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Both rhizospheric soil microbes and shoot litter input can have profound effects

on plant performance; however, their interactive effects on plants in Cd-

contaminated soils remain poorly understood. We grew an invasive

hyperaccumulator, Bidens pilosa, in sterilized and unsterilized rhizosphere soil

without litter or with a low (0.2%, dry weight ratio) or a high amount (1%) of litter

from B. pilosa in soil with low (5 mg kg−1) or high (10 mg kg−1) concentrations of

Cd. The total, shoot, and root biomass of B. pilosa increased significantly with

litter addition, by an average of 27%, 28%, and 20%, respectively. The biomass of

B. pilosa was significantly lower in unsterilized rhizosphere soil than in sterilized

rhizosphere soil, decreasing by 19% for total, 18% for shoot, and 24% for root,

respectively. Furthermore, the effects of different litter amounts (0.2% vs. 1%) on

biomass did not vary in sterilized rhizosphere soils but significantly varied in

unsterilized rhizosphere soils, showing that the biomass was significantly lower

with 1% litter addition than with 0.2% litter addition in unsterilized rhizosphere

soils, decreasing by 28% for total, 29% for shoot, and 21% for root, respectively.

Tissue Cd concentrations were significantly higher in highly Cd-contaminated

soils (+75% for shoot and +51% for root) than in low Cd-contaminated soils;

however, higher tissue Cd concentrations did not cause a significant decrease in

the biomass of B. pilosa. Soil fungal communities, particularly the dominant

phyla, Ascomycota and Basidiomycota, play crucial roles in modulating the

effects of rhizosphere soil microbes and litter on the growth of B. pilosa. Our

results suggest that rhizosphere soil microbes and litter interact and affect the

growth of B. pilosa: litter addition promoted growth by increasing the abundance

of saprotrophs (especially Basidiomycota) and decreasing Cd accumulation in

plant tissues, and rhizosphere soil inhibition was associated with a decreased
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abundance of Basidiomycota. Our findings highlight the importance of the

interactive effects of rhizospheric soil microbes and litter on plant growth in

Cd-contaminated soils.
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Introduction

The frequency of plants exposed to soils contaminated with

heavy metals has increased as a result of human activities such as

industrial discharges, mining and smelting, and agricultural

pollution (Mazurek et al., 2017; Palansooriya et al., 2020).

Cadmium (Cd) is one of the most toxic heavy metals and can

cause significant damage to plants (Wang et al., 2024; Zheng et al.,

2023). For example, Cd toxicity can inhibit root elongation,

photosynthesis, stomatal conductance, and enzyme activities in

plants (Haider et al., 2021; Li et al., 2023a). Rhizospheric soil

microbes and plant litter can influence plants through plant–soil

feedback (De Long et al., 2022; Sun et al., 2022; Zotti et al., 2023).

However, the effects of rhizospheric soil microbes and litter on the

growth performance of plants in Cd-contaminated soils

are understudied.

Plants have the ability to modify biotic and abiotic soil

environments through the direct effects of the rhizosphere and

indirect effects of litter input as they grow in the soil (Aldorfova

et al., 2022; He et al., 2023; Zhang et al., 2019). These modifications

can lead to plant–soil feedback (PSF), whereby the performance of

the same or different plant species is influenced by the modified soil

(Bever et al., 1997; van der Putten et al., 2013). PSF can result in

either positive or negative effects when the performance of

conspecifics is enhanced or inhibited (Bennett et al., 2017; Jing

et al., 2022; Teste et al., 2017). For example, negative PSF would

prevail if host-specific pathogens accumulate in the rhizosphere,

whereas the species having higher mycorrhizal colonization would

result in mostly positive PSF (Bennett and Klironomos, 2019;

Semchenko et al., 2022). Therefore, the intensity and direction of

PSF play a crucial role in shaping plant growth, survival,

and distribution.

Three main groups of soil biota contribute to PSF: enemies

(pathogens and root-feeding insects), mutualistic symbionts

(mycorrhizal fungi and rhizobia), and decomposers (Friman et al.,

2021; Idbella et al., 2024; Kadowaki, 2024). Diverse communities of

soil microorganisms and invertebrates that accumulate in the

rhizosphere are expected to influence PSF, with negative and

positive effects (Kadowaki, 2024). As for soil microorganisms,

fungi, especially soil pathogenic or mycorrhizal fungi, can play

important roles in regulating PSF (van der Putten et al., 2013). For
02
example, rhizosphere-induced negative PSF effects occur when

pathogens dominate the rhizosphere, thereby inhibiting plant

growth (Bezemer et al., 2013). Conversely, rhizosphere-induced

positive PSF effects occur when mutualistic symbionts, such as

arbuscular mycorrhizal fungi (AMF), dominate the rhizosphere and

promote plant growth (Garcia-Parisi and Omacini, 2017; Wang

et al., 2019).

Shoot litter is also expected to have varying effects on PSF,

ranging from negative to positive (Eppinga and Molofsky, 2013;

Zotti et al., 2023). Fungi play an important role in regulating the

litter-induced PSF. For example, some fungi, such as the two fungal

phyla Ascomycota and Basidiomycota, would be very active during

litter decomposition, because the two phyla include many

saprotrophic members (Voriskova and Baldrian, 2013; Zhang

et al., 2018). Negative PSF effects can occur through increased

pathogen abundance and autotoxicity effects owing to the release of

self-DNA and allelopathic compounds from conspecific litter

(Idbella et al., 2024; Mazzoleni et al., 2015). Low-quality litter and

slow decomposition, characterized by high concentrations of lignin

and cellulose, can also lead to negative PSF effects (Ehrenfeld et al.,

2005). Conversely, nutrient-rich litter inputs can enhance the

availability of soil nutrients; for example, the available N and P

increased from tundra to forest soils corresponding to the increase

in nutrient contents in foliage of trees along the same direction

(Fetzer et al., 2024), thus contributing to positive PSF and

promoting plant growth (Eppinga and Molofsky, 2013; Sun et al.,

2022). Although many studies have examined the relationships

between litter-induced PSF and plant performance, little is known

about the interactive effects of litter and rhizospheric soil microbes

on the growth performance of plants growing in heavy metal-

contaminated soils.

To investigate the interactive effects of rhizospheric soil

microbes and litter on the growth performance of plants in Cd-

contaminated soil, we conducted a pot experiment using the

invasive plant species Bidens pilosa L., which is known to be a Cd

hyperaccumulator (Sun et al., 2009; Zhang et al., 2021). We aimed

to address the following questions: 1) How do rhizospheric soil

microbes and shoot litter influence the growth performance of B.

pilosa in Cd-contaminated soil? 2) Are there interactive effects

between rhizospheric soil microbes and shoot litter on the growth

performance of B. pilosa in Cd-contaminated soil?
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Materials and methods

The collection of seeds, shoot litter, and
rhizosphere soil of Bidens pilosa

Healthy seeds and withered shoots of B. pilosa were collected

from a local population in Taizhou, Zhejiang Province, China, at the

end of the growing season in November 2022. The withered shoots

were air-dried and ground to pass through a 0.25-mm sieve. The

ground shoots and seeds were stored at 4°C for later use. The

withered shoots contained 0.47 ± 0.12 mg kg−1 Cd, 3.08 ± 0.33 mg

g−1 nitrogen (N), and 1.53 ± 0.12 mg g−1 P. In August 2023, B. pilosa

seeds were sown in plastic containers. In September 2023,

rhizosphere soil was collected from the same plant population

from which the litter and seeds were collected. The collection

involved removing the roots of B. pilosa from the soil, collecting

the soil attached to the roots, and storing it in plastic bags. The

collected rhizosphere soil was immediately transported to the

laboratory for use in experiments.
Experimental design

The experiment comprised three levels of litter treatments (0%,

0.2%, and 1% litter), two rhizospheric soil microbe treatments

(sterilized and unsterilized soil), and two Cd-contaminated soil

treatments (low: 5 mg kg−1 vs. high: 10 mg kg−1) (Figure 1). Each

treatment consisted of six replicates, resulting in 72 pots in total. In

September 2023, the field soil was collected from a hill in Taizhou

City. The field soil contained 0.54 ± 0.09 mg kg−1 Cd, 92.05 ± 15.65

mg kg−1 N, and 211.88 ± 28.38 mg kg−1 P. The field soil was air-

dried and sieved through a 2-cm mesh to remove large stones and

roots, and it was used to fill the 72 pots. Before filling the pots, the

field soil was sterilized by autoclaving at 121°C for 120 min, and the

pots were surface-sterilized with 75% ethanol. The rhizosphere soils

were divided into two equal parts. One part was sterilized by

autoclaving, while the other part remained unsterilized. The litter

and rhizosphere soil treatments included sterilized soil, unsterilized

soil, sterilized soil with 0.2% litter, unsterilized soil with 0.2% litter,
Frontiers in Plant Science 03
sterilized soil with 1% litter, and unsterilized soil with 1% litter.

Twelve pots were used for each treatment. For the sterilized soil

treatment, 0.25 kg of field soil was added to each pot, followed by

0.05 kg of sterilized rhizosphere soil (equivalent to 10% of the total

weight of the substrate), and 0.2 kg of field soil. Similarly, for the

unsterilized soil treatment, 0.25 kg of field soil was added to each

pot, followed by 0.05 kg of unsterilized rhizosphere soil and 0.2 kg

of field soil. For the sterilized soil + 0.2% litter treatment, 0.25 kg of

field soil was added to each pot, followed by 0.05 kg of sterilized

rhizosphere soil, and a mixture of 0.199 kg of field soil and 0.001 kg

of litter (equivalent to 0.2% of the total weight of the substrate).

Similarly, for the unsterilized soil + 0.2% litter treatment, 0.25 kg of

field soil was added to each pot, followed by 0.05 kg of unsterilized

rhizosphere soil, and a mixture of 0.199 kg of field soil and 0.001 kg

of litter. For the sterilized soil + 1% litter treatment, 12 pots were

filled with 0.25 kg of field soil, followed by 0.05 kg of sterilized

rhizosphere soil, and a mixture of 0.195 kg of field soil and 0.005 kg

of litter (equivalent to 1% of the total weight of the substrate).

Similarly, for the unsterilized soil + 1% litter treatment, 12 pots were

filled with 0.25 kg of field soil, followed by 0.05 kg of unsterilized

rhizosphere soil, and a mixture of 0.195 kg of field soil and 0.005 kg

of litter. Then, each of the six treatments was divided into two equal

parts, with 6 pots receiving 50 mL of a 50 mg L−1 CdCl2·2.5H2O

solution and the other 6 pots receiving 50 mL of a 0.1 g L−1

CdCl2·2.5H2O solution. This division aimed to create two levels of

Cd-contaminated soil treatments, corresponding to concentrations

of 5 mg kg−1 and 10 mg kg−1. The 10 mg kg−1 Cd represented the

highest level found in Cd-contaminated soil in Taizhou City (Wu

et al., 2019), and half of the highest value was selected as a lower

value. Two weeks after the application of the CdCl2·2.5H2O

solution, one seedling of B. pilosa was planted in each pot. Dead

seedlings were replaced during the first week of the experiment. All

pots were watered every 2 days.
Harvest

After 12 weeks following transplantation, the shoots and roots

of B. pilosa in all pots were harvested. The shoots and cleaned roots
FIGURE 1

Graphical illustration of the experimental design. The experiment consisted of three levels of litter amounts (0%, 0.2%, and 1% of the total weight of
the substrate), two levels of rhizospheric soil microbe treatments (sterilized and unsterilized), and two levels of soil Cd concentration (5 mg kg−1 and
10 mg kg−1).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1507089
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1507089
were then oven-dried at 65°C for 72 h before being weighed.

Subsequently, the shoots and roots were ground to pass through a

0.25-mm mesh for Cd analysis. Soil samples were also collected for

the analysis of soil parameters.
Cd and N analyses

To determine the total Cd concentrations in both the plant

tissues and soils, an inductively coupled plasma mass spectrometry

(ICP-MS) instrument (NexION 2000B, PerkinElmer, USA) was

utilized. Prior to analysis, both the tissues and soils were digested

using a mixture of sulfuric and perchloric acid in a ratio of 10:1.

Additionally, total soil N was measured using an AutoAnalyzer 3

instrument (Bran & Luebbe, Norderstedt, Germany) after digestion

with the same sulfuric and perchloric acid mixture in a ratio of 10:1.
Soil microbial community analysis

Library preparation, sequencing, and bioinformatic analysis of

the soil microbial community were conducted by Novogene Co.,

Ltd. (Beijing, China). Total DNA was extracted from each soil

sample (0.5 g) using the Magnetic Soil and Stool DNA Kit

(Tiangen, Beijing, China) following the manufacturer ’s

instructions. After determining the quality of each sample, a

distinct region of the ITS gene was amplified by PCR using

specific primers: ITS1-1F-F-GCATCGATGAAGAACGCAGC

and ITS1-1F-R-TCCTCCGCTTATTGATATGC. The PCR

reactions were carried out with 15 µL of Phusion® High-Fidelity

PCR Master Mix (New England Biolabs [Beijing] Co., Ltd.), 0.2

µM of forward and reverse primers, and 10 ng of template DNA.

The PCR reaction condition was shown as follows: initial

denaturation at 98°C for 1 min, followed by 30 cycles

(denaturation at 98°C for 10 s, annealing at 50°C for 30 s, and

elongation at 72°C for 30 s) and final extension at 72°C for 5 min.

After amplification, the PCR products were purified using

magnetic beads and mixed in the proportions required for

sequencing. The libraries were generated with the NEBNext®

Ultra™ II DNA Library Prep Kit (New England Biolabs

[Beijing] Co., Ltd.), then pooled and sequenced on an Illumina

NovaSeq platform (Illumina, San Diego, California, USA),

according to effective library concentration and data amount

required. After sample splitting, the paired-end reads were

merged using FLASH (V1.2.11, http://ccb.jhu.edu/software/

FLASH/) (Magoč and Salzberg, 2011), quality filtering was

performed using fastp (V0.23.1) (Bokulich et al., 2013), data were

compared with the reference database [UNITE Database (ITS),

https://unite.ut.ee/], and effective data were obtained by removing

the chimeric sequences with the vsearch package (V2.16.0, https://

github.com/torognes/vsearch) (Edgar et al., 2011). Finally, the

optimized data were processed using sequence denoising methods

(DADA2/Deblur) in the QIIME2 software (V QIIME2-202202)

(Bolyen et al., 2019) to obtain the initial amplicon sequence variant

(ASV) sequence and abundance information; subsequent processes

(species annotation and phylogenetic relationship construction)
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were also performed using the QIIME2 software (Walsh et al.,

2021). The absolute abundance of ASVs was normalized to 61,466

reads (corresponding to the sample with the fewest sequences) to

minimize the effects of sequencing depth on the analysis of

community diversity. The FUNGuild database (V1.1) was used to

identify putative fungal functional groups (e.g., pathogenic fungi

and saprotrophic fungi) (Nguyen et al., 2016).
Data analysis

To examine the interactive effects of rhizospheric soil microbes

and litter on B. pilosa in Cd-contaminated soil, a three-way analysis

of variance (ANOVA) was conducted to analyze the effects of litter,

rhizospheric soil microbes, Cd, and their interactions on various

parameters. These parameters included shoot, root, and total

biomass and Cd concentration in tissues and soils, as well as

the relative abundance of the dominant fungal community at the

phylum level. Normality of the data was assessed using the

Kolmogorov–Smirnov test, and homogeneity of variance was

assessed using Levene’s test. All statistical analyses were

performed using the SPSS software (V22.0; IBM Corp., Armonk,

NY, USA). Additionally, structural equation modeling (SEM) with

the lavaan package (Rosseel, 2012) in R (V4.3.3) was employed to

explore the direct and indirect factors (soil N, Ascomycota, and

Basidiomycota) that regulate total biomass under rhizosphere soil

and litter addition. The fit of the model to the data was determined

using the c2 test, goodness-of-fit index (GFI), and root-mean-

square error of approximation (RMSEA). The model fit was

generally good (P > 0.05, GFI close to 1, and RMSEA close to 0).
Results

Plant growth

The addition of litter significantly increased the total and shoot

biomass of B. pilosa, by an average of 27% and 28%, respectively

(Table 1; Figures 2A, B). However, no significant differences were

observed between the different amounts (0.2% and 1%). Conversely,

the presence of unsterilized rhizosphere soil significantly reduced

total (−19%), shoot (−18%), and root biomass (−24%) of B. pilosa

(Table 1; Figures 2A–C). Furthermore, the negative effect of

unsterilized rhizosphere soil on biomass was significantly

influenced by litter, with the effect being stronger when 1% litter

was applied compared to when 0.2% litter was applied (Table 1).
Tissue Cd concentrations

The Cd concentrations in both shoots (+75%) and roots (+51%)

were significantly higher in the high Cd-contaminated soil than in

the low Cd-contaminated soil (Table 1; Figure 3). However, the Cd

concentrations in both shoots and roots significantly decreased with

litter addition, by an average of 18% and 37%, respectively

(Table 1; Figure 3).
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Soil parameters

The concentration of Cd in the soil significantly increased with

the addition of litter (Table 1; Figure 4A). Additionally, the

interactive effects of litter and rhizosphere soil were observed,

with Cd concentration in soils increasing in sterilized soil but

remaining unchanged in unsterilized soil with increasing litter

amounts (Table 1; Figure 4A). Similar effects were observed for

soil N (Table 1; Figure 4B).
Frontiers in Plant Science 05
Relative abundances of dominant
fungal phyla

Ascomycota and Basidiomycota were the dominant phyla in the

fungal communities, accounting for 41% and 13% of the total

sequences, respectively (Figure 5A). The addition of litter

significantly increased the relative abundance of Ascomycota and

Basidiomycota, by an average of 51% and 119%, respectively

(Table 1; Figure 5B). Conversely, the presence of unsterilized
FIGURE 2

Effects of litter amount (0%, 0.2%, and 1%) and rhizospheric soil microbes (sterilized soil vs. unsterilized soil) on total (A), shoot (B), and root biomass
(C) of Bidens pilosa. Bars and error lines represent mean ± SE. Differences between bars within each litter amount are indicated by the following: ns,
non-significant (P > 0.05), **P < 0.01. Different lowercase and uppercase letters above the bars indicate the significant differences among different
litter amounts under sterilized rhizosphere soil and unsterilized rhizosphere soil, respectively.
TABLE 1 Results of three-way ANOVAs for the effects of litter (L), rhizospheric soil microbes (M), Cd (Cd) and their interactions on plant growth,
tissue Cd, soil parameters, and relative abundance of two dominant fungi phyla.

Litter (L) Microbes (M) Cd L × M L × Cd M × Cd L × M × Cd

Plant growth

Shoot biomass 8.42*** 11.73*** 0.48 5.00** 0.79 1.31 0.11

Root biomass 1.77 9.18** 1.47 4.42* 3.41* 1.68 3.03

Total biomass 7.22** 12.97*** 0.77 4.59* 1.40 1.62 0.44

Tissues Cd concentration

Shoot Cd 5.96** 2.92 64.63*** 1.98 1.61 11.22*** 0.46

Root Cd 16.73*** 0.48 72.38*** 8.04*** 4.12* 0.37 4.57*

Soil parameters

Soil Cd 3.36* <0.01 67.8*** 5.00** 1.27 0.39 1.09

Soil N 1.24 15.25*** 0.74 5.08** 0.85 0.35 5.61**

Relative abundance of dominant fungi phyla

Ascomycota 8.72*** 1.79 5.92* 3.76* 3.57* 12.78*** 0.95

Basidiomycota 11.08*** 140.76*** 18.19*** 7.00** 5.30** 19.36*** 3.88*
F-values and significance levels (*P < 0.05, **P < 0.01, and ***P < 0.001) of ANOVAs are given. Values are in bold when P < 0.05.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1507089
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1507089
rhizosphere soil significantly decreased the relative abundance of

Basidiomycota, by an average of 91% (Table 1; Figure 5B).
Causal effects revealed by structural
equation modeling

Structural equation modeling revealed the direct and indirect

effects of soil N, Ascomycota, and Basidiomycota on total biomass

under the influence of litter and rhizosphere soil. The rhizosphere

soil directly influenced Basidiomycota and indirectly influenced

Basidiomycota through soil N, which subsequently influenced total

biomass. Litter addition directly influenced Basidiomycota and

indirectly influenced Basidiomycota through Ascomycota,

ultimately affecting total biomass (Figure 5C).
Frontiers in Plant Science 06
Putative fungal functional groups

The relative abundance of saprotrophs significantly increased

with the addition of litter, by an average of 175% (Figure 6A). The

addition of 0.2% litter significantly increased the abundance of plant

pathogenic fungi (+155%), whereas the addition of 1% litter had no

significant effect (Figure 6B). The rhizosphere soil had no effect on

the abundance of plant pathogenic fungi (Figure 6C).
Discussion

Our study revealed that the biomass of B. pilosa growing in Cd-

contaminated soil was significantly influenced by the application of

B. pilosa litter and the presence of rhizosphere soil. Specifically,
FIGURE 4

Effects of litter amount (0%, 0.2%, and 1%) and rhizospheric soil microbes (sterilized soil and unsterilized soil) on soil Cd concentration (A) and total
soil N concentration (B). Bars and error lines represent mean ± SE. Differences between bars within each litter amount are indicated by the
following: ns, non-significant (P > 0.05), **P < 0.01. Different lowercase and uppercase letters above the bars indicate the significant differences
among different litter amounts under sterilized rhizosphere soil and unsterilized rhizosphere soil, respectively.
FIGURE 3

Effects of litter amount (0%, 0.2%, and 1%) and soil Cd (5 mg kg−1 and 10 mg kg−1) on the Cd concentration in the shoots (A) and roots (B). Bars and
error lines represent mean ± SE. Differences between bars within each litter amount are indicated by the following: ns, non-significant (P > 0.05), *P
< 0.05, **P < 0.01, ***P < 0.001. Different lowercase and uppercase letters above the bars indicate the significant differences among different litter
amounts under sterilized rhizosphere soil and unsterilized rhizosphere soil, respectively.
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FIGURE 6

The effect of litter amount (0%, 0.2%, and 1%) on the relative abundance of saprotrophs (A) and plant pathogenic fungi (B). Rhizosphere soil
(sterilized soil vs. unsterilized soil) on the relative abundance of plant pathogenic fungi (C). Bars and error lines represent mean ± SE. The F-values
and P-values of one-way ANOVA are shown.
FIGURE 5

The relative abundance of dominant (top 10) fungi phyla (A) and relative abundance of the two dominant phyla Ascomycota and Basidiomycota (B).
Structure equation modeling revealed the effects of litter addition and rhizosphere soil on total biomass of Bidens pilosa (C). The solid blue arrows
indicate significant positive relationships, and the solid red arrows indicate significant negative correlations (P < 0.05). The dashed arrows indicate
non-significant relationships (P > 0.05). Numbers adjacent to the arrows represent standardized path coefficients (***P < 0.001). R2 values close to
the variables indicate the variance explained by the model.
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litter application resulted in a significant increase in B. pilosa

biomass, whereas the unsterilized rhizosphere soil led to a

significant decrease. Furthermore, the effects of litter on B. pilosa

growth were influenced by rhizosphere soil, indicating the

importance of soil microbes, particularly fungi, in mediating the

performance of B. pilosa in Cd-contaminated soil.

The application of B. pilosa litter resulted in a notable increase in

plant biomass, with no significant difference observed between the

two litter amounts (0.2% and 1% litter). This increase was evident in

terms of total, shoot, and root biomass, with average increases of

26.8%, 28.2%, and 20.0%, respectively (Figure 2). These findings

suggest that litter produced by B. pilosa exerts positive rather than

negative effects on growth. This differs from the potential negative

effects of factors such as pathogen accumulation or allelopathic

chemicals (Bennett and Klironomos, 2019; Massoni et al., 2021).

However, we observed a significant increase in plant pathogens with

litter addition at the 0.2% level, which could potentially hinder plant

growth. Nonetheless, it appears that the positive effects of litter

outweigh the negative effects (Meisner et al., 2012). Litter inputs

can influence plant growth by altering nutrient availability (Shen

et al., 2016), and previous studies have shown increased nutrient

availability due to litter decomposition (Liu et al., 2023, 2022; Wang

et al., 2021). Surprisingly, in the present study, the addition of litter

did not result in an increase in total soil N, despite the N

concentration in the litters (3.08 mg g−1) being 33 times higher

than that in the soil (0.09 mg g−1). One possible explanation is that

the amount of litter used (equivalent to a total weight of 0.2% and 1%)

might not have been sufficient to significantly affect total soil N,

although litter inputs did increase total soil N under sterilized

rhizosphere soil (but not under unsterilized) conditions.

Additionally, the presence of litter has been found to supply

energy, nutrients, and even microbes to the soil biota, leading to

significant changes in the soil microbial composition, including an

increase in decomposers (He et al., 2023). Fungi play crucial roles in

litter decomposition by actively breaking down the recalcitrant

components in plant litter (Veen et al., 2019). Our study

demonstrated the significant effects of litter application on the

relative abundance of dominant fungal communities at the phylum

level (Table 1; Figure 4) and saprotrophs (Figure 6A). Specifically, the

relative abundance of the phyla Ascomycota and Basidiomycota,

which together accounted for 53% of the total sequences, increased

significantly with litter application. Both phyla have been recognized

as important decomposers (Dong et al., 2021; Huang et al., 2022;

Stursova et al., 2020). Although litter addition had positive

effects on both Ascomycota and Basidiomycota, significant

negative correlations were observed between them. Furthermore,

Basidiomycota contributed more to the total biomass of B. pilosa

than Ascomycota (Figure 5C). This can be attributed to their

overlapping substrate resource acquisition; Ascomycota primarily

decomposes hemicellulose and cellulose, whereas Basidiomycota

decomposes lignin and cellulose (Baldrian, 2017; Manavalan et al.,

2015). Thus, Basidiomycota could decompose more complex organic

matter, contributing more to increased nutrient availability.

Additionally, Basidiomycota has been suggested to contribute more

to microbial respiration (Huang et al., 2022) and exhibit higher

activities of some enzymes involved in litter decomposition than
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Ascomycota (Eichlerova et al., 2015). Hence, soil fungi play a crucial

role in regulating the effects of litter on the performance of B. pilosa.

Our findings indicated that while the application of litter had

positive effects on the growth performance of B. pilosa, rhizosphere

soil exerted negative effects, resulting in a decrease in the biomass of

B. pilosa. Specifically, rhizosphere soil led to reductions of 18.5%,

24.2%, and 19.5% in the shoot, root, and total biomass of B. pilosa,

respectively, indicating a negative PSF effect. This aligns with the

results of previous studies demonstrating that most plants exhibit

negative intraspecific PSF (Bennett and Klironomos, 2019; De Long

et al., 2022; Semchenko et al., 2022). The decrease in nutrients, such

as N, induced by the rhizosphere soil may have contributed to the

growth inhibition of B. pilosa, as enriched nutrients typically support

plant growth. Additionally, the significantly decreased abundance of

Basidiomycota, an important decomposer, may have resulted in the

reduced nutrient availability and subsequent growth inhibition of B.

pilosa (Figure 5C). Alternatively, the negative effects of PSF may have

been influenced by pathogen accumulation. However, in our study,

the abundance of plant pathogenic fungi did not differ in the

unsterilized soil and in the sterilized soil (Figure 6C).

Furthermore, our results demonstrated that higher soil Cd

concentrations did not lead to a decrease in the biomass of B.

pilosa, despite significantly higher Cd concentrations being detected

in the plant tissues under the higher Cd treatment than under the

lower Cd treatment. This finding suggests that B. pilosa is a highly

Cd-tolerant plant, which is consistent with the results of numerous

previous studies (Dai et al., 2020; Dou et al., 2019; Li et al., 2023b;

Manori et al., 2021). The physiological and molecular mechanisms

could explain the Cd tolerance of B. pilosa. For example, some

physiological characteristics of B. pilosa, such as chlorophyll,

superoxide dismutase, and peroxidase, were not influenced by Cd

(Sun et al., 2009). Additionally, B. pilosa could change its protein

expression to relieve the oxidative stress caused by Cd (Li et al., 2024).

In addition, no interactive effects were observed between litter or

rhizospheric soil microbes and soil Cd on the performance of B.

pilosa. One possible explanation for this is that the dose of Cd used

may not have been sufficiently high to induce a negative response in

B. pilosa, considering its high Cd tolerance. For instance, previous

research has shown that the growth of B. pilosa was promoted even

under a soil Cd concentration of 16 mg kg−1 and that it could survive

and grow under a soil Cd concentration as high as 100 mg kg−1 (Sun

et al., 2009). Therefore, in future studies on B. pilosa and Cd stress,

higher Cd doses should be considered. In addition, one caveat is that

our results were obtained from a controlled greenhouse environment

with a short duration (approximately 3 months). This indicates that

we cannot deeply explain, for example, whether B. pilosa has such

similar responses in the natural environment. Further studies will

take long duration and field experiments into account.
Conclusion

Our findings indicated that shoot litter addition significantly

increased the biomass of B. pilosa, whereas unsterilized rhizosphere

soil had a significant negative effect on biomass, regardless of the

soil Cd concentration. Soil fungi, particularly Basidiomycota, play a
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crucial role in mediating these effects. These results suggest that

litter addition is an effective strategy for mitigating the detrimental

effects of Cd toxicity on B. pilosa. Although high soil Cd

concentrations significantly elevated tissue Cd concentrations,

they did not result in a significant reduction in biomass. This

could be attributed to the Cd tolerance of B. pilosa which is a

hyperaccumulator. Additionally, it is possible that the soil Cd

dosage used in our study may not have been sufficiently high to

cause damage to B. pilosa. Future research should consider

employing higher soil Cd concentrations, such as 100 mg kg−1.
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