. (Kirillov et al., 2023)

reported that annotating a single image takes an average of 34

seconds, which is highly inefficient for large-scale agricultural

monitoring. To overcome these limitations, the field of artificial

intelligence has witnessed a paradigm shift with the advent of

foundational models that leverage pre-training on extensive

datasets. Foundational models such as ChatGPT have

demonstrated superior performance in natural language

processing and multimodal tasks (Lund and Wang, 2023) (Qin

et al., 2023), while models like CLIP (Radford et al., 2021), ALIGN

(Jia et al., 2021), and DALLE (Ramesh et al., 2021) have shown

impressive generalization across multiple domains. Although these

models are not specifically designed for image segmentation, they

underscore the potential of large-scale pre-trained models in

various applications.

In this context, The Segment Anything Model (SAM) (Kirillov

et al., 2023) has garnered significant attention within the computer

vision community. SAM is built on the Vision Transformer (VIT)
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architecture (Alexey, 2020) and pre-trained on the massive SA-1B

dataset, containing over 11 million images and 1 billion masks.

SAM stands out for its ability to generate effective segmentation

results through promptbased interactions, showcasing robust zero-

shot generalization across diverse tasks. The introduction of SAM

represents a promising step toward alleviating the challenges

associated with manual annotation in UAV-based agricultural

monitoring, offering a more scalable approach to segmentation.

Building on this foundation, the recent advancement of SAM2

(Ravi et al., 2024), an upgraded version of SAM, further enhances

segmentation capabilities across a wide range of scenes and object

types. Trained on the expansive SA-V dataset and employing a

Transformer-based model, SAM2 demonstrates superior

generalization ability and excels in handling diverse and complex

segmentation tasks. One of its most notable contributions is its

interactive, prompt-based framework, which has significantly

simplified dataset annotation workflows. For instance, SAM has

been successfully applied in various domains, such as medical

imaging (Zhang et al. , 2024), where it accelerates the

segmentation of organs and tissues, and remote sensing data

(Parulekar et al., 2024), where it improves the efficiency of

annotating objects in dense urban environments. In agricultural

applications, studies like (Kovačević et al., 2024) have used SAM to

annotate crop boundaries, showcasing its versatility across fields.

Despite the impressive segmentation capabilities of SAM2, its

interactive prompt-based framework requires user-provided initial

prompts and manual intervention for segmentation optimization.

For largescale automatic monitoring tasks in complex

environments such as banana plantations, this characteristic

limits SAM2’s applicability. Specifically, in images with dense

plantings, complex backgrounds, and indistinct boundaries,

SAM2’s segmentation results heavily rely on prompts, making it

less effective in fully automated segmentation tasks. Moreover, the

large parameter size of SAM2 further restricts its deployment in

resource-constrained environments. For instance, SAM2-b contains

80.8 million parameters, while SAM2-t has 38.9 million parameters,

making them impractical for direct implementation on UAV

platforms. As noted in (Zhao et al., 2023), selecting a more

lightweight model can offer a better balance between efficiency

and accuracy for specific tasks. Therefore, while SAM2 excels in

segmentation accuracy and generalization, its full automation

application in banana plantation monitoring faces significant

challenges, necessitating the development of novel methods to

overcome these limitations.

This study leverages the zero-shot segmentation capabilities of

SAM2 to develop an iterative optimization annotation pipeline that

addresses these limitations while maintaining high segmentation

accuracy. This pipeline significantly reduces data annotation costs

and time by using a small amount of weak annotations to

automatically generate high-quality segmentation masks.

Specifically, the process begins with SAM2 generating initial

segmentation masks based on user-provided prompts, which are

then converted into Minimum Bounding Boxes (MBB). These MBB

are used to train a lightweight detection model capable of generating

segmentation boundaries for new images with minimal human
frontiersin.org
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intervention. The detection results are iteratively fed back to SAM2

to refine the segmentation masks further, creating a feedback loop

that improves annotation efficiency and segmentation quality

over time.

Compared to existing SAM-based workflows, the proposed

pipeline minimizes manual intervention by combining SAM2’s

robust zero-shot segmentation capabilities with automated

detection, enabling largescale dataset annotation with limited

human input. By addressing SAM2’s limitations and building

upon its strengths, this study provides a scalable and efficient

solution for generating high-quality segmentation datasets in

challenging environments like banana plantations.

Once high-quality segmentation masks are obtained, the next step

is to train a lightweight and efficient instance segmentation model

specifically designed for the banana plantation scene tomeet the needs

of UAV platform deployment, which can be regarded as a fully

coupled knowledge distillation process of SAM2 (Zhang et al., 2023).

In the realm of instance segmentation, current state-of-the-art

approaches can be broadly classified into two categories: two-stage

and single-stage algorithms. Two-stage models, such as Mask R-

CNN (He et al., 2017), Cascade R-CNN (Cai and Vasconcelos,

2019), and Mask Scoring R-CNN (Huang et al., 2019), first generate

region proposals and then perform segmentation, typically offering

higher accuracy but at the cost of increased computational

complexity. In contrast, single-stage algorithms, including

YOLACT (Bolya et al., 2019), BlendMask (Chen et al., 2020), and

SOLO (Wang et al., 2020b), combine detection and segmentation in

a unified process, offering a more efficient alternative suitable for

real-time applications.

Among single-stage methods, lightweight segmentation

networks, have emerged as prominent solutions to address the

computational limitations of real-time and resource-constrained

scenarios. Lightweight networks, such as Fast-SCNN (Poudel et al.,

2019), SegNet (Badrinarayanan et al., 2017), and DeepLabV3+

(Chen et al., 2018), prioritize computational efficiency by

optimizing network architectures to achieve a balance between

segmentation accuracy and inference speed. Fast-SCNN was

designed specifically for high-speed semantic segmentation tasks,

targeting scenarios with limited computational resources. It

employs a unique encoder-decoder structure that combines

spatial and depthwise separable convolutions with an efficient

downsampling strategy, significantly reducing computational

complexity while maintaining competitive segmentation accuracy.

The model introduces a feature fusion module that merges low-level

spatial features with high-level contextual features, enabling it to

deliver robust segmentation results in real-time applications, even

on edge devices. However, its reliance on downsampling can lead to

the loss of fine-grained details, which affect segmentation accuracy

in scenarios requiring high spatial precision. SegNet, one of the

pioneering lightweight networks for semantic segmentation,

employs a symmetrical encoder-decoder architecture. The

encoder extracts feature maps through convolutional layers, while

the decoder upsamples these features using pooling indices from the

encoder, eliminating the need for learning additional parameters for

upsampling. This poolingbased upsampling mechanism not only

reduces model size but also preserves spatial accuracy, making
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SegNet particularly effective in resource-constrained environments.

Its straightforward yet efficient design has made it a popular choice

for various segmentation tasks, especially in scenarios where

computational efficiency is a critical requirement. However, its

relatively simple architecture limits its ability to capture complex

contextual information, which hinder performance in challenging

environments with high variability. DeepLabV3+, by contrast,

represents a more advanced encoder-decoder framework designed

to enhance semantic segmentation through its use of atrous spatial

pyramid pooling (ASPP). This module effectively extracts multi-

scale contextual information by applying atrous convolutions at

varying rates, allowing the network to capture both fine details and

global context. Additionally, DeepLabV3+ incorporates an efficient

decoder to refine segmentation results along object boundaries,

addressing some precision issues faced by earlier models. While

DeepLabV3+ achieves high accuracy across diverse segmentation

tasks, its computational requirements are relatively higher

compared to FastSCNN and SegNet, making it less suitable for

scenarios with stringent resource constraints. Despite this

limitation, its ability to balance fine-grained detail extraction with

contextual awareness has established it as a benchmark in semantic

segmentation research. YOLO, in particular, achieves simultaneous

object detection and segmentation in a single forward pass, striking

an exceptional balance between speed, accuracy, and computational

efficiency. Its adaptability and real-time performance have led to

widespread applications across diverse fields, including robotics,

autonomous driving, and video surveillance (Li et al., 2023c, b;

Nguyen et al., 2021). In the agricultural domain, researchers have

further optimized YOLO to tackle complex production challenges,

making it a cornerstone of lightweight segmentation networks for

resource-constrained environments.

In the context of agricultural segmentation, YOLO-based

frameworks have been widely adopted due to their inherent

efficiency and adaptability. For instance, Thakuria et al. (Thakuria

and Erkinbaev, 2023) enhanced the YOLO model’s architecture for

real-time automated grading of canola health, demonstrating

improvements in grading accuracy. However, challenges such as

changing target sizes and the complex ground backgrounds in high-

density canola fields posed difficulties, as the model sometimes

struggled with occlusion, which hindered its ability to differentiate

overlapping plants accurately. Li et al. (Li et al., 2023b) developed an

MHSA-YOLOv8 model for tomato maturity grading and counting,

achieving commendable results in terms of accuracy. Nevertheless,

real-world complexities such as variable lighting and shadows

affected the model’s performance, highlighting the difficulties that

arise when dealing with complex backgrounds. Additionally,

variations in tomato sizes introduced further challenges, requiring

robust adaptability in the segmentation process. Chen et al. (Chen

et al., 2024) constructed the YOLOv8-CML model for melon

ripeness segmentation, which performed well under controlled

conditions. However, like many models applied in agriculture, it

encountered challenges in high-density planting environments.

Occlusion and overlap of fruits in such scenarios made it difficult

to maintain consistent recognition performance, underscoring the

inherent difficulty in segmenting objects accurately when faced with

overlapping targets and dense vegetation. Sampurno et al.
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(Sampurno et al., 2024) deployed the YOLOv8n-seg model for

robotic weeding, achieving notable segmentation accuracy. Yet, in

complex field environments with dense weed growth, the model’s

performance was affected by the challenges of distinguishing

between targets and their backgrounds. These results demonstrate

the importance of balancing computational efficiency with the need

for accurate segmentation in intricate and resourceconstrained

environments. Wang et al. (Wang et al., 2023a) applied the

YOLOv8-seg model to a litchi picking robot, focusing on

extracting regions of interest (ROIs) for litchi fruits and branches.

Although the model contributed to efficient fruit-picking, occlusion

and varying fruit sizes introduced challenges, particularly when

overlapping occurred, which affected the precision of ROI

extraction. This highlights the ongoing challenge of adapting

segmentation models to dynamic agricultural scenarios involving

variable object sizes. Yue et al. (Yue et al., 2023) implemented

SimConv in the YOLOv8-seg model for segmenting healthy and

diseased tomato plants at different growth stages. Despite the

improvements in segmentation accuracy, performance bottlenecks

persisted in complex environments with significant occlusion and

varying plant sizes. The model’s difficulties in such conditions

reflect the broader challenges that arise when applying

segmentation algorithms in agricultural contexts, where

computational resources are often limited and crop characteristics

can vary widely.

Although these studies have made progress in specific

applications, challenges such as changing target sizes, complex

ground backgrounds, and the correct identification of crop

categories continue to make segmentation even more difficult.

Ongoing optimization is essential to enhance model robustness

and adaptability in these contexts. Moreover, the limited computing

resources of UAVs pose additional difficulties in accomplishing

complex tasks. In response, this paper proposes a lightweight and

efficient segmentation model for Banana Plantations, ALSS-YOLO-

Seg. The model integrates the Adaptive Lightweight Channel Split

and Shuffling (ALSS) (He et al., 2024) module and an efficient

lightweight attention mechanism, Multi-Scale Channel Attention

(MSCA) module. Compared to existing methods, ALSS-YOLO-Seg

demonstrates significant improvements in performance within

resource-constrained environments, as evidenced by its

experimental results. By building on advancements in lightweight

segmentation networks and tailoring the approach to plantation-

specific challenges, this study aims to contribute a robust and

efficient solution for UAV-based segmentation tasks. The main

contributions of this paper are as follows:
Fron
1. This study uses SAM2 zero-shot capabilities to develop an

iterative optimization annotation pipeline for segmentation

mask generation, which significantly reduces data

annotation costs and time. This pipeline leverages a small

amount of weak annotations to automatically generate

high-quality segmentation masks, minimizing annotation

expenses and human intervention, thereby improving

annotation efficiency and segmentation accuracy.

2. The ALSS-YOLO-Seg model is designed to integrate the

ALSS module with the MSCA attention mechanism. The
tiers in Plant Science 04
ALSS module optimizes feature extraction through an

adaptive channel splitting strategy and enhances inter-

channel information exchange via a channel shuffling

mechanism, all while employing a bottleneck structure to

reduce model complexity. This module helps to accurately

identify crops. Furthermore, the MSCA functions as an

efficient lightweight attention module, combining multiscale

feature extraction with channel attention. This combination

significantly boosts the model’s accuracy and generalization

capabilities while maintaining low computational overhead,

making the ALSS-YOLO-Seg model highly effective for tasks

involving varying target scales, complex backgrounds, and

resource-constrained scenarios.

3. We evaluated the zero-shot segmentation performance of

SAM2 on the ADE20K (Zhou et al., 2019) and Javeri

(Subhash, 2024) datasets. On the ADE20K dataset,

SAM2-b, utilizing MBB-based prompts, achieved a

segmentation performance of 75.7% mIoU, surpassing the

supervised BEIT-3 (Wang et al., 2023b) model by 13.7%.

Utilizing the Javeri dataset, we further demonstrated that

the iterative optimization annotation pipeline significantly

reduces manual annotation workload while achieving high-

quality data labeling with an mIoU of 93.78%. Extensive

experiments on our custom Banana Plantation

segmentation dataset revealed that ALSS-YOLO-Seg (with

a parameter count of 1.8256M) achieved state-of-the-art

performance, with a mAP50mask score of 85.8%, exceeding

that of the second-best model, YOLOv8-Seg’ (with

1.6952M parameters) by 1%. Furthermore, significant

improvements in both mAP50mask scores and parameter

efficiency were observed compared to other advanced

segmentation models.
2 Materials and methods

2.1 Acquisition of images for
banana plantations

The images of Banana Plantations were acquired in Hekou Yao

Autonomous County, Honghe Hani and Yi Autonomous

Prefecture, Yunnan Province, China. The images were captured

using a DJI Phantom 3M quadcopter UAV equipped with an RGB

camera, which took vertical photographs of the ground at a shutter

speed of 2 seconds to ensure clarity. To minimize image blur, the

UAV hovered at each waypoint while capturing images. The

forward and lateral overlap rates were set to 80% and 90%,

respectively, and the images were saved in JPG format. Data

collection took place daily from 10:00 AM to 12:00 PM between

February and April 2024 to ensure consistent lighting conditions

and image quality. To enhance the model’s generalization capability

for image segmentation of Banana Plantations in varying

environments, images were captured at UAV flight heights of 5

meters, 8 meters, and 12 meters. Ultimately, a total of 3,880 raw

images were obtained, covering various growth stages, heights, and
frontiersin.org
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different plots. Figure 1 shows various scenarios. In the subsequent

sections, we will provide a detailed description of an iterative

optimization process for generating segmentation masks from the

raw images. Additionally, to validate the effectiveness of this

pipeline, we utilized the ADE20K (Zhou et al., 2019) and Javeri

(Subhash, 2024) datasets in our experiments.
2.2 Iterative optimization annotation
pipeline for segmentation mask generation

In the field of computer vision, recent segmentation models,

such as the SAM2, have demonstrated remarkable performance

across various tasks due to their strong generalization capabilities

and crossscenario segmentation effectiveness. However, the

performance of these models heavily relies on high-quality user

prompt, including positive points, negative points, and bounding

boxes, as illustrated in Figure 2. This implies that, to generate

accurate segmentation masks, users must manually annotate

multiple key points or provide initial bounding boxes within the

images to guide SAM2 in accurately locating target areas.

Furthermore, traditional segmentation methods often require

extensive finely annotated datasets, with the annotation process

being time-consuming and labor-intensive. This is particularly

challenging for large-scale agricultural scenarios involving UAV

imagery, where annotation costs can be prohibitive.

To address these issues, we proposed an iterative optimization

annotation pipeline for segmentation mask generation, aimed at

reducing data annotation costs. The pipeline combines automated

and semi-automated segmentation techniques to achieve precise

delineation of target areas, significantly enhancing the quality of

segmentation masks while minimizing manual intervention. The

proposed pipeline is illustrated in Figure 3.

Initially, a randomly selected subset of images Ii from the

extensive collection of banana plantation imagery was used for

segmentation. Positive and negative hint points, denoted as P+ =

p+1 , p
+
2 ,…, p+p

� �
and P− = p−1 , p

−
2 ,…, p−nf g, along with bounding

boxes B = b1, b2,…, bbf g, were employed as prompts to guide the

segmentation process. These prompts provided critical information

regarding target and non-target regions, allowing SAM2 to generate

high-quality segmentation masks Mi = M1,M2,…,Mmf g for each

selected image.
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Mi = SAM2(Ii, P
+, P−,B) (1)

Subsequently, we further processed the segmentation masks Mi

by calculating the minimum bounding boxes (MBB), Bi, for each

mask, such that:

Bi = (min (x), min (y), max (x), max (y) j (x, y) ∈ Mi) (2)

This provides the initial location and extent of the target areas.

The bounding boxes Biserve as initial training data for a target

detection model DET, where the model learns the features of the

targets from the labeled images and locates similar targets in the

unlabeled images. After the initial training phase, the target

detection model automatically generates preliminary bounding

boxes Bpred
j in the unlabeled images Ij(j ∉ i), significantly

improving the efficiency and automation of target detection.

Bpred
j = DET(Ij) (3)

Next , the high-qual i ty bounding boxes Bfine
k (k ∈ j)

automatically generated by the object detection model were

reintroduced into SAM2 as prompt information to generate

accurate segmentation masks Mfine
k .

Mfine
k = SAM2(Ik,B

fine
k ) (4)

Using the newly generated refined mask, we further refine the

MBB. These new bounding boxes, along with their corresponding

images, were then used to retrain the target detection model DET,

further improving its accuracy.

The process was repeated iteratively, with each iteration t

progressively optimizing both the segmentation masks M(t)
j and

the bounding boxes B(t)
j . The collaborative interaction between the

target detection model DET and SAM2 during each iteration

resulted in increasingly accurate segmentation masks, ultimately

achieving high-quality segmentation and detection of target areas

within the images. This iterative process is modeled as:

M(t+1)
j = SAM2(B(t)

j ) (5)

B(t+1)
j = min (x), min (y), max (x), max (y) j (x, y) ∈ M(t+1)

j

� �
(6)

This iterative optimization process continues until convergence,

which is determined when the difference between B(t+1)
j and Bt

j is

less than a predefined threshold e :
FIGURE 1

Captured banana plantation images obtained with the DJI Phantom 3M illustrate various scenarios, including: (A) a tree and house occlusion scene,
(B) a complex scene with abundant weeds, and (C, D) variations in target sizes due to differing flight altitudes of the UAV, where (C) corresponds to a
flight altitude of 12 meters and (D) corresponds to a flight altitude of 5 meters.
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B(t+1)
j − Bt

j

���
��� < ϵ (7)

This optimization mechanism not only improves segmentation

performance but also decreases dependency on manual prompts,

thus significantly reducing data annotation costs.

We adopted targeted optimization strategies for the missed

detection and false positive problems in a very small number of

images after iteration. For missed detections (i.e., cases with

insufficient recall), we manually provided initial prompt points to

supplement the missing bounding boxes, ensuring that all targets

are detected and segmented. For false detections (i.e., cases with

insufficient precision), we adjusted the bounding boxes through

appropriate displacement and scaling to correct the boundaries of

the misidentified areas, thereby ensuring the accuracy of the

segmentation masks. In constructing the Banana Plantation

Segmentation Dataset using this method, we initially used

prompts to annotate 150 images manually. The annotation
Frontiers in Plant Science 06
process involved a total of five iterations. In each iteration, the

outputs from the previous step were refined using the targeted

optimization strategies described above, addressing both missed

detections and false positives. By the final iteration, the

segmentation masks achieved a high level of precision and recall,

ensuring the dataset’s quality and reliability.

This iterative optimization annotation pipeline possesses several

advantages: first, it effectively leverages the powerful segmentation

capabilities of the SAM2 model alongside the feature learning

capacity of the target detection model to achieve precise

segmentation and detection of targets within images. Secondly, by

integrating initial prompt inputs with iterative optimization, the

model gradually corrects errors and improves precision, ultimately

generating high-quality segmentation masks. Moreover, this method

exhibits strong generalization capabilities, allowing it to effectively

handle segmentation tasks for banana plantations across varied

scenarios. The iterative optimization annotation pipeline for
FIGURE 3

The proposed iterative optimization annotation pipeline for segmentation mask generation.
FIGURE 2

Comparison of segmentation results using the SAM2-b model with different prompting strategies: (A) Segmentation results with bounding box
prompts; (B) Segmentation results with positive point prompts; (C) Segmentation results using the segment-anything mode without any prompts.
The results demonstrate that the SAM2-b model achieves more accurate segmentation when guided by prompts, while the segment-anything mode
alone fails to produce satisfactory segmentation results.
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segmentation mask generation proposed in this study successfully

combines automated and semi-automated segmentation. Through

multiple rounds of optimization, it significantly enhances the

precision and quality of the segmentation masks. Additionally, this

pipeline reduces reliance on manual prompts, thereby considerably

diminishing the costs and workload associated with data annotation,

providing a refined segmentation solution for UAV-based analysis of

banana plantations.
2.3 ALSS-YOLO-Seg: a lightweight and
efficient banana plantation
segmentation model

After constructing the Banana Plantation segmentation dataset

using the method described in Section 3.2, we developed a

specialized segmentation model ALSS-YOLO-Seg specifically for

this dataset.
2.3.1 Model architecture
The ALSS-YOLO model (He et al., 2024) builds upon the

strengths of the YOLO (You Only Look Once) architecture,

which is renowned for its balance between speed and accuracy,

solidifying its position as a seminal approach in the field of

computer vision. YOLO’s single-stage detection framework is

particularly well-suited for applications requiring high real-time

performance, making it widely adopted across various domains.

Moreover, the incorporation of a Feature Pyramid Network (FPN)

(Lin et al., 2017) in YOLO models enhances their ability to manage

targets with significant scale variations by effectively capturing

multi-scale features. This architecture ensures that YOLO-based

models maintain high detection accuracy, even in the presence of

targets of varying sizes within a scene, thereby providing robust and

reliable detection performance.

The ALSS-YOLO-Seg model’s architecture is specifically

tailored to address the challenges of banana plantation

segmentation tasks by modifying elements within the YOLO

series. At its core, ALSS-YOLOSeg incorporates the ALSS (He

et al., 2024) module, which reduces the overall complexity of the

algorithm while enhancing its ability to tackle specific challenges.

The ALSS module employs an adaptive channel splitting strategy to

optimize feature extraction and incorporates a channel shuffling

mechanism to enhance information exchange between channels.

This enables the model to effectively capture occlusion features,

thereby facilitating accurate crop identification.

Additionally, we innovatively developed the MSCA module.

MSCA is an efficient and lightweight attention module inspired by

the channel reduction and expansion techniques of SENet (Hu

et al., 2018), ensuring the model remains lightweight. This module

combines multi-scale feature extraction with a channel attention

mechanism, enhancing model accuracy and generalization

capability while maintaining low computational overhead. MSCA

demonstrates significant advantages in handling tasks with varying

target scales and complex backgrounds, making it highly suitable

for resource-constrained scenarios.
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The integration of these designs enables the ALSS-YOLO-Seg

model to achieve higher performance and efficiency in the task of

banana plantation segmentation. ALSS-YOLO-Seg leverages

principles from YOLACT (Bolya et al., 2019) for instance

segmentation. It first extracts features from images using the

backbone network and FPN, integrating features of different sizes.

The output consists of detection and segmentation branches. The

detection branch outputs class labels and bounding boxes, while the

segmentation branch outputs k prototypes (default 32 in ALSS-

YOLO-Seg) and k mask coefficients. The segmentation and

detection tasks are computed in parallel. The segmentation

branch inputs high-resolution feature maps, retaining spatial

details and including semantic information. This map is

processed through convolutional layers, upsampled, and then

passed through two additional convolutional layers to output

masks. The mask coefficients, similar to the classification branch

of the detection head, range from -1 to 1. The instance segmentation

results are obtained by multiplying and summing the mask

coefficients with the prototypes. Figure 4 illustrates the

architecture of the ALSS-YOLO-Seg segmenter, and Table 1

outlines the primary parameters.

2.3.2 MSCA module
Recent advancements in attention mechanisms have gained

widespread application in computer vision, demonstrating their

immense potential in enhancing feature extraction capabilities and

optimizing computational efficiency. Channel attention

mechanisms, in particular, have emerged as key components in

numerous deep learning architectures, offering the advantage of

selectively enhancing important features while suppressing

irrelevant information. Prominent attention modules, such as

SENet (Hu et al., 2018), CBAM (Woo et al., 2018), and ECA-Net

(Wang et al., 2020a), leverage distinct approaches to re-weight

features. SENet pioneered the use of channel compression and

expansion to refine feature representations, while CBAM integrated

both spatial and channel attention to strengthen feature detection.

ECA-Net introduced an efficient channel interaction method that

reduces computational complexity, making it ideal for lightweight

models. Moreover, the multi-scale feature extraction strategy

employed in the Inception series networks (Szegedy et al., 2015)

(Ioffe, 2015) (Szegedy et al., 2016) (Szegedy et al., 2017) has been

influential, demonstrating that capturing features at multiple scales

can significantly improve a model’s ability to understand

complex scenes.

Inspired by SENet’s channel compression and expansion

techniques, as well as Inception’s multi-scale design, this paper

presents MSCA, a module designed to enhance feature

representation in the task of banana plantation segmentation by

combining multi-scale feature extraction with channel attention

mechanisms. MSCA improves segmentation performance while

maintaining computational efficiency through fine-tuned channel

processing and multi-scale information fusion. Its internal

structural details are illustrated in Figure 5.

Initially, given an input feature map X ∈ RH�W�C , a channel

reduction layer employs a 3 × 3 convolution to compress the input
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features from the original channel size C to a reduced channel size

aC, where a is the compression factor, typically set to 1/32:

Z ∈ RH�W�aC = Conv3�3(X) (8)

This channel compression step significantly lowers

computational complexity while emphasizing key features.

At its core, MSCA employs a multi-scale feature extraction

mechanism, utilizing various convolution kernel sizes and pooling

operations to capture features at different scales, thereby enhancing

its ability to distinguish objects of varying sizes. To further optimize

computational efficiency, the module incorporates depthwise

convolutions. This design significantly reduces the computational

burden while preserving essential correlations between feature

channels. Following the advice of Chollet (2017), the activation

function is not employed following the depthwise convolution. We

demonstrate the effectiveness of this approach in subsequent

ablation experiments. Specifically, the module implements four

sets of pooling and convolution operations without padding:

The first set employs global average pooling with a target output

size of 1 × 1 followed by a 1 × 1 convolution:

G1 ∈ R1�1�aC = DWConv1x1(AvgPool(Z, size = 1)) (9)

The second set utilizes adaptive average pooling with a target

output size of 3 × 3 combined with a 3 × 3 convolution:
Frontiers in Plant Science 08
TABLE 1 Parameter count and forward propagation runtime of the main
modules in the ALSS-YOLO object detector.

Number Module Output Params GFLOPs

0 Input 3x640x640 – –

1 Conv 8x320x320 232 0.04

2 Conv 16x160x160 1184 0.06

3 Conv 16x160x160 2336 0.12

4 Conv 24x160x160 3504 0.18

5 ALSS 24x80x80 2475 0.06

6 ALSS 48x80x80 3819 0.05

7 ALSS 88x40x40 15020 0.07

8 ALSS 88x40x40 38393 0.12

9 ALSS 176x20x20 20886 0.03

10 SPPF 176x20x20 77968 0.06

11 Upsample 176x40x40 0 0.00

12 Concat 264x40x40 0 0.00

13 ALSS 88x40x40 379477 1.21

14 Upsample 88x80x80 0 0.00

(Continued)
FIGURE 4

The architecture of the ALSS-YOLO-Seg segmenter. CBS denotes Convolution, Batch Normalization, and SiLU activation function. The symbol “k”
represents the Kernel size, “s” denotes the Stride, and “p” indicates the Padding.
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G2 ∈ R1�1�aC = DWConv3x3(AvgPool(Z, size = 3)) (10)

The third set also employs adaptive average pooling with a

target output size of 3 × 3 and a 3 × 3 convolution to capture more

extensive local features:

G3 ∈ R1�1�aC = DWConv3x3(AvgPool(Z, size = 3)) (11)

The fourth set leverages adaptive average pooling with a target

output size of 5 × 5 in conjunction with a 5 × 5 convolution:

G4 ∈ R1�1�aC = DWConv5x5(AvgPool(Z, size = 5)) (12)

After extracting multi-scale features through the four parallel

convolutions, the resulting feature vectors are concatenated along

the channel dimension to form a comprehensive multi-scale

representation:

Gconcat ∈ R1�1�4aC = Concat(G1,G2,G3,G4) (13)

This concatenated feature vector is then passed through a 1×1

convolution for channel expansion, followed by the s nonlinear

activation function to generate the attention weights:

H ∈ R1�1�C = s (Conv1x1(Gconcat)) (14)
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These attention weights dynamically adjust the importance of

each feature channel, thereby re-weighting the input features X

accordingly:

Y ∈ RH�W�C = X · H (15)

where Y represents the modulated feature map. After passing

through the channel attention mechanism, the module enhances or

suppresses specific feature channels, allowing the model to focus on

the most relevant features while filtering out noise or irrelevant

information. The introduction of this attention mechanism enables

MSCA to selectively enhance critical features, significantly

improving its ability to detect and segment multi-scale objects

within the plantation segmentation task.

The MSCA module demonstrates significant versatility in tasks

requiring precise feature extraction and multi-scale processing. Its

lightweight architecture and efficient computational management

enhance the model’s ability to differentiate between objects of

varying scales in segmentation tasks. By integrating multi-scale

feature extraction with channel attention mechanisms, MSCA

substantially improves feature representation and performance.

This resource-efficient design makes the module particularly well-

suited for deployment in resource-constrained environments, such

as mobile devices and UAV platforms, thereby facilitating real-time

segmentation capabilities. Consequently, MSCA offers a robust

solution for complex tasks, including applications like banana

plantation segmentation.
2.4 Experiment setup

All experiments requiring model training were conducted with

convergence achieved after 200 epochs. The input image size was set

to 640×640 pixels, and the Stochastic Gradient Descent (SGD)

optimizer was used with the following parameters: a batch size of

120, momentum of 0.937, and weight decay of 0.0005. To enhance

the stability of the training process, a 3-epoch warm-up phase was

employed, during which the optimizer’s momentum was initialized

at 0.8. After the warm-up phase, the learning rate was progressively

decayed using a cosine annealing schedule, starting from an initial

value of 0.001 and gradually decreasing to a minimum of 0.00001.

Instead of applying offline data augmentation to the original images,

we implemented a series of online augmentation techniques to
FIGURE 5

MSCA module structure diagram.
TABLE 1 Continued

Number Module Output Params GFLOPs

15 Concat 136x80x80 0 0.00

16 MSCA 136x80x80 7248 0.06

17 ALSS 48x80x80 102963 1.31

18 Conv 48x40x40 20832 0.07

19 Concat 136x40x40 0 0.00

20 ALSS 88x40x40 68773 0.22

21 Conv 88x20x20 69872 0.06

22 Concat 264x20x20 0 0.00

23 ALSS 176x20x20 94872 0.08

24 Segment – 918811 5.59

– Total – 1828665* 9.39
*The number of parameters following layer fusion is 1825589.
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dynamically generate diverse training samples during the training

process. This approach not only reduced the storage requirements

associated with pre-augmented datasets but also introduced more

variability into the training data, thereby enhancing the model’s

generalization ability. The online augmentation techniques include

mosaic augmentation, random perturbations (such as rotation and

scaling), mixing, color perturbation, and random flipping.

The experiments were conducted on a machine running the

Ubuntu 20.04 LTS operating system, equipped with an AMD EPYC

7543 32-Core Processor, an NVIDIA GeForce RTX 3090 GPU with

24GB of memory. The software environment included Python

3.9.19, PyTorch 2.4.1, and CUDA 12.0.
2.5 Evaluation metrics

In this study, we evaluate two output types: bounding box and

mask predictions. The following metrics are used to assess model

performance: box precision (Pbox), box recall (Rbox), box F1 score

(F1box), box average precision (APbox), box mean average precision

(mAPbox), mask precision (Pmask), mask recall (Rmask), mask F1

score (F1mask), mask average precision (APmask), mask mean

average precision (mAPmask), mean Intersection over Union

(mIoU), frame rate (FPS), and the number of model parameters.

Unless stated otherwise, precision and recall are calculated at an

IoU threshold of 0.5 and a confidence threshold corresponding to

the maximum F1 score.

Box metrics evaluate detection performance: Pbox measures the

proportion of correctly predicted boxes, Rbox captures the model’s

ability to detect all relevant objects, F1box provides a harmonic mean

of Pbox and Rbox, and APbox and mAPbox reflect the precision-recall

trade-off and average performance across categories. The formulas

are as follows:

Pbox =
TPbox

TPbox + FPbox
(16)

Rbox =
TPbox

TPbox + FNbox
(17)

F1box =
2 · Pbox · Rbox

Pbox + Rbox
(18)

APbox =
Z 1

0
Pbox(Rbox)dRbox (19)

mAPbox =
1
no

n

i=1
APbox,i (20)

Mask metrics assess semantic segmentation quality: Pmask and

Rmask measure pixel-level accuracy and completeness, F1mask

balances the two, and APmask and mAPmask evaluate performance

across categories. The mIoU metric captures the overlap between

predicted and ground truth regions. The formulas are:

Pmask =
TPmask

TPmask + FPmask
(21)
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Rmask =
TPmask

TPmask + FNmask
(22)

F1mask =
2 · Pmask · Rmask

Pmask + Rmask
(23)

APmask =
Z 1

0
Pmask(Rmask)dRmask (24)

mAPmask =
1
no

n

i=1
APmask,i (25)

mIoU =
1
no

n

i=1

Apred  ∩
 Agt

�� ��
Apred  ∪

 Agt

�� �� (26)

Here, TP, FP, and FN denote true positives, false positives, and

false negatives, respectively, and n represents the number of

categories. Apred and Agt refer to the predicted and ground truth

areas for mIoU calculation.
3 Results and discussion

In this section, we first conduct an experimental evaluation of

prompt-based zero-shot instance segmentation on the ADE20K

(Zhou et al., 2019) and Javeri (Subhash, 2024) datasets. Following

this, we validate the iterative optimization process for generating

segmentation masks on the Javeri dataset, demonstrating that the

method produces high-quality segmentation outputs. Additionally,

we test our ALSS-YOLO-Seg segmenter on custom Banana

Plantation segmentation dataset, showcasing its state-of-the-

art performance.
3.1 Experimental evaluation of prompt-
based Zero-Shot instance segmentation on
the ADE20K dataset

To evaluate the zero-shot segmentation performance of the SAM

(Kirillov et al., 2023) and SAM2 (Ravi et al., 2024) models under

different parameter configurations, we utilized the mIoU metric on

the ADE20K validation set, which contains 2,000 images with

detailed annotations across 150 densely predicted categories. This

provides a rich and diverse dataset for model performance validation.

The experimental prompts include the use of the Minimum

Bounding Box (MBB) and its variants with boundary expansions,

as well as point-based prompts. The MBB represents the smallest

rectangle that encloses the ground truth bounding box in the

ADE20K annotations. Variants such as MBB+5%, MBB+10%, and

MBB+20% correspond to increasing the width and height of the

original bounding box by 5%, 10%, and 20%, respectively. These

variations simulate the practical challenges of achieving precise

manual annotation of the minimum bounding box in densely

annotated scenes. In addition to bounding boxes, we incorporated
frontiersin.org

https://doi.org/10.3389/fpls.2024.1508549
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2024.1508549
point-based prompts: “1 Ppoint” denotes a single positive point

prompt, while “2 Ppoints,” “3 Ppoints,” and “5 Ppoints” refer to 2,

3, and 5 positive point prompts, respectively. Similarly, “3 Ppoints 4

Npoints” and “3 Ppoints 8 Npoints” represent 3 positive point

prompts combined with 4 or 8 negative point prompts. A

schematic diagram of the prompt is shown in Figure 6. The

experimental results are shown in Table 2. Additionally, Table 3

summarizes the processing time for these images by the SAM model

and provides statistics on model parameter sizes. Figure 7 further

illustrates a comparison between the segmentation results of theMBB

prompt and the ground truth.

As shown in Figure 6, the point-based prompt segmentation

results are generally inferior to the boxbased prompt segmentation

results. When using points as prompts, the model generates three

levels of hierarchical masks: whole, part, and sub-part. The output is

determined based on confidence ranking, where the mask with the

highest confidence is selected. However, in some cases, we aim to
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focus on the whole object, but the segmentation result may return a

sub-part mask. In such cases, additional prompts are often required

to achieve the desired segmentation outcome.

Table 2 illustrates that the segmentation performance is heavily

impacted by varying prompt configurations, with SAM2 models

consistently surpassing SAM models in the majority of cases.

Firstly, the results for the MBB and its extended variants

demonstrate that both SAM and SAM2 models achieve their best

segmentation performance with the standard MBB prompt.

Notably, the larger models, such as SAM2_l and SAM2_b,

achieve mIoU scores of 75.56% and 75.66%, respectively, under

the standard MBB prompt, highlighting their superior

segmentation capability. However, as the bounding box is

progressively expanded, the segmentation performance of all

models exhibits a noticeable decline. This trend is particularly

evident with the MBB+20% prompt, where all models show a

marked decrease in mIoU, suggesting that excessive expansion of
FIGURE 6

Schematic Illustration of Prompt Configurations and Segmentation Results for SAM2_b; (A) ground truth; (B) MBB prompts; (C) MBB+5% prompts;
(D) MBB+10% prompts; (E) MBB+20% prompts; (F) 1 Ppoints prompts; (G) 2 Ppoints prompts; (H) 3 Ppoints prompts; (I) 5 Ppoints prompts; (J) 3
Ppoints 4 Npoints prompts; (K) 3 Ppoints 8 Npoints prompts.
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the bounding box introduces more background noise, which in turn

diminishes the model’s segmentation precision. For instance,

mobile_sam sees its mIoU drop from 73.66% with the MBB

prompt to 71.03% with the MBB+20% prompt, reflecting its

sensitivity to boundary extensions. Secondly, the performance of

point-based prompts is generally lower compared to the MBB

prompts. With a single positive point prompt (1 Ppoint), the

mIoU scores of all models drop considerably, indicating that a

single point does not provide sufficient spatial information to guide

effective segmentation. While increasing the number of positive

point prompts (e.g., 2 Ppoints, 3 Ppoints, and 5 Ppoints) leads to

some improvement in segmentation performance, the gains remain

limited. For example, SAM2_l shows identical mIoU values of

53.40% for both 1 Ppoint and 3 Ppoints prompts, suggesting that

increasing the number of positive points does not significantly

enhance segmentation performance. The incorporation of both

positive and negative point prompts can improve segmentation

results. For instance, mobile_SAM shows an mIoU increase from

49.57% with 3 Ppoints to 53.20% with the 3 Ppoints 4 Npoints

prompt, while SAM_b improves from 49.93% to 55.39% under the

same configuration. The inclusion of negative points helps to

exclude incorrect regions, thereby refining the object boundaries

and enhancing segmentation accuracy. However, despite these

improvements, the performance of point-based prompts still lags
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behind that of the MBB prompts, underscoring the limitations of

point-based prompts in providing sufficient spatial context.

Based on the results shown in Tables 2, 3, there is a clear trend

that model performance, as measured by mIoU, generally improves

with an increase in the number of parameters. Larger models such

as SAM2_l and SAM2_b outperform their smaller counterparts in

both the SAM and SAM2 series. However, a significant observation

is that even the smaller variants of SAM2, like SAM2_t and

SAM2_s, achieve better generalization performance on the

ADE20K validation set compared to SAM models with larger

parameter counts. This improvement can be attributed to the

SAM2 models being trained on a larger and more diverse dataset

(SA-V dataset). The SA-V dataset contains significantly more

diverse annotations and richer content, giving the SAM2 model

stronger Zero-Shot capabilities. As a result, despite their smaller

size, SAM2 models like SAM2_t and SAM2_s outperform larger

SAM models due to the advantage provided by the extensive

training on the SA-V dataset. This highlights the importance of

the training data ’s quality and diversity in improving

segmentation performance.

Figure 7 exhibits that SAM2_b, when prompted with MBB,

performs suboptimally in segmenting elongated objects compared

to the ground truth provided by the ADE20K dataset. For instance,

in Figure 7B, the segmentation of the shoulder bag is inferior to the
TABLE 2 The mIoU results of segmentation for the SAM and SAM2 models using various prompts, assuming ADE20K validation set annotations as
ground-truth.

Prompt mobile_SAM SAM_b SAM_l SAM2_t SAM2_s SAM2_b SAM2_l

MBB 0.7366 0.7307 0.7452 0.7535 0.7529 0.7566 0.7556

MBB+5% 0.7332 0.7295 0.7440 0.7504 0.7498 0.7536 0.7524

MBB+10% 0.7272 0.7249 0.7408 0.7438 0.7437 0.7474 0.7462

MBB+20% 0.7103 0.7096 0.7289 0.7222 0.7203 0.7260 0.7254

1 Ppoint 0.4830 0.4805 0.4981 0.5162 0.5164 0.5323 0.5340

2 Ppoints 0.4918 0.4907 0.5088 0.5162 0.5164 0.5322 0.5340

3 Ppoints 0.4957 0.4993 0.5153 0.5162 0.5164 0.5323 0.5340

5 Ppoints 0.4790 0.5052 0.5211 0.5162 0.5164 0.5322 0.5340

3 Ppoints
4 Npoints

0.5320 0.5539 0.5167 0.5162 0.5164 0.5323 0.5340

3 Ppoints
8 Npoints

0.5267 0.5507 0.5151 0.5162 0.5164 0.5322 0.5340
TABLE 3 Processing Time and Model Parameter Statistics for SAM and SAM2 Models.

mobile_SAM SAM_b SAM_l SAM2_t SAM2_s SAM2_b SAM2_l

Parameters 10.1 (M) 93.7 (M) 312.3 (M) 38.9 (M) 46.0 (M) 80.8 (M) 224.4 (M)

Total time* 1876 (S) 6482 (S) 14643 (S) 3142 (S) 3434 (S) 5080 (S) 9987 (S)
* The total time includes the combined inference time for the image encoder, prompt encoder, and mask decoder when processing 2,000 images from the ADE20K dataset. Inference was
performed using a single NVIDIA RTX 3090 GPU.
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ground truth. Additionally, SAM2_b tends to segment local areas,

such as the football field in Figure 7E. However, we also observed

that_SAM2_b produces smoother segmentation boundaries

compared to the sharper edges in the ground truth (Figures 7F,

G, H, J). Furthermore, when the quality of the ground truth is poor,

the SAM2_b model, even with MBB prompting, struggles to

produce satisfactory results, as illustrated in Figure 7K.

In Table 4, we compare the segmentation performance of

various models on the ADE20K validation set. It is important to

highlight that while most models were trained specifically on the

ADE20K training set, the SAM2 models, both SAM2_b and

SAM2_l, achieved their results in a zero-shot manner, without

any training on ADE20K. Instead, SAM2 models utilized MBB

prompts during inference. Despite not being fine-tuned on the

dataset, SAM2 demonstrates superior segmentation performance,

with mIoU scores of 75.7% and 75.6% for SAM2_b and SAM2_l,

respectively. These results significantly surpass the best-performing

trained models, such as BEIT-3 (62.0% mIoU). This outcome

highlights the exceptional generalization capabilities of SAM2,
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showing that even without direct training, it can achieve state-of-

the-art results by leveraging effective prompts.
3.2 Experimental evaluation of prompt-
based zero-shot instance segmentation on
the Javeri dataset

To further assess the generalization capability of the SAM

model in UAV-based plantation scenarios, we employed the

Javeri dataset, which is specifically tailored for segmentation tasks

in plantations captured from UAV perspectives. The dataset

consists of 280 training images and 40 validation images, all

meticulously annotated. We selected mIoU as the evaluation

metric to assess the zero-shot instance segmentation capabilities

of both the SAM and SAM2 models. The experimental results are

presented in Table 5.

It is important to note that only segmentation results with

mIoU greater than 0.75 are reported. This threshold was chosen
FIGURE 7

Comparison of MBB prompt segmentation results with ground truth: A total of 10 comparative pairs (A–J) are presented, with ground truth images
displayed on the left and MBB prompt segmentation from the SAM2_b model on the right.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1508549
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2024.1508549
because mIoU values below 0.75 typically represent cases with

significant segmentation errors or outliers, which could result

from extreme occlusions, highly variable lighting, or complex

ground backgrounds. Including such cases in the analysis would

risk distorting the reported metrics and overshadowing the overall

performance trends of the models. However, the number of images

with mIoU below 0.75 is explicitly provided in parentheses, offering

insight into the frequency of such occurrences.

The results in Table 5 indicate that both the SAM and SAM2

models achieve high mIoU scores across different prompts,

showcasing strong zero-shot instance segmentation performance

on the plantation dataset. Overall, the SAM2 model consistently

outperforms SAM, particularly with the MBB prompt, where it

achieves the highest mIoU values. However, point-based prompts

yield comparatively lower segmentation accuracy. This suggests that

point-based prompts introduce ambiguity, consistent with the

observations discussed in Section 3.1.
3.3 Validation of the iterative optimization
annotation pipeline

We employed the iterative optimization annotation pipeline

described in Section 2.2 to generate segmentation masks and

conducted experiments on the Javeri dataset. Specifically, we
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utilized YOLOv8-x as the object detector and SAM2_b as the

segmenter. In our experiments, we recorded the segmentation

performance of YOLOv8-x on the Javeri validation set when the

fine bounding boxes reached 10%, 20%, 50% and 100% respectively.

The evaluation metrics included mAP50mask, F1 Score, and mIoU.

The experimental results are presented in Figure 8. Figure 9

qualitatively illustrates the impact of fine bounding boxes on

segmentation performance.

As shown in Figure 8, increasing the amount of annotated data

significantly enhances the performance of segmentation, with the

most noticeable improvements occurring when the amount of

annotated data is relatively small. Specifically, when the proportion

of annotated data increases from 10% to 50%, the performance gain is

the most substantial. This indicates that the initial increase in

annotated data provides the model with more critical target

features, enabling it to better segment objects. This trend can also

be observed in Figure 9, where the increase in fine bounding boxes

leads to progressively higher-quality segmentation results.

Additionally, we note that when the fine bounding boxes reach

100%, the segmentation results of the SAM2_b model are

comparable to the ground truth. The results of this experiment

demonstrate that the iterative optimization process is capable of

generating high-quality segmentation annotations. Since the entire

process only requires a small amount of manual annotation (and the

manual annotation process only requires positive points, negative
TABLE 4 Comparison of Model Performance on ADE20K Validation Set.

Model Train set Prompt Crop Size mIoU

HorNet (Rao et al., 2022) ADE20K train set No 6402 0.575

SeMask (Jain et al., 2023) ADE20K train set No 6402 0.570

SwinV2-G (Liu et al., 2022) ADE20K train set No 8962 0.593

ViT-Adapter (Chen et al., 2022) ADE20K train set No 8962 0.594

Mask DINO (Li et al., 2023a) ADE20K train set No – 0.595

BEIT-3 (Wang et al., 2023b) ADE20K train set No 8962 0.620

SAM2_b (Ravi et al., 2024) SA-V MBB 10242 0.757

SAM2_l (Ravi et al., 2024) SA-V MBB 10242 0.756
TABLE 5 The mIoU results of segmentation for the SAM and SAM2 models using various prompts, assuming Javeri validation set annotations as
ground-truth.

Prompt mobile_SAM SAM_b SAM_l SAM2_t SAM2_s SAM2_b SAM2_l

MBB 0.9622 0.9663 0.9654 0.9664 0.9691 0.9684 0.9680

MBB+5% 0.9602 0.9647 0.9647 0.9644 0.9672 0.9669 0.9665

MBB+10% 0.9581 0.9640 0.9633 0.9608 0.9651 0.9640 0.9632

MBB+20% 0.9417 0.9530 0.9481 0.9370 0.9518 0.9531 0.9386

1 Ppoint 0.9511 (-2) 0.9513 (-2) 0.9574 (-5) 0.9580 (-5) 0.9534 (-4) 0.9611 (-5) 0.9594 (-2)

2 Ppoints 0.9466 (-5) 0.9521 (-2) 0.9539 (-6) 0.9580 (-5) 0.9534 (-4) 0.9611 (-5) 0.9594 (-2)

3 Ppoints 0.9469 (-6) 0.9524 (-2) 0.9519 (-7) 0.9580 (-2) 0.9534 (-4) 0.9611 (-5) 0.9594 (-2)
Only segmentation results with mIoU greater than 0.75 are reported, and the number in brackets indicates the number of images with mIoU lower than 0.75 compared to the ground truth.
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FIGURE 8

Segmentation performance on the Javeri validation set at varying proportions of fine bounding boxes.
FIGURE 9

Qualitative analysis of segmentation performance with varying percentages of fine bounding boxes on the Javeri validation set.
Frontiers in Plant Science frontiersin.org15

https://doi.org/10.3389/fpls.2024.1508549
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2024.1508549
points and bounding boxes), this approach significantly reduces the

cost of manual annotation compared to conventional methods.
3.4 Evaluation of ALSS-YOLO-Seg on a
custom Banana Plantation
segmentation dataset

We constructed a meticulously annotated segmentation dataset

for Banana Plantations using the iterative optimization annotation

pipeline. Details of the original data are provided in Section 2.1. The

processed dataset consists of 3,880 original images and their

corresponding segmentation masks, divided into 3,492 pairs for

the training set and 388 pairs for the test set. Figure 10 illustrates

several annotated examples from the dataset, showcasing complex

scenarios. These include occlusion caused by the banana

transportation cable way (Figure 10G), interference from weeds

(Figure 10H), and challenges arising from large target sizes and

complex ground backgrounds in low-altitude UAV flight images.

(Figure 10I). To address the practical deployment needs of UAV

platforms, we employed this dataset to train a lightweight and

efficient segmentation model, ALSS-YOLO-Seg. Extensive ablation

studies and comparative experiments were carried out to validate

the model’s optimal performance.
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3.4.1 Ablation experiments
To evaluate the segmentation performance of the proposed

ALSS-YOLO-Seg model, we conducted a series of ablation

experiments, with results presented in Tables 6, 7. Each technical

enhancement introduced into the model contributed to

performance improvements. Beginning with the YOLOv8-Seg

baseline (which retains the backbone and FPN of YOLOv8, while

incorporating the same segmentation head as ALSS-YOLO-Seg.),

we adjusted the model’s width hyperparameter to 0.18 in order to

maintain a similar parameter count, and designated this variant as

YOLOv8-Seg’. Although we also investigated adjustments to the

depth hyperparameter, these yielded suboptimal results, with a

mAP50mask of 84.1%.

In the M1 model, the integration of the ALSS module improves

the segmentation accuracy, with a mAP50mask of 85.2%.

Importantly, the parameter count decreased to 1.5737 million,

reflecting the dual benefit of performance enhancement and

model efficiency. The ALSS module’s contribution not only

improved segmentation accuracy but also optimized parameter

utilization, thereby reducing model complexity.

In the M2 model, a convolutional layer was added after the

second layer of the network to enhance early-stage feature

extraction. This adjustment resulted in a slight improvement in

performance, with a mAP50mask of 85.3% and a parameter count of
FIGURE 10

Annotated examples (A–I) from the Banana Plantation segmentation dataset.
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1.5746 million. The added layer improved the model’s ability to

capture finer details without significantly increasing complexity.

Further refinement in the M3 model was achieved by adjusting

the reg_max value to 24, following the approach outlined in Ref

(Zhao et al., 2023). This adjustment significantly improved the

regression capability of bounding boxes, particularly benefiting the

detection of larger objects prevalent in the banana plantation

dataset. Consequently, the mAP50mask increased to 85.5%,

accompanied by a rise in the parameter count to 1.8184 million.

While this demonstrates that fine-tuning specific hyperparameters

can enhance segmentation performance, the increased parameter

count indicates a trade-off between accuracy and computational

complexity. In practical applications, the choice of reg_max should

consider the balance between resource availability and performance

requirements, as higher values may lead to diminishing returns in

scenarios with constrained computational resources.

In the exploration of the MSCA module’s integration, the M4,

M5, and M6 models were designed to investigate both its placement

within the architecture and the effect of using or omitting activation

functions on its performance.

The M4 model represents the initial stage, where the MSCA

module was integrated at layer 16 with the use of the SiLU

activation function. This modification resulted in a slight

improvement in performance, with a mAP50mask of 85.6% and a

parameter count of 1.8256 million.
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Building on this, the M5 model removed the SiLU activation

function from the depthwise convolution in the MSCAmodule, while

keeping the MSCA module at the same layer. This adjustment

resulted in an improved mAP50mask of 85.8%, without increasing

the parameter count. This observation is consistent with the findings

of Ref Chollet (2017), which suggest that non-linear activation

functions may not be necessary in depthwise convolutions.

Lastly, in the M6 model, the MSCA module was moved to layer

22, while still omitting the activation function. This change,

however, led to a decrease in the mAP50mask to 85.5%. We

attribute this drop in performance to the fact that after layer 17,

the feature maps encoded by ProtoNet are closer to the final output.

Therefore, placing the MSCA module at layer 16 proves more

effective for capturing multi-scale feature information

across channels.

To further validate the model in the ablation study, we selected

a challenging scene with severe occlusion for segmentation

evaluation on the test set, as shown in Figure 11. The

segmentation results of all algorithms were obtained with a

confidence threshold of 0.3. The results reveal that the YOLOv8-

Seg’ model performed the worst in this highly irregular and

occluded scene, failing to segment the banana plantation areas

effectively, leading to a low recall rate. Additionally, the M6 model

struggled with accuracy, showing limited ability to differentiate tree

regions. In contrast, the other models demonstrated more robust
TABLE 6 Ablation experiment results on Banana Plantation dataset.

Model ALSS ADD
Conv

24
reg_max

MSCA@L16
with SiLU

MSCA@L16 MSCA@L22 mAP50mask Params (M) FPS

YOLOv8-Seg’ 0.848 1,6952 126.2

M1 ✓ 0.852 1,5737 138.4

M2 ✓ ✓ 0.853 1,5746 147.8

M3 ✓ ✓ ✓ 0.855 1,8184 141.4

M4 ✓ ✓ ✓ ✓ 0.856 1,8256 133.8

M5 (ALSS-
YOLO-Seg)

✓ ✓ ✓

✓

0.858 1,8256 130.6

M6 ✓ ✓ ✓ ✓ 0.855 1,8658 127.9
fro
MSCA@L16 denotes the integration of the MSCA module at layer 16, while MSCA@L22 represents the integration of the MSCA module at layer 22.
'✓' indicates that the corresponding feature or module has been integrated into the respective model configuration.
TABLE 7 Extended performance comparison based on the Banana Plantation dataset.

Model Pbox Rbox mAP50box mAP50 : 90box Pmask Rmask mAP50mask mAP50 : 90mask

YOLOv8-Seg’ 0.897 0.823 0.846 0.751 0.910 0.825 0.848 0.721

M1 0.893 0.827 0.844 0.736 0.899 0.833 0.852 0.725

M2 0.919 0.815 0.854 0.738 0.914 0.828 0.853 0.732

M3 0.917 0.817 0.856 0.742 0.912 0.818 0.855 0.726

M4 0.917 0.818 0.857 0.742 0.919 0.821 0.856 0.731

M5 (ALSS-YOLO-Seg) 0.906 0.823 0.856 0.746 0.900 0.826 0.858 0.736

M6 0.890 0.828 0.852 0.740 0.892 0.829 0.855 0.728
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performance, effectively handling the occlusion and providing more

accurate segmentation results.

3.4.2 Comparison experiments
To validate the performance of the ALSS-YOLO-Seg model, we

conducted a comprehensive comparison against other state-of-the-

art segmentation models on the Banana Plantation dataset. These

models include YOLOv3-tiny-Seg, YOLOv5-Seg’, YOLOv6-Seg’,

YOLOv8-Seg’, YOLOv8-ghost-Seg’, YOLOv8-p2Seg’, YOLOv8-

p6-Seg ’ , YOLOv9t-Seg ’ , and YOLOv10-Seg ’ . For a fair

comparison, the prime (‘) symbol indicates that the width

hyperparameters of each model were adjusted to maintain a

similar total number of parameters, ensuring that differences in

performance are primarily due to variations in model architecture

rather than model size. All models were trained under identical

training environments and conditions. The comparison results of

ALSS-YOLO-Seg with the other models are presented in Table 8,

while Figure 12 visualizes the performance comparison between

ALSS-YOLO-Seg and the top-performing models.

In the comparative experiments on the Banana Plantation

dataset, the ALSS-YOLO-Seg model demonstrated strong

segmentation performance, particularly in mask segmentation,

achieving an impressive mAP50mask of 85.8%, as shown in

Table 8. This result is further confirmed by Figure 12A, where the

red curve encloses the largest area. Moreover, Figures 12A, B clearly

illustrate that ALSS-YOLO-Seg maintains a distinct advantage
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across both high and low confidence thresholds. This

performance surpasses most other state-of-the-art segmentation

models in the study. For instance, YOLOv3tiny-Seg, despite being

a lightweight model, achieved a considerably lower mAP50mask of

78.5%, highlighting the superior segmentation capabilities of ALSS-

YOLO-Seg, particularly in the complex scenarios encountered in

banana plantation environments.

Models such as YOLOv5-Seg’, YOLOv6-Seg’, YOLOv8-Seg’,

and YOLOv8-ghost-Seg’ exhibited commendable performance,

achieving mAP50mask values of 84.4%, 84.8%, 84.8%, and 84.9%,

respectively. ALSS-YOLO-Seg consistently outperformed these

models, attaining a superior mAP50mask of 85.8% while

maintaining a competitive parameter count. Additionally,

YOLOv8-p6-Seg and YOLOv9tSeg demonstrated strong

performance with mAP50mask values of 84.6% each; however, they

did not match the performance of ALSS-YOLO-Seg. Furthermore,

YOLOv10-Seg’ achieved an mAP50mask of 83.8%, which also falls

short compared to ALSS-YOLO-Seg. Given the already high

mAP50mask across the evaluated models, the notable enhancement

provided by ALSS-YOLO-Seg is particularly significant.

ALSS-YOLO-Seg’s high mAP50mask highlights its robustness

and effectiveness in handling complex segmentation tasks such as

occlusions and complex backgrounds in the banana plantation

dataset. The superior mask accuracy makes ALSS-YOLO-Seg

particularly suitable for real-world applications that require

accurate segmentation, especially in UAV-based agricultural
FIGURE 11

Segmentation examples of different ablation experiments on the Banana Plantation dataset: (A) original image; (B) YOLOv8-Seg’; (C) M1; (D) M2;
(E) M3; (F) M4; (G) M5(ALSS-YOLO-Seg) (H) M6.
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monitoring scenarios where accuracy and computational efficiency

are critical.

In Figures 13–15, we selected G, H, and I from Figure 10 to

qualitatively evaluate the segmentation performance of various

advanced models in complex scenarios.

In Figure 13, it is evident that the segmentation results

produced by ALSS-YOLO-Seg exhibit the highest accuracy,
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closely aligning with the ground truth. In contrast, the

YOLOv9t-Seg’ model exhibits significant errors, resulting in

overlapping segmentation masks within the same region.

Figure 14 illustrates that all models demonstrate a commendable

ability to distinguish between banana plantations and weed areas.

Notably, ALSS-YOLO-Seg achieves a competitive segmentation

performance, even surpassing the segmentation masks generated
TABLE 8 Comparative experiments based on the Banana Plantation dataset.

Model Pbox Rbox mAP50box mAP50 : 90box Pmask Rmask mAP50mask mAP50 : 90mask Params (M) FPS

YOLOv3-tiny-
Seg

(Farhadi and
Redmon, 2018)

0.779 0.799 0.795 0.512 0.763 0.800 0.785 0.521 1.7975 270.6

YOLOv5-Seg’ 0.906 0.827 0.843 0.738 0.909 0.829 0.844 0.724 1.5196 119.3

YOLOv6-Seg’
(Li

et al., 2022a)

0.901 0.830 0.844 0.747 0.907 0.836 0.848 0.732 1.8963 148.5

YOLOv8-Seg’
(Jocher

et al., 2023)

0.897 0.823 0.846 0.751 0.910 0.825 0.848 0.721 1.6952 126.2

YOLOv8-
ghost-Seg’
(Jocher

et al., 2023)

0.913 0.806 0.847 0.762 0.917 0.809 0.849 0.735 1.9206 138.1

YOLOv8-p2-
Seg’ (Jocher
et al., 2023)

0.898 0.828 0.840 0.742 0.900 0.832 0.844 0.735 1.7447 101.6

YOLOv8-p6-
Seg’ (Jocher
et al., 2023)

0.894 0.816 0.845 0.747 0.899 0.821 0.846 0.720 2.6950 102.5

YOLOv9t-Seg’
(Wang

et al., 2024b)

0.899 0.821 0.847 0.764 0.903 0.822 0.846 0.734 1.6619 82.6

YOLOv10-Seg’
(Wang

et al., 2024a)

0.894 0.824 0.843 0.741 0.893 0.823 0.838 0.717 1.5627 121.4

ALSS-
YOLO-Seg

0.906 0.823 0.856 0.746 0.900 0.826 0.858 0.736 1.8256 130.6
frontier
FIGURE 12

Performance comparison chart of comparison experiment based on Banana Plantation dataset: (A) Precision-recall fitting curve of segmentation
mask; (B) The F1 value of the segmentation mask varies with the confidence threshold.
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by the iterative optimization annotation pipeline. The superior

performance of ALSS-YOLO-Seg can be attributed to the

extensive use of the Banana Plantation dataset during training,

which enables the model to effectively capture the semantic

features specific to this environment. By training on a

comprehensive set of annotated data, ALSS-YOLO-Seg is

capable of identifying subtle differences between banana plants

and weeds, thus mitigating the risk of overfitting to individual

images. Furthermore, while we observed that tuning down the

parameter mentioned in Section 2.2 can improve the quality of the

segmentation masks generated by the iterative optimization

annotation pipeline, but this tuning requires additional
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iterations to achieve better results. Importantly, the quality of

our banana plantation dataset is already high enough compared to

traditional manually annotated datasets such as COCO (Lin et al.,

2014) (Kirillov et al., 2023). In Figure 15, the segmentation

performance of ALSS-YOLO-Seg is markedly superior to that of

other models. For example, both YOLOv9t-Seg’ and YOLOv8-p6-

Seg’ exhibit overlapping segmentation masks within the same

region, indicating a failure to accurately distinguish between

adjacent targets. Additionally, YOLOv6-Seg’ struggles to

differentiate between trees and banana plantations, incorrectly

classifying portions of the tree regions as part of the banana

plantations. YOLOv8-ghost-Seg’ demonstrates a similar issue.
FIGURE 13

Segmentation performance under occlusion by banana transport cable way: (A) ground truth; (B) YOLOv9t-Seg’; (C) YOLOv8-p6-Seg’; (D) YOLOv6-
Seg’; (E) YOLOv8-ghost-Seg’; (F) ALSS-YOLO-Seg.
FIGURE 14

Segmentation performance with weed interference: (A) ground truth; (B) YOLOv9t-Seg’; (C) YOLOv8-p6-Seg’; (D) YOLOv6-Seg’; (E) YOLOv8-ghost-
Seg’; (F) ALSS-YOLO-Seg.
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These results suggest that ALSS-YOLO-Seg outperforms

other models in this context due to the integration of the ALSS

module in its backbone, which enhances inter-channel

information exchange and optimizes feature representation.

Furthermore, the inclusion of the MSCA effectively supports

multi-scale feature extraction and attention refinement, thereby

addressing challenges related to varying target sizes and

complex backgrounds.

In Table 9, we present additional comparative experiments to

comprehensively evaluate the performance of various segmentation

models on the Banana Plantation dataset. The table lists key metrics

such as segmentation accuracy (mIoU) and parameter count for

seven different models.

In terms of segmentation accuracy (mIoU), KNet (Swin-L) achieves

the best performance with anmIoU of 94.68%, indicating its strong ability

to capture complex features in banana plantation scenes. Following closely

is Mask2Former (Swin-L) with an mIoU of 94.27%. Although slightly

lower than KNet, it still demonstrates robust segmentation capabilities.

However, these two models have parameter counts of 245M and 235M,
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respectively, indicating their high computational demands, which may

limit their use in real-time applications or environments with limited

computational power, such as UAV-based platforms.

In contrast, our proposed ALSS-YOLO-Seg model achieves an

impressive mIoU of 92.72%, slightly lower than KNet and

Mask2Former, but with a marginal performance gap. More

importantly, ALSS-YOLOSeg has a significantly lower parameter

count of only 1.83M, far below the other models. This demonstrates

an excellent balance between accuracy and model complexity. The

low parameter count makes ALSSYOLO-Seg highly efficient for

deployment on platforms with limited computational resources.

Additionally, traditional segmentation models like DeepLabV3+

(R-101-D8) also achieve commendable segmentation accuracy, with

an mIoU of 92.83%. However, its parameter count reaches 60.21M,

making it considerably more complex than ALSS-YOLO-Seg and less

suitable for deployment on lightweight hardware. Similarly, PSPNet

(R-50-D8) and UNet (UNet-S5-D16) achieve mIoU of 91.13% and

90.31%, respectively. While their parameter counts are somewhat

lower (46.60M and 28.99M, respectively), their segmentation
FIGURE 15

Segmentation performance of large target size and complex ground background in low-altitude UAV flight images: (A) ground truth; (B) YOLOv9t-
Seg’; (C) YOLOv8-p6-Seg’; (D) YOLOv6-Seg’; (E) YOLOv8-ghost-Seg’; (F) ALSS-YOLO-Seg.
TABLE 9 Performance comparison based on the Banana Plantation dataset.

Model Backbone mIoU Params (M) FPS

DeepLabV3plus (Chen et al., 2018) R-101-D8 0.9283 60.21 6.98

KNet (Zhang et al., 2021) Swin-L 0.9468 245 4.55

Mask2Former (Cheng et al., 2022) Swin-L 0.9427 235 5.09

PSPNet (Zhao et al., 2017) R-50-D8 0.9113 46.60 11.91

Segformer (Xie et al., 2021) MIT-B5 0.9398 81.97 6.57

UNet (Ronneberger et al., 2015) UNet-S5-D16 0.9031 28.99 17.93

ALSS-YOLO-Seg ALSSNet 0.9272 1.8256 130.6
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performance may still present challenges in meeting the high

precision demands required in banana plantation monitoring.

In summary, our proposed ALSS-YOLO-Seg model exhibits

excellent segmentation accuracy, especially in UAV-based banana

plantation scenarios, while significantly reducing the number of

parameters. The model achieves an excellent balance between

accuracy and computational efficiency, making it ideal for

agricultural monitoring tasks with stringent requirements for real-

time performance and resource efficiency on UAV-based platforms

or other low-power edge devices.
4 Conclusion

In this research, we proposed a comprehensive solution for UAV-

based segmentation of banana plantations by integrating an efficient

annotation pipeline with a lightweight segmentation model. First, we

developed an iterative optimization annotation pipeline that

significantly reduces data annotation costs and time, demonstrating

the ability to generate high-quality segmentation masks from a

limited number of weak annotations. This approach minimizes

manual intervention while enhancing annotation efficiency and

segmentation accuracy. Our method achieved high-quality mask

generation on the Javeri dataset, with an mIoU of 93.78%. This

pipeline was also utilized to construct a custom banana plantation

dataset. Subsequently, we trained a specialized lightweight and

efficient segmentation model, ALSS-YOLO-Seg, using this dataset.

The model incorporates the Adaptive Lightweight Channel Splitting

and Shuffling (ALSS) module to enhance information exchange

between channels and optimize feature extraction, thus aiding in

accurate crop identification. The architecture employs a bottleneck

structure to reduce complexity and ensure efficient processing.

Additionally, the Multi-Scale Channel Attention (MSCA) module

combines multi-scale feature extraction with channel attention

mechanisms, significantly improving the model’s ability to handle

varying target sizes and complex backgrounds by focusing on the

most relevant features across different scales.

Extensive experiments conducted on our custom banana

plantation dataset demonstrated that ALSSYOLO-Seg achieved

state-of-the-art performance, with an mAP50mask of 85.8% and a

parameter count of 1.8256M, surpassing the baseline YOLOv8-Seg

model, which attained an mAP50mask of 84.8%. Ablation studies

demonstrate the contribution of each component, the ability of the

ALSS module to enhance feature exchange and reduce complexity,

and the effectiveness of the MSCA module in multi-scale feature

refinement. Comparative experiments confirm that ALSS-YOLO-

Seg outperforms existing models. The proposed approach effectively

addresses the challenges associated with large-scale data annotation

and ensures high segmentation accuracy in resource-constrained

environments, making it highly suitable for real-world agricultural

applications, such as crop monitoring and plantation management.

For future work, we aim to further enhance the generalization

capabilities of the ALSS-YOLO-Seg model by incorporating

additional contextual information and exploring more advanced

attention mechanisms. Expanding the custom banana plantation

dataset with diverse environmental conditions and varying stages of
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crop growth will allow for more robust model training and improved

performance in different settings. Additionally, the transferability of

this approach to other agricultural sectors will be explored to broaden

its applicability across a range of crops and plantation types.
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