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Introduction: The three dimensions of the tobacco silk components (cut stem,

tobacco silk, reconstituted tobacco shred, and expanded tobacco silk) of

cigarettes directly affect cigarette combustibility; by accurately measuring the

dimensions of different tobacco silks in cigarettes, it is possible to optimize

combustibility and reduce the production of harmful substances. Identifying the

components of tobacco shred in cigarettes is a prerequisite for three-

dimensional measurement. The two-dimensional image method can identify

the tobacco shred and measure its two-dimensional characteristics but cannot

determine its thickness. This study therefore focuses on the identification of the

tobacco shred and measuring it in three dimensions.

Methods: The point cloud data of the upper and lower surfaces of tobacco shred

are segmented using the improved three-dimensional point cloud segmentation

model based on the PointNet++ network. This model combines the weighted

cross-entropy loss function to enhance the classification effect, the cosine

annealing algorithm to optimize the training process, and the improved k-

nearest neighbors multi-scale grouping method to enhance the model’s ability

to segment the point cloud with complex morphology. Meanwhile, this study

also proposes a dimension transformation calculation method for calculating the

three dimensions of tobacco shred.

Results: The experimental results show that the precision and recall of the

improved segmentation model increased from 84.27% and 83.63% to 95.13%

and 97.68%, respectively; the relative errors of the length and width of tobacco

shred were less than 5% and 7%, and the relative error of the standard gauge

block thickness measurement reached 1.12%.

Discussion: This study also provides a new idea for implementing three-

dimensional measurements of other flexible materials.
KEYWORDS

blended tobacco shred, PointNet++, semantic segmentation, non-contact
measurement, DTC
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1 Introduction

The Framework Convention on Tobacco Control (FCTC)

Articles 9 and 10 mandate that signatories regulate the contents

and emissions of tobacco products and establish corresponding

testing and measurement methods. Manufacturers and importers

are required to disclose information about these ingredients and

emissions to government authorities and the public (Acuña, 2017).

The physical characteristics of tobacco shred components (such as

cut stem, tobacco silk, reconstituted tobacco shred, and expanded

tobacco silk)—including length, width, and thickness—significantly

affect cigarettes’ physical properties, smoke characteristics, and

sensory quality (State Tobacco Monopoly Administration, 2009;

Wang et al., 2020). Therefore, achieving precise and efficient

identification of tobacco shred types and determination of their

dimensional measurements is crucial for exploring blend design

and evaluating tobacco quality (Qi et al., 2022).

To measure the physical characteristics of mixed tobacco

shreds, it is essential first to identify and segment the components

of the cigarette’s tobacco shred blend. Zhang (2013) successfully

predicted the blend ratio of expanded and sheet tobacco shreds by

combining Fourier transform near-infrared spectroscopy with

partial least squares regression (PLS). The model achieved a

correlation coefficient of 0.993, demonstrating its efficacy and

accuracy in rapidly detecting and monitoring the uniformity of

expanded tobacco shred blending during the cutting process. Mei

et al. (2021) used near-infrared hyperspectral imaging combined

with second-derivative and Savitsky–Golay smoothing methods to

verify the effectiveness of a component identification model based

on both pixel- and sample-based approaches, with an identification

rate of 86.97%. Research methods for identifying tobacco shred

components primarily utilize terahertz time-domain spectroscopy,

near-infrared hyperspectral imaging, and machine vision

technologies. Zhou et al. (2022) used terahertz time-domain

spectroscopy combined with low-variance filtering, principal

component analysis (PCA) feature extraction, and classification

models to successfully discriminate three tobacco blend

components: tobacco silk, cut stem, and reconstituted

tobacco shred.

In recent years, machine vision has rapidly advanced alongside

computational technology, with the introduction of deep learning

significantly improving image processing efficiency and accuracy.

Three critical tasks within this domain include image classification

(He et al., 2016; Wu et al., 2019; Sengupta et al., 2019), object

detection (Jiang and Learned-Miller, 2017; Redmon, 2016; Li et al.,

2020), and image segmentation (Lu et al., 2019; Williams et al.,

2023; Bharati and Pramanik, 2020). Image classification assigns

categories, while detection and segmentation identify objects and

precisely delineate their boundaries. These technological advances

offer robust support for a wide range of applications.

The combination of machine vision and deep learning has also

been extensively studied with respect to identifying and segmenting

tobacco shred types. To enhance sorting efficiency and classification

effectiveness, Niu et al. (2022a) developed a tobacco shred

recognition method that combines machine vision and deep

learning. The method achieved a 95.5% accuracy rate using an
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improved Light-VGG network on a custom-built database of four

tobacco shred categories, significantly reducing model parameters

and prediction time compared to VGG16. Liu et al. (2022) proposed

a tobacco shred recognition method based on an efficient channel

attention mechanism and multi-scale feature fusion, achieving

97.23% accuracy and a 0.107-s per-image detection time with the

improved Inception-ResNet-V2 network.

Niu et al. (2022b) introduced a novel tobacco shred

classification method based on the MS-X-ResNet network,

achieving 96.56% accuracy at 103 milliseconds per image, offering

a new solution for real-time identification in tobacco production

quality control. Wang et al. (2023) proposed a tobacco shred image

segmentation model based on the improved Mask R-CNN network

and applied the chain-of-thought (COT) algorithm to resolve

overlap in shred identification and area calculation. It achieved

90.2% detection accuracy and 89.1% segmentation accuracy on

overlapping tobacco shred datasets, improving the actual detection

rate in overlapping regions from 81.2% to 90%. Jia et al. (2023)

developed a new multi-target detection model based on the

improved YOLOv7-tiny model to identify and calculate the

unbroken ratio of mixed tobacco shreds, achieving a detection

accuracy of 0.883 and a testing time of 4.12 milliseconds,

providing an efficient method for multi-target detection and

dimensional measurement in tobacco quality inspection lines.

Although the above methods have demonstrated effectiveness

in recognizing and segmenting tobacco filaments, and studies have

been conducted to measure the length and width of tobacco

filaments, these efforts have been limited to the realm of 2-D

image process ing . Given tobacco ’s complex bending

characteristics, it is difficult to accurately calculate the actual

length and width of filaments, let alone measure their thickness,

using 2-D images alone. Therefore, the currently available methods

have great limitations with respect to accurately measuring all three

dimensions of tobacco filaments.

Three-dimensional laser scanning technology can capture

detailed 3-D point cloud data to provide a comprehensive

representation of an object’s geometry. Based on these data,

advanced deep learning networks have been developed specifically

for the purpose of point cloud processing to enable accurate

recognition and segmentation. These techniques utilize deep

learning and segmentation methods based on 3-D point clouds

(Lu et al., 2024) to efficiently analyze complex 3-D data and extract

rich feature information, providing powerful technical support for

accurate measurements. Compared with traditional 2-D image

processing, 3-D networks can more accurately capture the

geometric shapes and spatial structures of objects, thereby

improving the precision of shred segmentation and recognition.

However, the sparse, irregular, high-dimensional, large-scale nature

of point cloud data, along with noise and outliers, presents

challenges in processing and recognizing 3-D data, requiring

advanced algorithms and computational resources (Shi et al., 2024).

PointNet is a novel neural network designed to directly process

point cloud data, emphasizing the invariance of point order and

achieving outstanding results in tasks such as object classification,

part segmentation, and scene semantic parsing while providing a

theoretical analysis of network learning and robustness (Qi et al.,
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2017a). PointNet++ builds on this by introducing hierarchical

layers that recursively partition and adaptively fuse features,

effectively learning point clouds’ local features and significantly

outperforming state-of-the-art methods in terms of 3-D point cloud

benchmarks (Qi et al., 2017b). PointNeXt was also introduced,

incorporating improved training strategies and reverse residual

bottleneck designs, achieving superior performance in 3-D

classification and segmentation tasks while also being ten times

faster in inference (Qian et al., 2022). However, few studies have

been conducted on methods to obtain three-dimensional

dimensional information on tiny tobacco filaments.

In this study, we chose to use the PointNet++ model for point

cloud segmentation because of its ability to handle complex

geometric shapes and its efficient multi-scale grouping

mechanism, which is essential for capturing both local and global

features in point clouds. While other models, such as PointNet and

DGCNN (Wang et al., 2019), also offer promising performance,

PointNet++’s hierarchical structure and improved feature

aggregation techniques make it particularly suitable for accurately

segmenting the tobacco shreds in our dataset. Furthermore,

PointNet++ is robust in dealing with varying point cloud

densities and irregularities, giving it a distinct advantage over

voxel-based methods like VoxelNet (Zhou and Tuzel, 2018). To

tackle the challenge of accurately measuring tobacco shreds in a

mixed environment, this study leveraged 3-D laser scanning

technology in conjunction with an improved deep learning model

to segment and measure the three dimensions of the shreds.

We propose an improved PointNet++ point cloud

segmentation model to efficiently process and analyze the

complex 3-D data, extracting rich feature information to enable

accurate identification and segmentation. Additionally, a new 3-D

measurement method is introduced to precisely measure the length,

width, and thickness of the tobacco shreds. Our main contributions

are as follows:
Fron
• By improving PointNet++’s multi-scale grouping method

and integrating k-nearest neighbors (KNN), more stable

feature extraction is achieved. In addition, a weighted cross-

entropy loss function is introduced to enhance minority

class classification precision, and a cosine annealing

algorithm is used to optimize the learning rate adjustment

strategy, significantly improving classification accuracy,

model convergence speed, and overall training results on

complex geometric point clouds.

• We constructed a multi-category point cloud dataset

encompassing five main categories: Cut Stem, Tobacco

Silk, Reconstituted Tobacco Shred, Expanded Tobacco

Silk, and Background Noise. Each category had over 1,500

samples, ensuring a robust training set.

• Traditional 2-D image methods struggle to accurately

measure the actual dimensions of tobacco shreds due to

their softness. We proposed the dimension transformation

calculation (DTC) algorithm, which, through dimensional

transformation and mapping, accurately calculates the

length, width, and thickness of tobacco shreds,

significantly improving measurement precision.
tiers in Plant Science 03
• This approach offers a new method for the three-

dimensional measurement of materials like tobacco

shreds, which are flexible, curved, and require non-

contact measurement.
This paper is structured as follows: Section 2 describes the point

cloud acquisition device and builds a dataset of tobacco shred

components. Section 3 describes the improved PointNet++

network and the DTC algorithm. Section 4 conducts experiments

based on the improved PointNet++ network and the DTC

algorithm to evaluate the performance of the segmentation model

and the accuracy of the measurement algorithm. Section 5

summarizes the work of this paper and provides an outlook.
2 Methodology overview

Our proposed hybrid tobacco shred part-segmentation and 3-D

measurement method includes three main modules: a data

acquisition and processing module, a deep learning module, and a

3-D measurement module. The overall framework of the system is

shown in Figure 1. The data acquisition and processing module

utilizes a point cloud data acquisition system for collecting and pre-

processing data. To enhance the deep learning model’s performance

and generalization ability and reduce the risk of overfitting,

annotated data are optimized using data augmentation

techniques. The deep learning module is based on an improved

PointNet++ network in which the loss function was enhanced and

the learning rate dynamically adjusted using the cosine annealing

algorithm to improve model accuracy. Additionally, PointNet++’s

multi-scale grouping method was optimized for better feature

extraction. Finally, the 3-D measurement module calculates the

length, width, and thickness of the segmented tobacco shreds using

the DTC algorithm.

The tobacco used in this study was provided by Jiangxi China

Tobacco Industry Co. The experimental methodology commenced

with preprocessing the point cloud data acquired from the tobacco

filaments and inputting them into the improved PointNet++ for 3-

D point cloud segmentation. The segmented tobacco was classified

into different categories and aligned for measurement. The specific

experimental process is detailed in Supplementary Figure 1.
2.1 Data acquisition

The tobacco shred samples used in this study were obtained

from the cigarette production line after the silk-making and

flavoring processes had taken place and before the cigarettes had

been rolled. The four main tobacco shred types in cigarettes are

stem shreds, leaf shreds, reconstituted tobacco shreds, and

expanded tobacco shreds, as shown in Figure 2. Stem shreds are

fine strips of tobacco stem with a soft texture and small cutting

thickness that are processed to a certain width after cutting. Leaf

shreds are made by cutting tobacco leaves and have natural leaf vein

textures on the surface, serving as the main component of cigarettes.

Reconstituted shreds are made from reprocessing tobacco waste,
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fragments, and dust into tobacco shreds of a certain shape and

specification. Expanded tobacco shreds have been processed to

expand the volume of the tobacco leaves by adding expansion

agents during tobacco processing.

To acquire high-quality, stable point cloud data of tobacco

shreds in 3-D form, a high-precision laser line scanning system with

XYZ three-axis displacement was designed. The system consists of a

laser sensor, laser controller, XY-axis displacement mechanism, Z-

axis rotation mechanism, motion controller, stage, precision

ceramic block, and computer. The laser sensor model LJ-X8080

was developed and manufactured by Keyence Corporation, a

company headquartered in Japan. This equipment controls the
Frontiers in Plant Science 04
laser emission and data transmission via a laser controller. A 405

nm blue laser is emitted onto the object’s surface; part of the light is

reflected by the surface and received by the sensor’s internal chip,

which then processes the light signals to calculate the distance

between the object’s surface and the sensor. The sensor has a static

precision of 0.5 mm in the Z-axis direction and 2.5 mm in the X-axis

direction, making it capable of scanning fine textures and other

morphological features of tobacco shreds.

The motion controller drives the XY-axis platform to move

back and forth and left and right within a certain range to capture

scanning data of the tobacco shred surface. The Z-axis rotation

mechanism independently controls the laser sensor to rotate
FIGURE 1

Overall system framework.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1508449
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1508449
around the circumference to scan the tobacco shreds from both top

and bottom. The stage consists of high-transparency glass to

minimize the impact of light refraction. The overall point cloud

data acquisition system is shown in Supplementary Figure 2.
2.2 Data preprocessing

2.2.1 Point cloud data preprocessing
Point cloud data preprocessing plays a crucial role in deep

learning. Raw point cloud data often contain numerous discrete

points, isolated points, and irrelevant background information, all

of which can negatively impact the training effectiveness and

inference speed of deep learning models. Appropriate

preprocessing steps are therefore essential for enhancing model

performance. This study proposes a point cloud preprocessing

method based on spatial coordinate cropping. By utilizing the

difference in Z-coordinates between redundant background points

and the target tobacco shreds, data outside the Z-coordinate range

of the tobacco shreds can be cropped and discarded to define the

region of interest (ROI). After extracting the ROI, radius filtering

and Gaussian filtering are applied to the point cloud data. The

radius filter removes isolated points and noise by evaluating point

density within a specified radius and discarding points with fewer

neighbors than a set threshold. This process preserves the dense

structure of the tobacco shreds while eliminating background noise.

The Gaussian filter smooths the data, reducing high-frequency

noise while maintaining important features such as edges

and surface continuity. Finally, downsampling is applied to

significantly reduce the data volume—after preprocessing, the

point cloud data volume is only about 9% of the original data

size. This preprocessing method greatly enhances the efficiency of

subsequent data processing and analysis, enabling deep learning

models to process higher-quality data faster. The point cloud

preprocessing flow is shown in Supplementary Figure 3.

2.2.2 Data labeling
In deep learning-based point cloud segmentation methods, a

certain number of manually labeled samples are required to construct

the training dataset. However, because of the challenges of intuitively
Frontiers in Plant Science 05
recognizing point cloud data in 3-D space, direct labeling based solely

on point cloud data is prone to errors. To address this issue, it is

essential to photograph tobacco samples prior to collecting their

corresponding point cloud data. This facilitates comparison during

the labeling process, ensuring greater accuracy. The detailed labeling

workflow is illustrated in Figure 3.

Comparing physical images of tobacco shreds to identify key

points, the CloudCompare software was used for data labeling of the

shreds. The four types of tobacco shreds were labeled as follows:

stem shreds as “0,” reconstituted tobacco shreds as “1,” leaf shreds

as “2,” and expanded shreds as “3.” After labeling the target tobacco

shreds, the remaining background and unprocessed noise were

labeled as “4,” as shown in Table 1.

2.2.3 Data augmentation strategy
Because of the small amount of original point cloud data and its

sparse, noisy, and partially missing nature, deep learning models are

prone to overfitting during training, leading to poor performance

when processing new data. Data augmentation can simulate these

situations, generating different forms of point cloud data, which not

only improves model accuracy but also helps the model learn how

to handle these noises and defects during training, thus improving

model robustness and generalization ability.

The point set in the labeled point cloud data is denoted as P, and

the expression of any point pi in the point set is (x, y, z, l)T , where

x, y, z are the relative coordinates of the point cloud, representing

the shape and position information of the object or scene surface.

The label number of the point cloud is l, with a value range of 0, 1, 2,

3, 4. The data augmentation process includes operations such as

global random displacement, global random rotation, local random

rotation, label random rotation, and background label removal on

any point pi in the point set P. The augmented data are then

analyzed in subsequent experiments.

• Global Random Displacement. Global random displacement

adds a random displacement value D to the coordinate components

(x, y, z) of any point pi in the tobacco shred data point set, denoted

as Dx,Dy,Dz. The random displacement value D is randomly

obtained using Python’s random function, with a value range of ½
−0:1,0:1�. The value of the label l is then unchanged, so the global

random displacement transformation formula is as follows:
FIGURE 2

Types of tobacco shreds: (A) Cut Stem; (B) Tobacco Silk; (C) Reconsitituted Tobacco Shred; (D) Expanded Tobacco Silk.
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• Global Random Rotation. The global random rotation

operation rotates the coordinate component (x,y,z) of any point

pi in the smoke data point set around the X-axis, Y-axis, or Z-axis

by a random angle q. The value of the random rotation angle q
ranges from [0, 2p]. During the rotation process, although the

spatial locations of the points are changed, their associated labeled

values do not change with the transformation of the rotation matrix.

This means that no matter how the data points are rotated, the

smoke feature or category information represented by each point
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remains the same. The experiments in this paper use rotation

around the Y-axis for each point in the point set, so the global

random rotation formula is as follows:
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yq

zq

lq

2
66664

3
77775 =

cos(q)

0

−sin(q)

0

0

1

0

0
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0

0

0

1

2
66664

3
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0

2
66664

3
77775

q = rand(0, 2p)

(2)

• Label Random Rotation. Label random rotation refers to

rotating only the tobacco shred data points associated with a

specific label value by a random angle while keeping the

background area unchanged. This operation aims to simulate or

enhance the dataset’s diversity while ensuring the consistency of

background information so that the model can accurately recognize

and process tobacco shred features during subsequent training or

analysis. The formula for this experiment is the same as that for the

global random rotation but with a different label selection

for rotation.

• Removal of Background and Noise. By data labeling the

acquired tobacco shred data, it is easy to observe that label 4,

representing background and noise, occupies approximately half of

the total data volume. After removing all data with label 4, a clean

tobacco shred dataset was obtained. This dataset contains only data

points related to tobacco shred features, more accurately reflecting

their actual characteristics, reducing interference and misjudgment

caused by background and noise, and improving the model’s

generalization ability.
TABLE 1 Tobacco shred dataset labels.

Label Classes
of datasets

Quantity

0 Cut Stem Over 1500

1 Tobacco Silk Over 1500

2 Reconsitituted
Tobacco Shred

Over 1500

3 Expanded Tobacco Silk Over 1500

4 Background Noise Unknown
FIGURE 3

Methods of data labelling.
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3 Improved PointNet++ and 3-D
size measurement

3.1 Improved PointNet++ Algorithm

3.1.1 Optimizing PointNet++ with a weighted
cross-entropy loss function

The loss function is used to measure the difference between the

model’s predicted results and the actual target values, guiding the

optimization of model parameters and thereby improving model

prediction accuracy. In the training process, the optimization

algorithm adjusts the model parameters to minimize the loss

function, making the model’s predictions closer to the actual

values. Point cloud segmentation is a multi-class classification

problem for each point. Therefore, the cross-entropy loss function

is used to train the deep network model. However, experiments

have shown that when some classes have much more training data

than others, the standard cross-entropy loss function may cause the

model to prioritize learning the majority classes, with the minority

classes contributing relatively little, making it difficult to effectively

adjust the model parameters. In this experiment, the total data

volume of tobacco shreds is only half that of the background and

noise. Although the overall accuracy of the model may be high, the

prediction performance for minority classes is poor. To address this

issue, we used a weighted cross-entropy loss function to optimize

the model by assigning different weights to the tobacco shreds and

backgrounds to improve the classification accuracy. The formula for

the weighted cross-entropy loss function is as follows:

Lwce = −
1
No

N
i=1oC

j=0wjyi,j log pi,j (3)

In Equation 3, N denotes the number of samples, C is the

number of categories, Wj denotes the weight of the jth category, yi,j
is an element of the one-hot coding vector—i.e., it denotes the

probability (0 or 1) that the true category of the ith sample is j—and

pi,j is the probability that the ith sample is predicted to be j.

The weights W are decided based on the relative frequencies of

the classes and their importance in the segmentation task. Higher

weights are assigned to tobacco shreds (especially those with fewer

samples), which ensures that the model is more sensitive to these

classes, improving classification accuracy. The background class is

given a lower weight to avoid overfitting to the majority class. The

overall weight design follows an inverse frequency approach, with

manual adjustments for specific class characteristics to balance the

model’s performance across all classes.

3.1.2 Applying the cosine annealing algorithm to
optimize the learning rate adjustment strategy

During model training, the model parameters are initialized to

random values. After the point cloud data are input into the model, the

predicted values are calculated through forward propagation of the

neural network. These values are compared with the true labels, and the

loss function is calculated to measure the accuracy of the model’s

predictions. The gradient of the loss function with respect to each

model parameter is calculated using the backpropagation algorithm.
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The gradient represents the rate of change of the loss function with

respect to the parameters, guiding how the parameters should be

adjusted to reduce the loss. The optimizer then updates the model

parameters based on the calculated gradients.

These steps are repeated over multiple epochs until the model

reaches the predetermined number of training epochs. The learning

rate controls the size of each parameter update, affecting the model’s

convergence speed and final performance. The original learning rate

adjustment strategy involved multiplying the learning rate by a

decay rate coefficient at fixed steps. However, this fixed-step

reduction may not adapt to dynamic changes during the training

process. Lowering the learning rate too early may cause the model

to stop converging before reaching the optimal solution, affecting its

final performance.

Therefore, we modified the learning rate adjustment strategy by

applying the cosine annealing algorithm to adjust the learning rate

to improve the overall performance. The core idea of the cosine

annealing algorithm is to use the shape of a cosine function to adjust

the learning rate. At the beginning of training, a larger learning rate

is used, which helps the model approach the optimal solution more

quickly as it allows the parameters to move more significantly in the

parameter space. As training progresses, the learning rate gradually

decreases, allowing the model to finetune the parameters as it

approaches the optimal solution, thereby improving the model’s

convergence speed and effect. The formula for the cosine annealing

algorithm is as follows:

ht = hmin +
1
2
(hmax − hmin) 1 + cos

Ti

Trestart
p

� �� �
(4)

In Equation 5, ht is the learning rate of the step (or epoch). hmin

is the minimum learning rate in cosine annealing, which is usually

set to a very small value, and hmax is the maximum learning rate in

cosine annealing, which is applied before each restart. Ti is the

number of epochs (or steps) that have been carried out, which is

incremented from 1. Trestart is the number of cosine annealing

periods, i.e., after how many epochs is a restart performed. The

detailed learning rate decay is shown in Figure 4.

3.1.3 Improving the multi-scale grouping method
of PointNet++

In PointNet++, the farthest point sampling (FPS) algorithm is

used to select a subset of the point cloud to ensure that the sampled

points are uniformly distributed in the point cloud data. However,

the ball query method used in the original network has

shortcomings with respect to the grouping process: the size of its

result set is affected by the radius selection. If the radius is too large,

it may lead to an excessive number of neighboring points and

increase the computational complexity; conversely, if it is too small,

important neighboring points may be missed. Tobacco shred

features tend to be more subtle and complex in shape. KNN can

accurately select a fixed number of nearest neighbor points in a local

range, thus improving the model’s detail recognition and

classification or part-segmentation accuracy. The use of KNN

ensures that the feature dimension of each local region is

consistent during feature extraction, which helps in training and
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optimizing the network. Meanwhile, because of the uniform density

of the acquired point cloud data, KNN can select a fixed number of

neighboring points for each sampling point to effectively capture

local features. In point clouds with complex geometries, KNN is also

better at recognizing detailed features and enhancing the

understanding of complex shapes.

To further improve the performance of PointNet++, this study

dynamically adjusted the k-value of KNN according to the local

features of the point cloud, so that it captures enough feature

information at different scales. This improvement not only

reduces the computational complexity, but also prevents the

omission of feature information and enhances the model’s ability

to handle complex geometries.
3.2 3D size measurement method for
mixed tobacco shreds

Conventional tobacco shred size measurement methods

typically use 2-D images to calculate the length and width of

tobacco shreds. However, because tobacco shreds are soft, they

may bend or curl when spread out on a plane, making it challenging

to measure their actual length from 2-D images. Specifically, the

image method involves photographing the object with a camera,

then processing and analyzing the images to measure the object’s

length and width. During this process, the measurement result from

the image method is the projection length of the object on the 2-D

plane rather than the actual length in 3-D space. At the same time,

2-D measurement methods cannot measure tobacco shred

thickness. However, by scanning the point cloud data of the

upper and lower sides of the tobacco shreds, the point clouds can

be merged to approximate their overall outline. Then, the improved

PointNet++ algorithm can be used to segment the tobacco shreds,

obtaining the position information of each shred. Using the position

information, the 3-D size of the tobacco shreds can be calculated.

This study proposes a DTC algorithm to calculate the true length,

width, and thickness of the tobacco shreds by mapping from 3-D to

2-D and then back from 2-D to 3-D.
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3.2.1 Point cloud registration
Because there are three-axis motion and installation accuracy

issues in the point cloud data acquisition system, the original point

cloud scan data may appear misaligned within the same coordinate

system. Therefore, the data from the upper and lower sides of the

stage must be registered. Point cloud registration algorithms align

point cloud data acquired from different viewpoints to construct a

complete 3-D scene or achieve more accurate target recognition.

Point cloud registration algorithms require sufficient overlapping

regions between datasets. These overlapping regions contain the

same object or surface features, allowing the algorithm to find

matching points and align them. However, the point cloud data

acquired in this experiment only include the upper and lower

surface layers of the scanned object, with no overlapping regions.

Therefore, traditional point cloud registration algorithms are

insufficient for providing realistic thickness values for the scanned

data from both sides. We propose a method for point cloud data

registration based on standard gauge blocks.

In this experiment, a standard gauge block with a length of 30

mm, a width of 9 mm, a thickness of 0.5 mm, and a limit deviation

of 0.12 mmwas used to calibrate and verify the accuracy of the point

cloud data. First, the standard gauge block was placed on the stage

and scanned along with the tobacco shreds, resulting in scan data

for both upper and lower surfaces. After preprocessing the point

cloud data, the standard gauge block was segmented, and the center

point, two midpoint coordinates along the length, and two

midpoint coordinates along the width were used as reference

points. The registration formulas are as follows:

x0 = x +
1
5o

5
i=1Dxi (5)

y0 = y +
1
5o

5
i=1Dyi (6)

z0 = z +
1
5o

5
i=1Dzi (7)

In Equations 5–7, x, y, and z represent the upper-side point

cloud data, Dxi, Dxyi, Dzi are the differences of the five sets of
FIGURE 4

Comparison of learning rate decay methods (A) fixed-value decay (B) cosine annealing decay.
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coordinate points above and below the block, and x0, y0 and z0 are
the lower-side calibrated point cloud data.

3.2.2 Tobacco shred length and width algorithm
After point cloud registration, accurate point cloud data of the

tobacco shreds can be obtained. However, due to the complex

physical characteristics of mixed tobacco shreds, such as bending or

twisting, it is cumbersome to calculate their three dimensions using

raw point cloud data alone. The DTC algorithm was used to

calculate the true length and width of the tobacco shreds, greatly

reducing the algorithm’s complexity. The specific steps of the

algorithm are as follows:

• Obtain a 2-D image of the tobacco shreds. The original point

cloud data obtained through scanning are presented as a matrix,

with the horizontal and vertical axes representing the scanning

coordinates and the values within the coordinates representing the

scanning height data. Since the point cloud height data for the

tobacco shreds are concentrated between 26,000 and 28,000, and

any data outside this range correspond to background data,

mapping the height data within this range to a grayscale image

with pixel values ranging from 0 to 255 yields the 2-D projection

image of the tobacco shred.

• Obtain the position coordinates of the 2-D image of the

tobacco shreds. After segmentation using an improved PointNet++

model, the tobacco shred data in the 3-D point cloud are obtained.

To map this data onto the 2-D image, only the x and y coordinates

of the outermost contour of the tobacco shred are needed to

determine its position. The mapped 2-D image is shown

in Figure 5A.

• Extract the skeleton. After obtaining the contour position of

the tobacco shred, the data are divided along the main trunk in the

vertical direction into a certain number of segments. Each segment

is then analyzed individually. When a segment contains a single

tobacco shred, its center point is calculated. As shown in the lower

half of Figure 5B, where there is only one segment in the horizontal

direction, only one center point exists in that direction. If multiple

segments are obtained, the center points of each tobacco shred in
Frontiers in Plant Science 09
the contour are calculated. In the upper half of Figure 5B, two

tobacco shreds are found, and their respective center points must be

calculated. After obtaining the center point coordinates of the

tobacco shred in each segment, the coordinates are analyzed to

obtain the optimal order in which to connect them to a main

skeleton, as shown in Figure 5C. Specifically, the first center point is

chosen as the starting point, and the remaining points are traversed

to find the closest point. This point is then connected to the starting

point, and the next closest point is found and connected. This

process continues until all center points are connected.

• Calculate the length. The skeleton coordinates (x, y) are

mapped back to the point cloud data (Figure 5E) to obtain the

corresponding z-coordinate. The length is calculated by

determining the distance between two points (x, y, z) in space.

The calculation formula is as follows:

l =oN−1
i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi − xi−1)

2 + (yi − yi−1)
2 + (zi − zi−1)

2
q

(8)

• Calculate the width. After obtaining the tobacco shred

contour’s center points and connecting them optimally to form

the skeleton, a line segment is formed by connecting each pair of

neighboring center points. A perpendicular line is drawn to this

segment, intersecting the tobacco shred contour at two points, as

shown in Figure 5D. By mapping these intersection points back to

the point cloud data (Figure 5E), the real 3-D average and

maximum widths of the tobacco shred can be calculated. The

specific calculation formulas are as follows:

wa =
1

N − 1o
N−1
c=1 oS

j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xc − xj)

2 + (yc − yj)
2 + (zc − zj)

2
q

(9)

wm = maxc=1,2,…,N oS
j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xc − xj)

2 + (yc − yj)
2 + (zc − zj)

2
q� �

(10)

In Equations 9, 10, wa is the average width of the filament, wm is

the maximum width of the filament, xc, yc, and zc are the midpoints

of the two center points of the skeleton, and xj, yj, and zj are the

intersections of the perpendicular lines with the filament contour. N
FIGURE 5

Flow of the length and width algorithm: (A) 2D image of tobacco shred, (B) Finding the center of the skeleton, (C) Tobacco Shred Skeleton Seeking
Excellence, (D) Width coordinate positioning, (E) Point cloud traceability.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1508449
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1508449
is the number of skeleton center coordinates. The flowchart of the

length and width algorithm is shown in Figure 5.

3.2.3 Tobacco shred thickness
measurement algorithm

To measure the overall average thickness of the shred, the

distance between a point on the upper surface of the tobacco shred

and the corresponding point on the lower surface is calculated. The

average thickness value T is then calculated by subtracting or

adding the corresponding height difference between the upper

and lower surfaces of the tobacco shred and the standard gauge

block. The standard gauge block’s thickness is denoted as H, and the

algorithm’s specific steps are as follows:
Fron
• Segment the point cloud using the improved model to

obtain the point cloud sets of the upper and lower

surfaces of different tobacco shreds.

• Calculate the distance between each point on the upper

surface of the tobacco shred and each point on the upper

surface of the standard gauge block to obtain the average

height difference H1. Similarly, calculate the distance

between each point on the lower surface of the tobacco

shred and each point on the lower surface of the standard

gauge block to obtain the average height difference H2.

• Depending on the positional relationship between the

tobacco shred and the standard gauge block, two cases

are considered:
When the average height of the upper surface of the tobacco

shred is lower than the upper surface of the standard gauge block,

the tobacco shred’s thickness is calculated as follows:

T = H −H1 −H2 (11)

When the average height of the upper surface of the tobacco

shred is higher than the upper surface of the standard gauge block,

the tobacco shred’s thickness is calculated as follows:

T = H +H1 −H2 (12)

In Equations 11, 12, H1 and H2 are the average distances

between the points, so the values are both greater than 0. The

method for calculating the tobacco shred’s thickness value T

involves defining two reference planes and calculating the

thickness based on the distance between them. The principle of

the thickness algorithm is shown in Supplementary Figure 4.

To further clarify the principle of the tobacco shred thickness

measurement algorithm, an example using actual tobacco shreds

and reference block data is presented. Supplementary Figure 5A

shows the top view of the tobacco shred and the reference block.

Supplementary Figure 5B depicts the scanned point cloud of the

upper surface, where a certain distance below the reference block

represents its thickness H. This becomes more apparent when

comparing with the point cloud scanned from the bottom surface,

as shown in Supplementary Figure 5C.
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4 Results and analysis

4.1 Experimental hardware and software
platform and parameter settings

This experiment was conducted on a Windows 10 platform

equipped with an NVIDIA GeForce RTX 4090 GPU (24GB

VRAM), an Intel Core i9-14900KF CPU (3.2GHz), and 64GB of

memory. The model was implemented and trained using the

PyTorch deep learning framework with Python, utilizing CUDA

for parallel computation. The development environment was

PyCharm. The Python version used was 3.9, and the CUDA

version was 12.4. For each sample, 4096 points were randomly

selected from the original point cloud data for network input.

During training, the model was trained for 150 iterations with a

batch size of 16.
4.2 Model evaluation metrics

Objective performance metrics such as Mean Intersection over

Union (MIoU), Precision (Pre), Recall (Rec), and F1-Score are

typically used to evaluate the performance of a deep learning-based

3-D semantic segmentation network model.

MIoU is one of the most commonly used metrics for the

semantic segmentation of point clouds and measures the average

prediction accuracy for each category. The formula is as follows:

mIoU =
1
No

N
i=1

TPi

TPi + FPi + FNi
(13)

Pre and mPre represent the proportion of points that the model

predicts as belonging to a category that actually belong to that

category and the average precision rates for each category,

respectively. The formula is as follows:

Prei =
TPi

TPi + FPi
(14)

mPre =
1
No

N
i=1

TPi
TPi + FPi

(15)

mRec represents the average of the proportion of samples

correctly predicted as positive classes by the model. The formula

is as follows:

mRec =
1
No

N
i=1

TPi

TPi + FNi
(16)

The F1-Score is the average of the reconciled mean of precision

and recall for each category, which is used to balance the two

metrics and is calculated using the following formula:

F1 =
1
No

N
i=12�

Prei � Reci
Prei + Reci

(17)

In Equations 8–12, i represents the different categories, N is the

number of categories, and TP_i is the true positive instances of each
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category, i.e., the number of points the model correctly predicts as

belonging to the positive category. FP_i is the false positive

instances of each category, i.e., the number of points the model

incorrectly predicts as belonging to the positive category. FN_i is

the false negative instances of each category, i.e., the number of

points the model incorrectly predicts as belonging to the negative

category. The above four metrics are used to evaluate the point

cloud semantic segmentation model’s performance. Because of the

large amount of data in the background point cloud, the evaluation

metrics will have an impact on the four tobacco targets, so only the

four tobacco categories are counted when calculating the average

evaluation metrics.
4.3 Data augmentation
comparison experiment

This experiment used four data augmentation methods: global

random displacement, global random rotation, label-based rotation,

and background label removal. Figure 6 displays the tobacco shred’s

physical image and the point cloud changes under different

augmentation methods. Training was performed by combining

the original data with the new datasets generated by these four

augmentation methods, resulting in the outcomes shown in Table 2.

The results indicated that global random displacement and

background label removal significantly improved the MIoU and

F1 combined metrics, and global random rotation also enhanced
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the model’s performance. However, the label-based rotation

method had a negative impact on model performance. Therefore,

in subsequent experiments, we used three data augmentation

methods: global random displacement, global random rotation,

and background label removal. The amount of data generated by

each method was the same as the original data, ultimately resulting

in a dataset size four times larger than the original dataset.
4.4 Segmentation model results

4.4.1 Overall testing of the improved PointNet++
network model

The improved PointNet++ network model was trained and

tested for 150 epochs under the configuration and parameter

settings described in Section 4.1 combined with the data

augmentation methods described in Section 4.3. Figure 7 presents

the results, demonstrating significant improvements in

segmentation performance and supporting further processing of

the segmented point cloud in subsequent algorithms.

Table 3 compares the performance of the network before and

after the improvement. The improved model showed a significant

improvement in training results on the same dataset. Specifically,

the average precision increased from 0.8427 to 0.9498, the average

intersection over union (mIoU) increased from 0.7511 to 0.9181,

the average recall increased from 0.8363 to 0.9766, and the F1-Score

increased from 0.8395 to 0.9631. This indicates significant
FIGURE 6

The actual picture of tobacco shreds primordial point cloud with various transformations and label-based operations: (A) Global Random
Displacement, (B) Global Random Rotation, (C) Label-based Rotation, (D) Remove background labels.
TABLE 2 Results of the average indicator for the data enhancement methodology.

GRD GRR LBR RBL mIoU (%) mPre (%) mRec (%) F1 (%)

44.71 51.53 45.59 48.37

√ 71.93 80.38 79.34 79.85

√ 50.08 59.06 55.77 57.37

√ 45.26 49.48 47.62 48.53

√ 66.52 79.52 78.56 79.03
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improvements in recall, overall performance, accuracy, and

segmentation precision, resulting in higher accuracy and

consistency. Additionally, the training time for the PointNet++

network was 4,554 seconds, while for the improved network’s it

was 4,229 seconds. The prediction time for each point cloud file

was 0.326 seconds, meeting the requirements of practical

engineering applications.

4.4.2 Performance testing of the improved
loss function

We validated the improved loss function described in Section

3.2.2 by comparing the performance of the original loss function

with that of the improved weighted cross-entropy loss function. In

the weighted cross-entropy loss function, different weights need to

be set for each class. Since background point cloud data are large

and easy to learn, the weight of the background point cloud label

must be reduced, while the weights of the four tobacco shred labels

must be increased. For this purpose, we set different weight

combinations and implemented step-by-step increases in the
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weights of the tobacco shred classes. The label order is: w_0

[1,1,1,1,1], w_1 [2,2,2,2,1], w_2 [3,3,3,3,1], w_3 [4,4,4,4,1], w_4

[5,5,5,5,1], w_5 [10,10,10,10,1], w_6 [20,20,20,20,1], w_7 [1,7,1,7,1],

w_8 [2,6,2,6,1], and w_9 [3,5,3,5,1].We tested the effect on

performance until extreme weights were reached. Meanwhile,

according to the initial model’s varying precision rates for each

type of tobacco shred, we adjusted the weights between different

tobacco shreds to select the best parameters.

Table 4 compares the performance of the network with the

weighted cross-entropy loss function under different weights, and

the network with weighted cross-entropy loss function showed

improved overall improved performance compared with w-0.

After experimental comparison, it was found that the model

parameters of w_3, with a weighting ratio of [4,4,4,4,1], were the

highest of the three indexes, and that the leaf filaments and

the expanded filaments—also known as 1,3 labels—were lower

than the parameters of the other labels. Therefore, three sets of

controlled experiments were conducted to determine whether the

different weights within the tobacco filaments could improve the
FIGURE 7

Predicted images before and after model improvement: (A) Image predicted by PointNet++; (B) Image predicted by improved PointNet++.
TABLE 3 Improved Point Net++ network model performance.

Model mPre (%) mIoU (%) mRec (%) F1 (%) Time (s)

PointNet++ 84.27 75.11 83.63 83.95 4554

Improved PointNet++ 95.13 92.46 97.68 96.39 4212
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overall parameters of the model. After performing the controlled

experiments, it was found that improving the two labels that

originally had low weights instead led to a decrease in the model’s

overall performance, and w-3 was ultimately chosen as the optimal

weighting parameter.

4.4.3 Performance testing of the cosine
annealing algorithm optimized learning rate

The effect of learning rate optimization using the cosine

annealing algorithm on model performance was verified on the

basis of the improvements detailed in Section 4.4.2, comparing the

network performance of both models with the above-mentioned

parameter configurations. The network subjected to the

intervention of learning rate optimization using the cosine

annealing algorithm is called cos-w-3-PointNet++.

Table 5 shows that optimizing the learning rate using the cosine

annealing algorithm on the basis of the improved cross-entropy loss

function outlined in Section 4.4.2 does not greatly improve the

average precision rate of the improved PointNet++ network.

However, the average cross-merge ratio is increased from 83.50%

to 86.84% and the average recall rate is increased from 91.88% to

95.98%. The F1-Score thus improves from 90.56% to 93.21%, and

the model’s training time is also reduced.

4.4.4 Performance testing of the improved
PointNet++ multi-scale grouping method

The improved PointNet++ multi-scale grouping method

described in Section 3.2.4 was validated based on the

improvements described in Section 4.4.3. The performance of the

different grouping methods was tested by combining KNN with

PointNet++ to process complex the geometrical point cloud data of
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tobacco shreds. The results showed that the improved multi-scale

grouping method significantly enhanced the model’s performance.

The results indicated that the model’s performance under different

radii of grouping splicing exhibited various behaviors. The splicing

method at different radii is shown in Figure 8.

The improved multi-scale grouping method improves the

performance of the model to a large extent on the basis of the

first grouping sampling 512 points and the second grouping

sampling 128 points, combined with the different K values of

KNN to sample the point cloud for the second time. The optimal

model parameters were found through the different sub-splices

presented in Table 6, and it can be seen that the model’s

performance under the different radius splices has different

performances. When the K value obtains R1-2 -R2-1, although

mPre and mIoU are lower compared with R1-5-R2-R and R1-6-R2-

5, the mRec and F1 scores reach 97.68% and 96.39%, respectively,

and the training time is also the fastest of all the other model

parameters. Therefore, the splicing combination of R1-2-R2-1 was

chosen as the final model parameter.
4.5 Analysis of 3D size
measurement results

Ten samples of each of the four types of tobacco silk (Cut Stem,

Tobacco Silk, Reconsitituted Tobacco Shred, Expanded Tobacco

Silk) were randomly selected and placed in a humidity chamber at a

constant temperature for 24h. Five standard measurement blocks

were used as control materials. Manual measurement was carried

out by stretching and flattening the filaments using vernier calipers,

while the traditional 2-D algorithmic and our 3-D measurement
TABLE 4 Impact of weighted cross-entropy loss on model performance with different weights.

Weight categories mPre (%) mIoU (%) mRec (%) F1 (%) Time (s)

w-0 84.27 75.11 83.63 83.95 4554

w-1 87.05 79.61 87.94 87.49 4512

w-2 89.01 82.78 90.93 89.96 4619

w-3 89.27 83.50 91.88 90.56 4883

w-4 88.21 82.89 91.20 89.68 4836

w-5 87.72 81.79 91.78 89.70 4792

w-6 86.21 80.60 92.08 89.05 4378

w-7 81.84 73.10 85.97 83.85 4573

w-8 87.24 81.12 90.55 88.86 4586

w-9 86.50 80.33 89.19 87.82 4598
TABLE 5 Comparison of the effect of cosine annealing algorithms on performance metrics.

Network Models mPre (%) mIoU (%) mRec (%) F1 (%) Time (s)

w-3-PointNet++ 89.27 83.50 91.88 90.56 4883

cos-w-3-PointNet++ 90.59 86.84 95.98 93.21 4617
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methods were used by placing the tobacco shreds horizontally on a

carrier table.

The calculation results are shown in Figure 9; the length and

width of the standard block and the four kinds of tobacco were

measured using three different methods, namely manual

measurement, the traditional 2-D algorithm, and the 3-D
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algorithm proposed in this paper. Because the traditional 2-D

algorithm cannot calculate the thickness value, this value was

only compared with the manual measurement.

When measuring length and width, the traditional 2-D algorithm

can only capture the projection of the tobacco when photographing

curved tobacco, and there is no way to obtain its height information.
FIGURE 8

Group splicing methods at different radii.
TABLE 6 Comparison of the effects of different splicing relationships on performance metrics.

Network Models mPre (%) mIoU (%) mRec (%) F1 (%) Time (s)

cos-w-3-PointNet++ 90.59 86.84 95.98 93.21 4617

R1-1-R2-1 94.59 91.63 97.23 95.89 4215

R1-2-R2-1 95.13 92.46 97.68 96.39 4212

R1-2-R2-2 95.00 91.81 97.66 96.31 4239

R1-3-R2-1 94.60 91.50 97.34 95.95 4422

R1-3-R2-2 94.59 91.78 97.30 95.92 5208

R1-3-R2-3 93.73 90.93 96.32 95.01 5127

R1-4-R2-1 94.83 92.62 97.45 96.12 4857

R1-4-R2-2 94.62 92.04 96.81 95.70 4747

R1-4-R2-3 93.66 90.83 96.25 94.94 4774

R1-4-R2-4 93.52 90.81 95.90 94.70 5322

R1-5-R2-5 95.17 92.84 97.52 96.33 4519

R1-6-R2-5 95.91 92.77 96.51 95.91 4644

R1-6-R2-6 94.72 92.19 97.19 95.93 4758

R1-7-R2-5 94.64 92.14 97.24 95.92 4986

R1-7-R2-6 94.46 91.82 96.89 95.66 5761

R1-7-R2-7 93.63 90.21 96.25 94.93 5250
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FIGURE 9

Comparison of measurement results: (A) Standard blocks; (B) Cut Stem; (C) Tobacco Silk; (D) Reconsitituted Tobacco Shred; (E) Expanded Tobacco Silk.
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Therefore, the traditional 2-D algorithm can only measure regular

and non-curled tobacco, and the experimental materials selected in

this paper have a certain degree of curvature. The 3-D algorithmic

measurement method proposed in this paper is significantly better

than the traditional 2-D algorithmic measurement method, as can be

seen in Supplementary Tables 1, 2, which show that the relative error

of our 3-D method is generally less than that of the traditional 2-D

algorithmic measurement. The effect of our 3-D method is also is

significantly better than that of the ordinary 2-D algorithm in

measuring curled tobacco. The relative errors of the length of the

tobacco for both methods are all less than 5%, and the relative errors

of the width are all less than 7%.

Supplementary Table 3 shows that, by comparing the manual

measurement results and those of the 3-D algorithm, the relative error

of the tobacco shred thickness value is generally larger. After

experimentation, because the texture of the tobacco shred is soft,

using vernier calipers for measuring its thickness will lead to

compression, so using the 3-D algorithm for measurement is worth

achieving results that are generally larger than themanual measurement

value as it can measure tobacco shreds accurately without touching

them. Overall, our DTC algorithm has a smaller relative error than that

of the traditional 2-D algorithm when calculating length and width.

Although the relative error when measuring thickness is larger

compared to that of the manual measurement, our algorithm can

achieve non-contact measurement of the tobacco shred’s thickness, and

by using a standard block of measurements to validate the thickness

algorithm, the final relative error can reach 1.12%.
5 Conclusion

To solve the current problem of the difficulty in measuring the

3-D dimensions of mixed tobacco, this paper proposes a

measurement method based on the results of tobacco point cloud

segmentation. The PointNet++ model is improved on the basis of

PointNet++, and the weighted cross-entropy loss function is used to

give higher weight to the minority class samples, which improves

the model’s ability to identify the minority class; the learning rate is

dynamically adjusted by the cosine annealing algorithm, which

enables the model to approach the optimal solution quickly at the

initial stage, and finely adjusts it at the later stage, which optimizes

the model’s training effect; the improved multi-scale grouping

method Combined with the KNN algorithm, it ensures the

stability and consistency of feature extraction at different scales,

and improves the model’s ability to understand and recognize

complex geometric shapes. Together, these improvements enable

the model to complete the segmentation task more accurately and

efficiently when dealing with tobacco point cloud data.

With the help of the tobacco segmentation model, the

measurement of the three-dimensional dimensions of the blended

tobacco was achieved by designing a DTC algorithm. The

experimental results show that the length and width measurements

are closer to the manual measurements than the traditional two-

dimensional size measurement methods, and the relative error is

smaller. Moreover, non-contact measurement of tobacco thickness

can be realized.
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Conventional methods of measuring the dimensions of tobacco

filaments usually rely on two-dimensional images, and the actual

length measurement is complicated by the softness of the filaments,

which may bend or curl on a flat surface. The 2D image method

measures length and width as a two-dimensional projection

through camera capture and image processing and does not

capture the thickness of the tobacco. The DTC algorithm, on the

other hand, uses point cloud data from the top and bottom sides of

the scanned tobacco filaments, which can be merged to

approximate the overall contour of the filaments and segmented

by applying the improved PointNet++ algorithm to obtain the

positional information of each filament. The algorithmic process of

finding and calculating the point position is simplified by mapping

the point cloud data of the tobacco filaments from 3D to 2D, and

then from 2D back to 3D to calculate the true length, width and

thickness of the filaments.

This DTC algorithm based on point cloud segmentation results

has significant advantages not only for 3D dimensional

measurements of blended tobacco but can also be widely applied

to measurements of other soft materials, such as textiles, films and

food products. The flexibility of this approach allows it to effectively

handle the complex shapes and properties of different materials,

thus improving the accuracy and efficiency of the measurements.

In the future, with the continuous advancement of deep

learning and point cloud processing technologies, DTC

algorithms may be applied in more fields to promote the further

development of industrial automation and intel l igent

manufacturing, especially in quality control and material

inspection, to enhance overall production efficiency and

product quality.
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