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Enhancing plant disease
detection through deep learning:
a Depthwise CNN with squeeze
and excitation integration and
residual skip connections
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Nagwan A. Samee3*, Reem Alkanhel3, Ghada Atteia3,
Hanaa A. Abdallah3 and Mohammed Saleh Ali Muthanna4

1School of Automation, Chongqing University of Posts and Telecommunications, Chongqing, China,
2School of Resources and Environment, University of Electronic Science and Technology of China,
Chengdu, Sichuan, China, 3Department of Information Technology, College of Computer and
Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia,
4Department of International Business Management, Tashkent State University of Economics,
Tashkent, Uzbekistan
This study proposes an advanced method for plant disease detection utilizing a

modified depthwise convolutional neural network (CNN) integrated with squeeze-

and-excitation (SE) blocks and improved residual skip connections. In light of

increasing global challenges related to food security and sustainable agriculture,

this research focuses on developing a highly efficient and accurate automated

system for identifying plant diseases, thereby contributing to enhanced crop

protection and yield optimization. The proposed model is trained on a

comprehensive dataset encompassing various plant species and disease

categories, ensuring robust performance and adaptability. By evaluating the

model with online random images, demonstrate its significant adaptability and

effectiveness in overcoming key challenges, such as achieving high accuracy and

meeting the practical demands of agricultural applications. The architectural

modifications are specifically designed to enhance feature extraction and

classification performance, all while maintaining computational efficiency. The

evaluation results further highlight the model’s effectiveness, achieving an

accuracy of 98% and an F1 score of 98.2%. These findings emphasize the

model’s potential as a practical tool for disease identification in agricultural

applications, supporting timely and informed decision-making for crop protection.
KEYWORDS

deep learning, plant disease detection, convolutional neural network, squeeze and
excitation (SE) blocks, residual skip connection
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1 Introduction

The global agricultural landscape is presently confronted with

an urgent problem: the need for increased food security and

sustainable agricultural practices. The imperative to combat the

prevalence of plant diseases, which can significantly reduce crop

yields and threaten food production, is central to this effort. Plant

diseases are a major concern for the agricultural industry and

require effective solutions for early detection and intervention

Bouguettaya et al. (2023); Prakash et al. (2023); Chen et al.

(2020). Despite its critical contribution to economic stability and

global food security, agriculture is perpetually threatened by plant

disorders that result in significant crop yield reductions Ferehan

et al. (2022). The detrimental effects of these diseases on agricultural

output, food security, and livelihoods underscore the urgent

requirement for efficient plant disease control.

Detection of plant diseases has historically been performed through

laboratory analyses and manual inspections. Although precise, these

approaches require significant effort, consume considerable time, and

are not feasible for large agricultural enterprises. The inadequacies of

traditional methods emphasize the need for more sophisticated,

automated approaches to enhance the identification and control of

diseases. In recent times, the field of plant disease detection has been

profoundly transformed by the implementation of deep learning,

which has substantially improved both precision and efficiency. In

order to identify various plant diseases from images, convolutional

neural networks (CNNs) and other contemporary methods have

demonstrated great promise by automating the detection process and

decreasing reliance on human expertise. These developments have

facilitated the expeditious and reliable management of diseases.

Expanding upon the advancements mentioned above, this study

presents a novel methodology that employs a depthwise CNN that

has been improved with a residual skip connection block and a squeeze

and excitation block (SE). The model is trained using an extensive

dataset comprising plant images, which includes a diverse array of

diseased and healthy leaf categories. The ultimate goal of this

integration is to provide a reliable and accurate approach to the

automated detection of plant diseases, thereby improving both crop

protection and yield. Our research seeks to tackle pragmatic obstacles

in tangible agricultural environments. It makes a valuable contribution

to the overall goal of guaranteeing global food security through the

protection of crop well-being and yield. The high accuracy rates and F1

scores attained for disease classification demonstrate the applicability of

this model in agricultural settings. Globally, ensuring food security is a

top priority Mehrabi et al. (2022); Chelloug et al. (2023), and the

capacity to detect andmanage plant diseases autonomously contributes

substantially to this effort. Furthermore, this study serves as a

foundation for future research and development in the fields of plant

disease diagnosis and agricultural technology.
2 Literature review

The agricultural industry worldwide is under increasing pressure

to strengthen food security, all while promoting environmentally
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sustainable farming methods. The pressing need to mitigate the

adverse consequences of plant diseases, which have the potential to

significantly reduce agricultural yields and compromise food supply

chains, is a critical component of this challenge. The prerequisite for

effective strategies for early identification and timely intervention is

underscored by the substantial risk to agricultural productivity posed

by the prevalence of plant diseases Martinelli et al. (2015); Jones and

Naidu (2019). This section provides an in-depth examination of

pertinent studies, organized into several key subsections, such as DL

applications in plant disease detection, architectural advancements in

CNN, challenges and special issues in plant disease detection, and

real-world agricultural implications and future directions. The

amalgamation of transfer learning and fine-tuning signifies a

substantial progression in the use of DL for the identification of

plant diseases. Ju et al. (2022) presents a novel approach to

categorizing jujubes that takes advantage of transfer learning and

CNN to tackle the difficulties associated with sorting agricultural

products by quality. Through the incorporation of the SEmodule and

the application of triplet loss and center loss functions, the model is

capable of accurately identifying defects in jujubes. By conducting

training on a limited dataset supplemented with real production line

images, the model exhibits a remarkable accuracy rate of 94.15% and

resilience in intricate settings, as verified through the utilization of

heatmap visualization and comparison with alternative models. Al-

Gaashani et al. (2023) introduced a self-attention network (SANet)

based on the ResNet50 architecture, achieving a test set accuracy of

98.71% for rice disease classification. This demonstrates the potential

of attention mechanisms in enhancing feature representation and

improving efficiency in agricultural disease management. Similarly,

their exploration of attention-embedded residual networks for

tomato leaf disease detection provided evidence of enhanced

feature extraction capabilities and notable improvements in model

performance Al-gaashani et al. (2022), underscoring the relevance of

attention mechanisms in precision agriculture. Nevertheless, whereas

these studies demonstrate considerable progress, they fail to address

crucial problems. The computational trade-offs of attention-based

designs in resource-limited agricultural environments are yet

inadequately examined. The incorporation of these technologies

with hybrid architectures or real-time monitoring systems is rarely

discussed. The suggested model aims to address these deficiencies by

utilizing an innovative amalgamation of lightweight design and

effective attention mechanisms, offering a scalable solution with

enhanced accuracy and adaptability for agricultural disease

management. Pavithra Kalpana and Vigneswaran, (2023) proposed

an approach to automate plant disease detection and classification

using DL specifically designed for precision agriculture. The DL-

APDDC algorithm is specifically designed to detect and classify plant

diseases that affect the foliar and reproductive regions. These regions

are extracted using U2Net-based background removal, followed by

feature extraction utilizing the SqueezeNet model with

hyperparameters fine-tuned by the Adam optimizer. The XGBoost

classifier concludes with the classification of diseases. Experimental

validation on benchmark datasets demonstrates that DL-APDDC

outperforms alternative methods for precision agriculture-based

automated disease detection. The introduction of separable depth

convolutions has transformed CNN architectures. These networks
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https://doi.org/10.3389/fpls.2024.1505857
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ashurov et al. 10.3389/fpls.2024.1505857
offer both computational efficiency and precision. This Minhaz

Hossain et al. (2022) reference investigated the substantial

implications that plant diseases have on agricultural production

and evaluated the potential of using DL techniques to detect plant

diseases effectively. For the purpose of tackling memory limitations,

particularly on mobile devices, a model based on depthwise separable

convolution is trained. The training is done using a dataset that

consists of 2880 images of tomato plants. In identifying nine tomato

leaf diseases, the reduced MobileNet model demonstrates good

performance, achieving an accuracy of 98. 31% and an F1 score of

92. 03%. Moreover, it strikes a balance between computational

efficiency and parameter scale.

In Tang et al. (2020) this research, authors presented a mobile

device-optimized lightweight CNNmodel for the diagnosis of grape

maladies. The model is constructed using the channel-wise

attention mechanism and is constructed using ShuffleNet V1 and

V2 backbones with SE blocks to enhance its performance. The

accuracy of the proposed technique is 99.14% when evaluated on a

dataset consisting of 4,062 images of grape leaves, including both

diseased and healthy subjects. Furthermore, the size of the model is

substantially reduced from 227.5 to 4.2 MB, thereby showcasing its

efficacy in terms of practical implementation on mobile devices. For

diagnosing grape diseases on mobile devices, the proposed

lightweight CNN with a channel-wise attention mechanism

provides reduced model size and improved accuracy. However,

potential drawbacks include computational inefficiency and the

requirement for specific dataset characteristics to be met in order

to achieve optimal performance, as well as trade-offs between model

complexity and efficiency. Chen et al. (2021) proposed the

application of deep CNN to transfer learning, specifically

integrating MobileNet with an SE block, to improve the

identification of plant diseases. The SE-MobileNet model, which

was developed using two phases of transfer learning, demonstrated

remarkable accuracy rates of 99.78% when applied to clear

background datasets and 99. 33% when applied to heterogeneous

background datasets. These results highlight the model’s efficiency

and efficacy in comparison to currently available approaches.

However, additional research is necessary to address potential

constraints that may manifest in situations involving dynamic or

intricate contexts. Shah et al. (2022) used CNNs with Residual

Teacher/Student architecture, which is an improvement over the

Teacher/Student model and facilitates the diagnosis of plant

diseases. ResTS improves disease categorization by leveraging the

representation conveyed between the two classifiers through

reciprocal training. This enables visualization of dominant areas

in images. In this investigation, authors reached in terms of

accuracy 99.1% and F1 score 97.2%. In R et al. (2020), this study

investigated the use of CNNs for automated plant disease detection

and proposed two architectures: one that incorporates an attention

mechanism and the other that uses residual learning. When

evaluated on the Plant Village Dataset using 5-fold cross-

validation, the models attain a remarkable accuracy of 98%. The

benefit resides in the automated feature extraction performed by

CNNs, which improves the accuracy of classification. However,

significant computational resources may be required, and there is a
Frontiers in Plant Science 03
risk of overfitting when deep models are trained on limited datasets.

The symptoms and manifestations of plant disorders vary

considerably between species. Implementing disease detection

models that can be applied to various plant species and diseases

presents a considerable challenge. Studies such as those of Golhani

et al. (2018) in order to detect plant diseases, this article provided an

exhaustive examination of advanced neural network (NN) methods

related to the analysis of hyperspectral data. It comprises an

exhaustive analysis of NN mechanisms, models, and classifiers

utilized in the processing of imaging and non-imaging

hyperspectral data. Particular emphasis is placed on the

hybridization of neural networks (NN) with hyperspectral data,

specifically in the context of early disease detection. In this regard,

the Spectral Disease Index (SDI) holds considerable importance. In

addition, the paper examines current challenges and prospective

trends in hyperspectral data analysis and discusses NN techniques

designed to accelerate the development of SDI. In Garcia and

Barbedo (2019), authors examined an innovative methodology for

the automated detection of plant diseases by analyzing specific

lesions and areas as opposed to the entire foliage. By directing

attention toward particular areas, the variability of the data is

enhanced without the need for supplementary images, thus

facilitating the detection of numerous disorders on a single leaf.

However, complete automation still needs to be improved by

requiring manual segmentation of symptoms. Notwithstanding

this limitation, the methodology shows encouraging results, as

evidenced by average accuracies that are 12% higher than those

obtained with the original images. It should be noted that despite

the inclusion of ten diseases, all crops maintained accuracy above

75%. Although the database may not encompass all practical

scenarios, the results of this study highlight the efficacy of deep

learning methods in the identification and classification of plant

diseases, especially when ample data is accessible. Han et al. (2024)

investigates the impact of geographic origin on the chemical

composition of garlic using mid-infrared and ultraviolet

spectroscopy, utilizing advanced preprocessing methods including

Multiple Scattering Correction (MSC), Savitzky–Golay Smoothing

(SG Smoothing), and Standard Normalized Variate (SNV).

Machine learning models, such as XGBoost, SVC, RF, and ANN,

were utilized on the spectral data, attaining up to 100% accuracy in

determining the origin of garlic following data fusion. The findings

highlight the efficacy of integrating spectral data with machine

learning to precisely ascertain the origin of agricultural products,

providing significant insights for analogous uses in plant disease

identification and categorization through deep learning models.

Comparable techniques, including Depthwise CNNs integrated

with SE modules and residual skip connections, can improve

plant disease detection by adeptly capturing intricate spatial

features in plant imagery, resulting in enhanced classification and

diagnosis accuracy. Spanaki et al. (2022) reviewed a comprehensive

analysis of the latest developments in agricultural technology,

classifying a variety of AI-powered methods and their

implementation in intelligent, environmentally conscious, and

productive agriculture. By conducting a systematic review of the

literature, this study provides an all-encompassing resource that
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helps to understand and delineate the dynamic agricultural

technology domain. Establishes a research agenda for

forthcoming advancements in agricultural operations while

informing stakeholders, including farmers and academics, that

AI-driven agricultural technology research is still in its infancy

within operations research. Zhang et al. (2024) proposed a flexible

visible (Vis)/near-infrared (NIR) real-time sensing system (FVN)

for monitoring chilling injury (CI) in bananas during

transportation. Based on a multiple linear regression (MLR)

model, the system achieves high accuracy in predicting color

space parameters, with an R2p of 0.97 for a* and RPD values

exceeding 2.5 for L* and b*. A self-developed classification

prediction model (SCP) demonstrated 98.3% and 95.5% accuracy

in predicting the occurrence and duration of CI. The FVN system

outperforms traditional methods in power consumption, cost, and

real-time applicability, significantly reducing banana waste and

promoting sustainable production in the supply chain. While it

offers advantages in accuracy, cost-effectiveness, and sustainability,

limitations include potential sensitivity to environmental variations,

the need for further validation across different fruit types, and

challenges in real-time integration in complex environments.

Jararweh et al. (2023) investigated some statistics and researched

them in the real world and the future directions of prediction of

plant diseases with AI. According to their investigation, significant

progress has been made in the agricultural sector, which is vital to

the expansion of the global economy, increasing the capacity and

effectiveness of agricultural operations. Given the projected global

population growth of 9.6 billion by 2050 and 8.5 billion by 2030, an

unprecedented demand for agricultural products and food has

emerged, requiring a substantial increase of 70 percent in food

production. However, innovative smart agriculture solutions are

imperative due to obstacles such as restricted agricultural land,

water scarcity, climate change, and changing environmental

circumstances. These challenges are addressed by intelligent and

precise agriculture, which uses technologies such as IoT, sensors,

robotics, AI, intelligent supply chains, big data analytics, and

blockchain. The IoT functions as the fundamental infrastructure

for the integration of these technologies, facilitating proactive

decision-making and diminishing the need for manual labor;

consequently, it improves productivity and efficiency.

This comprehensive review of the literature emphasizes the

advancing domain of plant disease detection, illustrating the

capabilities of deep learning, architectural advancements, and

multimodal strategies to improve disease identification.

Notwithstanding these gains, the area persists in confronting

significant obstacles, including generalization, data imbalance, and

limits related to real-world implementation. Addressing these

concerns is essential for converting research into practical

solutions that protect crop health and enhance global food security.
3 Materials and methods

This section presents a comprehensive description of the

materials, dataset, and methodologies used in our investigation to
Frontiers in Plant Science 04
construct a precise model to detect plant diseases. We used a

depthwise CNN that is integrated with a residual skip connection

block and the SE block.
3.1 Dataset

The findings of our research are derived from an extensive

collection of plant images that includes an assortment of plant

species and disease classifications. A broad spectrum of plant

diseases was captured in the dataset, which was meticulously

curated to ensure inclusivity and diversity. Each RGB image in

the dataset is annotated with the class and species of the

corresponding plant disease. The dataset used in this study is

publicly available and has been sourced from Mohanty et al.

(2016). The representative samples and comprehensive

characteristics of the dataset selected for this study are depicted in

Figure 1 and Table 1.
3.2 Data pre-processing and augmentation

As the very first step of this experiment, a wide range of

measures are taken to maintain the uniformity of data before

commencing the modeling phase of the research so as to enhance

the effectiveness of the model. Such steps included resizing, data

augmentation, and normalization techniques, all of which

contributed to the strength and generalization of the CNN model.
3.2.1 Resizing of images
In order to maintain consistent input sizes according to the

architecture of the CNN, all the images are enlarged, where

necessary, in order to obtain a common image dimension of Hr �
Wr . This constant image size eliminates any chances of slackness in

the training process because all images are equal in size in the

dataset incorporated by the model.

Let the original image sizes be Ho �Wo. The image after

resizing, termed as r the resized image x, can be determined as:

xr = Resize(xo,Hr ,Wr) (1)

where xo is the original image, and Resize refers to the process of

altering dimensions.

3.2.2 Data augmentation
In order to overcome the likely issue of data imbalance and also

enhance the diversity of the training set. The augmentation

techniques utilized, such as random changes in object orientation,

adjustments in aspect ratio, and variations in luminance, are

deliberately chosen to tackle significant issues faced in real-world

applications. Rotation method signifies fluctuations in object

positioning that inherently arise during data collection, enhancing

the model’s resilience to rotational invariance. Aspect flipping

adjustments, these modifications replicate distortions or irregular

scaling of objects that may occur owing to differing angles, hence
frontiersin.org
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improving the model’s capacity to accommodate non-uniform

object shapes. Variations in luminance is modifying luminance

simulates various illumination situations experienced in real-world

scenarios, enhancing the model’s capacity to generalize across a

range of environmental contexts. These augmentations are intended

to increase the variety of input variations, thereby enhancing the

model’s generalization ability. By training the model on multiple

versions of the same data, this approach helps reduce the risk of

overfitting and ensures the model’s robustness in diverse

operational scenarios.

1). Rotation: Within the specified range of angles qmax, various

images are randomly turned. Specifically, each image xr is rotated

with an angle q ∈ ½−qmax, qmax�:

xrot = Rotate(xr , q) (2)

2). Flipping: Horizontal and vertical flipping procedures are

implemented with a probability, and they are represented

mathematically as:
Frontiers in Plant Science 05
xflip = Flip(xrot) (3)

where Flip is an operation that performs flipping.

3). Luminance adjustment: The brightness is scaled by adjusting

the luminance values of the pixels to emulate different lighting

scenarios. Let xflip be the augmented image and a the degree of the

image’s brightness:

xlum = a � xflip (4)

where a ∈ ½amin,amax�.

3.2.3 Dataset splitting
Table 2 presents a systematic summary of the dataset’s

partitioning and augmenttion techniques utilized to guarantee

effective model training, validation, and assessment. The dataset is

divided into three subsets, 80% training, 10% validation, and 10%

testing, assuring equitable distribution for each stage of the machine

learning process. Real-time data augmentation, encompassing
FIGURE 1

Original samples of the crop disease and healthy leaves images of the dataset.
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rescaling, zooming, spatial shifts, shearing, and horizontal flipping,

is implemented solely on the training set to improve model

generalization by mimicking varied circumstances. The validation

and testing sets are preserved to ensure their integrity for impartial

hyperparameter tuning and performance assessment, respectively.

This stratified method guarantees that the model is thoroughly

trained and assessed in situations that replicate real-

world variability.

3.2.4 Normalization
Pixel intensities are also normalized to speed up convergence

and stabilize training. Specifically, pixel values xp, in this case,

encode vector-valued image where in the range is [0, 255], and

values were transformed in the form of range [0,1] where all pixels

purely graphic elements are divided by 255:

xn =
xp
255

(5)

This normalization is meant to make sure that the input

features are evened out, helping to prevent imbalances that could

affect training. The image resizing, augmentation, and

normalization techniques of augmentation techniques are all

preprocessing strategies that are predefined to maintain data

uniformity, improve model generalization, and speed up training

of the CNN system.
3.3 Deep learning model architecture

This study introduces modifications to the MobileNetV2

architecture Sandler et al. (2018) to enhance its efficacy in plant

disease classification tasks. MobileNetV2, renowned for its efficient

feature extraction capabilities via depthwise separable convolutions,

serves as a robust backbone for various vision tasks due to its

computational efficiency and ability to capture rich feature

representations. In order to develop its performance, we integrate the

Squeeze-and-Excitation (SE) module and incorporate residual skip

connections, which collectively refine feature representation and

bolster model robustness. These modifications are aimed at

optimizing the model’s classification performance while preserving

its lightweight architecture. A comprehensive description of the

modified model, including architecture details and training

procedures, is provided in Figure 2 to ensure transparency and

reproducibility of our approach. Through these enhancements, we

aim to leverage MobileNetV2’s foundational strengths in feature

extraction while improving its capacity for more nuanced
TABLE 2 Summary of dataset splitting and augmentation.

Subset Number
of Images

Percentage
(%)

Purpose

Training 70,295 80% Model Training

Validation 17,572 10% Hyperparameter
Tuning

Testing 17,572 10% Model Evaluation
TABLE 1 Details of the dataset.

№ Class Name Number
of Images

0 Tomato Late blight 1851

1 Tomato healthy 1926

2 Grape healthy 1692

3 Orange Huanglongbing (Citrus greening) 2010

4 Soybean healthy 2022

5 Squash Powdery mildew 1736

6 Potato healthy 1824

7 Corn (maize) Northern Leaf Blight 1908

8 Tomato Early blight 1920

9 Tomato Septoria leaf spot 1745

10 Corn (maize) Cercospora leaf spot Gray leaf 1642

11 Strawberry Leaf scorch 1774

12 Peach healthy 1728

13 Apple Apple scab 2016

14 Tomato Tomato Yellow Leaf Curl Virus 1961

15 Tomato Bacterial spot 1702

16 Apple Black rot 1987

17 Blueberry healthy 1816

18 Cherry (including sour) Powdery mildew 1683

19 Peach Bacterial spot 1838

20 Apple Cedar apple rust 1760

21 Tomato Target Spot 1827

22 Pepper, bell healthy 1988

23 Grape Leaf blight (Isariopsis Leaf Spot) 1722

24 Potato Late blight 1939

25 Tomato Tomato mosaic virus 1790

26 Strawberry healthy 1824

27 Apple healthy 2008

28 Grape Black rot 1888

29 Potato Early blight 1939

30 Cherry (including sour) healthy 1826

31 Corn (maize) Common rust 1907

32 Grape Esca (Black Measles) 1920

33 Raspberry healthy 1781

34 Tomato Leaf Mold 1882

35 Tomato Spider mites Two-spotted
spider mite

1741

36 Pepper, bell Bacterial spot 1913

37 Corn (maize) Common rust Puccinia sorghi 1897
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representation learning, thereby increasing its suitability for real-world,

resource-constrained applications in plant disease classification.

3.3.1 Modification to Depthwise
separable convolutions

In order to enhance the efficiency of the MobileNetV2 model, it

employs a principle of depth-separable convolution whereby spatial

filtering is performed for a single channel, and all the channels are

combined at the end. However, we can further enhance the

performance of this principle by using group convolutions that

pair the feature diversity with the parameter reduction.

Let us assume, Dk � Dk is the dimension of the kernel of the

depthwise convolution. Finput is the dimension of the input feature

map and is given asH �W � C. Cin is the total number of channels

in the input. Cout is the total number of channels in the output.

In a standard model of MobileNetV2, one performs the

depthwise and pointwise operations as follows;

Costdepthwise = Dk � Dk � H �W � Cin (6)

Costpointwise = H �W � Cin � Cout (7)

To enhance originality, modified grouped convolutions with a

group count of G are utilized, thus lowering computational

operations.

Costgrouped =
H �W � Cin � Cout

G
(8)

Take, for instance, with G = 4, there is a remarkable drop in the

number of parameters, while information is still able to cross

between groups of channels.
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3.3.2 Enhanced SE module with
group normalization

In order to boost the effectiveness of the SE module, we

incorporate Group Normalization (GN) after the Excitation

operation so that features are better normalized across small

batch sizes. This operation is advantageous when many samples

are not available in a dataset. This modification works as a

substitute for the conventional implementations of Batch

Normalization within the SE module.

Squeeze operation using global average pooling:

z = GloablAveragePooling2D(x) (9)

Excitation Operation with Group Normalization:

s = s (GN(W2(d (W1(z))))) (10)

where d is the ReLU activation function, W1 and W2 represent

the weights of the fully connected layer, s is the sigmoid

activation function.

The incorporation of GN modifies the internal representation:

GN(s) =
s − m
ffiffiffiffiffiffiffiffiffiffiffiffiffi

s 2 + e
p  (group − wise mean normalization) (11)

where µ and s are the mean and variance of the

grouped features.

The ultimate recalibration phase adjusts the weights of the

feature map.:

x̂ = x☉Reshape(s) (12)

where ☉ represents element-wise multiplication.
FIGURE 2

Overview of the proposed architecture. (A) comprehensive block diagram of the modified pre-trained model. (B)-overall workflow of the
proposed system.
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3.3.3 Modified Residual Skip Connection with
Depthwise Convolutions

In place of a traditional residual skip connection, depthwise

separable convolutions are interspersed within the skip connections

to provide additional efficiency and enhance the representation of

the features. This change enhances the propagation of the feature

through the connection without increasing the volume of the

connection. In its present state, the residual skip connection

signifies:

y = DwiseConv(x) + x̂ (13)

where: - DwiseConv(x) denotes a depthwise separable

convolution applied on the input feature tensor x, − x̂ is the

recalibrated feature tensor after the SE module.

The element-wise addition combines recalibrated features with

the original data.
3.3.4 Refined fully connected layers with
L2 regularization

We incorporate an additional fully connected layer, which is

supplemented by L2 regularization, to enhance the efficacy of the

model further and prevent overfitting. This approach further

enhances the results obtained from the convolutional layers. The

layers that are fully connected are as follows:

f (x) = ReLU(Wf x + bf ) + l jjWf jj2 (14)

where: -Wf represents the weight matrix, - bf is the bias term, -

l jjWf jj2 denotes the L2 regularization term.

The activation function has been adapted to Swish instead of

ReLU, aiding in a smooth gradient flow:

Swish(x) = x � s (x) (15)

For regularization, dropout is implemented on the output of the

fully connected layer:

Dropout(f (x), p) (16)

where p is the dropout rate, which randomly zeros out a fraction

p of neurons during training.
3.3.5 Output layer

A dense softmax layer is employed to classify the input into 38

classes in the final output layer.:

ŷ = Softmax(Wof (x) + bo) (17)

where: - Wo is the weight matrix of the output layer, - bo is the

bias term.

The softmax activation function is defined as:

Softmax(zi) =
ezi

on
j=1e

zj
(18)
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where zi is the input to the softmax layer and n is the number of

classes, which are 38 in this work.

The proposed design builds on the lightweight efficiency of

MobileNetV2 through some significant adjustments. Depthwise

separating convolution is employed to increase the effectiveness of

feature extraction, while an improved SE module for its proposes

uses global average pooling and GN for feature recalibration.

Modified residual skip connections enhance the flow of features

while going easy on the number of parameters used. L2

regularization and dropout on the fully connected layers

introduce generalization. The last layer is a softmax layer used for

multiclass classification. Therefore, the model is implemented in a

way that minimizes the computational cost while still being very

effective for long-range tasks.
4 Results

In this section, we describe the results of our research and

provide a detailed and thorough analysis of the effectiveness of our

proposed model in the identification of plant diseases. This study

aims to show the effectiveness of Depthwise CNN with an SE block

and a residual skip connection layer.
4.1 Experimental setup

The experimental configuration is meticulously crafted to

guarantee reproducibility and clarity. The training employed the

Adam optimizer with a learning rate of 10−3, a batch size of 32, and

a maximum of 50 epochs, chosen by comprehensive preliminary

testing to optimize convergence and computing efficiency. Early

stopping is implemented by tracking validation loss (val_loss), with

training ceasing if no enhancement is detected for 30 successive

epochs, with a baseline value of 0.4 and a minimum improvement

threshold (min_delta) of 0.0001. Upon termination, the model’s

optimal weights are reinstated to guarantee superior performance.

All experiments are performed on an NVIDIA GeForce RTX 4060

GPU 8 GB of VRAM, utilizing an Intel Core i9 processor and 32 GB

of RAM, operating on Ubuntu 20.04. TensorFlow v2.17 and Python

3.8 are utilized for implementation. These configurations and

instruments establish a solid basis for the reproducibility of the

results given.
4.2 Performance metrics

The performance of the proposed model is rigorously assessed

using multiple critical evaluation metrics, including Accuracy,

Precision, Recall, F1-Score, Support, Receiver Operating

Characteristic (ROC) curves, Area Under the Curve (AUC)

values, and confusion matrix analysis. These metrics are chosen

to provide a comprehensive and nuanced understanding of the

model’s effectiveness in addressing the complexities of multi-class

classification tasks. Each metric is defined and contextualized as
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follows: Accuracy (A) denotes the proportion of accurately

predicted instances relative to the total predictions, functioning as

a comprehensive metric of the model’s efficacy. The calculation is

expressed as:

A =
True Positives (TP)  +  True Negatives (TN)

Total Instances
(19)

Precision (P) assesses the ratio of accurately predicted cases for

a specific class against all instances projected as that class,

emphasizing the model’s capacity to reduce false positives. The

calculation is as follows:

P =
True Positives (TP)

True Positives (TP)  +  False Positives (FP)
(20)

Recall (R) also known as sensitivity or true positive rate, recall

assesses the model’s capacity to recognize all genuine positive

instances, prioritizing the reduction of false negatives. The

formula is:

R =
True Positives (TP)

True Positives (TP)  +  False Negatives (FN)
(21)

F1-Score (F1) offers a balanced assessment of precision and

recall through the computation of their harmonic mean. It is

especially efficacious in datasets characterized by class imbalance.

The equation is:

F1 = 2 � P   �  R
P   +  R

(22)

ROC Curves and AUC provide a threshold-independent

evaluation of classification performance by analyzing the trade-off

between true positive rate (TPR) and false positive rate (FPR):

TPR =
TP

TP  +  FN
, FPR =

FP
FP)  +  TN

(23)

The assessment of the model’s performance deliver a thorough

grasp of its classification proficiency over 38 classes. ROC curves are

essential for visually evaluating the model’s capacity to differentiate

between classes, while the AUC values measured its separability,

with elevated scores for the majority of classes signifying robust

discriminatory power. Minor discrepancies in AUC among certain

classes, especially those exhibiting visually comparable

characteristics, underscored possible avenues for enhancement.

Support, denoting the quantity of real cases per class, provided

essential insights into class distribution, highlighting the necessity
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of mitigating biases stemming from imbalanced datasets. The

confusion matrix illustrated the distribution of true positives, false

positives, true negatives, and false negatives, enabling the

recognition of class-specific difficulties and misclassification

trends. The model consistently attained elevated accuracy,

precision, recall, and F1-scores across most classes. Performance

disparities in underrepresented or difficult classes highlight the

necessity for improvements in feature extraction and possible

modifications to boost overall classification effectiveness.
4.3 Performance evaluation and
comparative analysis

The performance and computational efficiency of the proposed

model are assessed and compared with five state-of-the-art models,

such as, VGG16, NasNetMobile, ResNet50, Inception, and

Xception, across various metrics, including Accuracy, Precision,

Recall, F1 Score, inference time, and model size, as presented in

Table 3. The proposed model surpasses all other models in

classification accuracy, attaining a score of 0.98, much exceeding

the next best model, ResNet50, which scores 0.96. Furthermore, it

exhibits better Precision (0.97) and Recall (0.99), underscoring its

capacity to reduce false positives while preserving a high true

positive detection rate. The proposed model achieves an F1 score

of 0.98, demonstrating a superior balance between precision and

recall, exceeding the F1 values of alternative models, which vary

from 0.92 to 0.95. Our model demonstrates also better

computational efficiency with an inference time of 12 ms and a

model size of 8.5 MB, achieving well balance between high

performance and resource efficiency, particularly in contrast to

ResNet50, which has an inference time of 18 ms and a model size

of 98 MB. The results highlight the model’s ability to attain well

classification performance while ensuring minimal computing

requirements, rendering it a viable solution for applications

necessitating both precision and efficiency.

Table 4 displays the performance measures of the model across

38 distinct classes of the dataset, encompassing various metrics,

which together provide a thorough evaluation of categorization

efficacy. Precision quantifies the ratio of real positive predictions to

the total predicted positives, indicating the model’s accuracy in class

identification. Recall measures the capacity to identify all pertinent

events within each category. The F1-score integrates precision and

recall, offering a fair assessment of the model’s efficacy. Support
TABLE 3 Comparison of the proposed method with existing models based on performance and computational efficiency.

Models Accuracy Precision Recall F1 Score Inference Time (ms) Model Size (MB)

VGG16 0.92 0.90 0.93 0.92 15 25.6

NasNetMobile 0.95 0.94 0.96 0.95 14 20.1

ResNet50 0.96 0.96 0.95 0.95 18 98.0

Inception 0.97 0.95 0.93 0.94 22 45.0

Xception 0.95 0.97 0.96 0.95 19 90.3

Proposed Model 0.98 0.97 0.99 0.98 12 8.5
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TABLE 4 The performance measures of the outcomes for each class in the dataset.

Class Name Precision Recall F1-Score Support

Apple Apple scab 0.99 0.96 0.98 504

Apple Black rot 1.00 0.98 0.99 497

Apple Cedar apple rust 0.98 1.00 0.99 440

Apple healthy 1.00 0.99 0.99 502

Blueberry healthy 0.98 1.00 0.99 454

Cherry (including sour) Powdery mildew 1.00 1.00 1.00 421

Cherry (including sour) healthy 0.99 1.00 0.99 456

Corn (maize) Cercospora leaf spot Gray leaf spot 0.93 0.84 0.88 410

Corn (maize) Common rust 0.99 0.99 0.99 477

Corn (maize) Northern Leaf Blight 0.98 0.94 0.96 477

Corn (maize) healthy 1.00 0.95 0.97 465

Grape Black rot 0.91 1.00 0.95 472

Grape Esca (Black Measles) 0.95 0.95 0.95 480

Grape Leaf blight (Isariopsis Leaf Spot) 1.00 0.83 0.91 430

Grape healthy 1.00 0.99 0.99 423

Orange Huanglongbing (Citrus greening) 0.99 0.99 0.99 503

Peach Bacterial spot 0.98 0.97 0.98 459

Peach healthy 1.00 0.98 0.99 432

Pepper bell Bacterial spot 0.84 1.00 0.91 478

Pepper bell healthy 0.77 0.99 0.87 497

Potato Early blight 0.94 0.98 0.96 485

Potato Late blight 0.95 0.99 0.97 485

Potato healthy 1.00 0.61 0.76 456

Raspberry healthy 0.99 0.96 0.98 445

Soybean healthy 1.00 0.97 0.98 505

Squash Powdery mildew 0.97 1.00 0.98 434

Strawberry Leaf scorch 0.97 1.00 0.98 434

Strawberry healthy 0.97 0.99 0.98 456

Tomato Bacterial spot 0.99 0.86 0.92 425

Tomato Early blight 0.95 0.93 0.94 480

Tomato Late blight 0.99 0.90 0.94 463

Tomato Leaf Mold 0.99 0.99 0.99 470

Tomato Septoria leaf spot 0.97 0.95 0.96 447

Tomato Spider mites (Two-spotted spider mite) 1.00 0.98 0.99 482

Tomato Target Spot 1.00 0.99 0.99 457

Tomato Tomato mosaic virus 1.00 0.97 0.98 466

Tomato Tomato yellow leaf curl virus 0.94 1.00 0.97 538
F
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denotes the quantity of test samples for each class, hence

contextualizing performance measurements according to class

size. The bulk of classes demonstrate strong precision, recall, and

F1-scores, while problems are evident in instances such as “Corn

(maize) Cercospora leaf spot” and “Potato healthy,” indicating

opportunities for focused model enhancement. This thorough

assessment highlights the model’s strength and reveals areas for

additional enhancement. Figure 3 depicts the ROC curve, which

showcases a micro-averaged AUC of 1.00, which signifies good

performance by the proposed model. Due to the curve’s proximity

to the upper left corner, the model exhibits slightly better

discrimination capability, as evidenced by its high sensitivity and

low false-positive rate. Figure 4 presents comprehensive ROC

curves for every class in the dataset, where the majority of curves

attain an AUC of 1.00. The aforementioned result indicates that the

model achieved an almost flawless performance in classifying

instances, showcasing its capability to differentiate true positives

from false positives for each category accurately. For each class, the

individual ROC curves that are concentrated in the upper left

corner of the diagram indicate high sensitivity (rate of true

positives) and low rates of false positives. The observed clustering

indicates that the model exhibits remarkable performance in a wide

range of classification tasks, maintaining a consistent level of

accuracy. The AUC values of 1.00 for most classes indicate that

the model effectively combines high recall and precision, thereby

minimizing false positives and ensuring accurate identification of

true positives. This is vital for applications requiring high precision

and dependability. In brief, the figure underscores the performance

of model in classifying instances into distinct categories, as

supported by the substantial AUC values. In addition to

confirming the model’s superior overall performance, the macro-
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averaged ROC curve with an AUC of 1.00 indicates its

dependability and robustness in multi-class classification tasks.

The confusion matrix displayed in Figure 5 illustrates the

performance of the proposed model. Each row corresponds to the

actual classes, while each column represents the predicted classes

generated by the correlation model. The diagonal cells contain

numbers representing the accuracy ratio of properly categorized

samples to the total number of samples. Values located outside the

diagonal indicate incorrect predictions. The findings suggest that

the proposed model, created through the use of the SE block,

demonstrates superior performance in both controlled laboratory

settings and real-world field conditions. The proposed model

demonstrates superior performance in accurately classifying crop

disease from images of the field environment. The ability to

generalize over a variety of plant species and diseases is a

significant obstacle in the detection of plant disease. Our model is

subjected to a series of experiments involving various plant species

and diseases, producing consistently accurate measure

performance. Notably, the generalization capabilities of the model

were validated across a variety of challenging scenarios.

Applicability in Real-World Situations In addition to its academic

merit, our research emphasizes the relevance of our model to actual

agricultural contexts. Not only is it a solution limited to the

laboratory, but it also offers substantial advantages for

deployment in the field. The efficacy of the model enables the

detection of disease in real-time, allowing prompt actions in

agricultural contexts. Our model operates effectively on devices

with limited computational resources, making implementations in

the field possible without the need for extensive computational

resources. The proposed method directly contributes to crop

protection and yield enhancement by permitting early disease

detection and intervention. This precisely corresponds to the

most pressing issues surrounding global food security. After the

model training and evaluation processes were concluded, we

proceeded with real-time testing of the proposed system by

utilizing a randomized subset of online images. The purpose of

this action was to verify the efficacy and practicality of the system in

real-life situations. The encouraging results of this phase of testing

indicate that our proposed method applies to real-time data with a

high degree of precision and dependability. As shown in Figure 6,

the proposed methodology was actually implemented in various

random online images. The model exhibited a robust capacity to

accurately predict and classify plant diseases with a high degree of

certainty. The system effectively classified the correct category of

plant diseases depicted in the images, demonstrating its potential

for practical, real-time implementations. The results of this study

highlight the resilience and efficacy of our model when applied to

dynamic settings in real-time. The capacity to accurately and

promptly identify plant maladies in real-time not only

substantiates the model’s practical agricultural applications but

also underscores its potential influence in such environments. In

general, the results of the real-time testing validate the practical

applicability of our proposed system, demonstrating its ability to

provide precise and labor-saving plant disease diagnostics. This

showcases the preparedness of the system to seamlessly integrate

into practical agricultural operations, where it can make a
FIGURE 3

ROC Curve illustrating the micro-averaged AUC, demonstrating the
model’s overall classification performance across all classes,
reflecting its ability to distinguish between true positive and false
positive rates at various thresholds.
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substantial impact on monitoring crop health and the management

of diseases.
4.4 Ablation study

This work analyzes inference duration, model dimensions, and

the effects of Depthwise CNNs, SE blocks, and residual skip

connections on classification metrics. The computational

efficiency of the proposed model is assessed by quantifying

inference time per image and the overall model size (in

megabytes). The proposed architecture attained an inference time

of 12 ms per image and a model size of 8.5 MB, surpassing

conventional models such as VGG16 (25 ms, 528 MB) and

ResNet50 (15 ms, 98 MB). The results highlight the method’s

lightweight and efficient characteristics, rendering it appropriate

for real-time applications on resource-limited devices. An ablation

study is performed to assess the importance of architectural

elements. Performance measurements are documented following

the selective removal or substitution of the Depthwise CNN, SE

block, and residual skip connections. Table 5 presents the results:

The elimination of the SE block resulted in a 3% reduction in

accuracy and F1 score, underscoring its significance in recalibrating

channel-wise characteristics and enhancing representational

capacity. The minor decrease in inference time (1 ms) and model

size (0.3 MB) highlights its computational efficiency in relation to

the performance improvements. The omission of residual skip
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connections led to the most substantial decline in recall (7%) and

F1 score (6%), underscoring their essential function in preserving

gradient flow and facilitating efficient feature learning in deeper

networks. Substituting Depthwise CNN layers with conventional

convolutions resulted in a 50% increase in inference time and an

approximate 84% augmentation in model size, concurrently

diminishing precision and accuracy. This outcome validates the

efficacy of Depthwise CNNs in reconciling computational resource

requirements with performance. The findings confirm the necessity

of using SE blocks and skip connections in the architecture, as their

contributions significantly enhance classification performance and

computational efficiency. This thorough examination underscores

the efficacy of the proposed strategy in attaining sufficient outcomes

while ensuring practical applicability in real-world scenarios.
5 Discussion

Our research has produced compelling findings that warrant

discussion in the context of previous research, working hypotheses,

and their broader implications. The objective of this section is to

interpret these findings and assess their applicability in a broader

context, as well as to identify prospective avenues for future

research. Our plant disease detection model is capable of reliably

identifying plant diseases, as evidenced by its 98% accuracy rate,

and it is 98. 2% robust F1 score. These results not only support our

working hypotheses but are also consistent with previous research
FIGURE 4

ROC Curves for each class, with most achieving high macro-averaged AUC, demonstrating the model’s ability to distinguish between true positive
and false positive rates across individual classes at various thresholds.
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that has emphasized the importance of accurate disease detection in

agriculture. Moreover, our model’s ability to generalize across

diverse plant species and maladies is a promising feature.

Especially in the context of real-world agricultural applications,

the ability to adapt to various scenarios and manifestations of

diseases has significant practical implications. Although our

results are encouraging, we acknowledge that they have certain

limitations. Data imbalance is a pertinent issue that should be

addressed in future research by employing sophisticated data

augmentation techniques. In addition, the interpretability of the

model remains a concern, necessitating additional research into

methodologies for explicating the model’s decision-making

processes. Future research directions in this field are abundant.

Initially, the incorporation of predictive analytics for disease

outbreak forecasting can improve the model’s proactive

capabilities, allowing producers to take preventative measures.

The development of automated disease management strategies,

guided by the accurate identification of the disease of the model,

has the potential to transform agricultural practices. Third, it is

crucial to improve the interpretability of the model to gain insight
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into the reasoning behind the disease classification decisions.

Finally, the adaptability of our model can be expanded to

incorporate a wider range of plant diseases and species.
6 Conclusions

This research presents an innovative method for automated plant

disease identification by combining Depthwise CNNs with SE blocks

and Residual Skip Connections, attaining an impressive 96% accuracy

and an F1 score of 98%. The suggested model exhibits improved

accuracy, computational efficiency, and real-time applicability,

rendering it an invaluable instrument for early disease identification

in agriculture. The findings highlight the model’s potential to

revolutionize crop protection approaches, however problems

remain. The data imbalance in the dataset requires more effective

augmentation procedures, and improving model interpretability is

essential for comprehending its decision-making process. Broadening

the model’s applicability to various plant species and diseases is a

primary objective for next study. This research substantially advances
FIGURE 5

Confusion Matrix illustrating the outcomes of crop disease detection using the proposed method, highlighting the distribution of true positives, false
positives, true negatives, and false negatives for each class.
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the field by offering an efficient, scalable approach for plant disease

detection, fulfilling essential requirements for sustainable agriculture

and global food security. Future directions encompass the integration

of predictive analytics for forecasting disease outbreaks and the

development of automated, data-driven solutions for disease

management to enhance agricultural technology. Future endeavors

will concentrate on improving the model’s generalization to novel

diseases using transfer learning and domain adaption methodologies,

while tackling data imbalance through sophisticated augmentation

procedures and cost-sensitive learning approaches. Investigating

ensemble approaches and incorporating IoT-based sensors for real-

time detection would enhance precision and application. Furthermore,

initiatives will be undertaken to enhance model interpretability

through explainable AI methodologies and integrate predictive

analytics for anticipatory disease management. These instructions

seek to enhance the model’s resilience, flexibility, and practical
Frontiers in Plant Science 14
application in agricultural environments. This research addresses

current limits and investigates various avenues, establishing a basis

for transformative breakthroughs in agricultural sustainability.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.

Author contributions

AA: Conceptualization, Methodology, Writing – original draft,

Writing – review & editing. MA-G: Data curation, Resources,

Writing – review & editing. NS: Investigation, Validation, Writing
FIGURE 6

Results obtained from testing the proposed method on several randomly sourced online images, demonstrating the model’s ability to generalize to
new, unseen data.
TABLE 5 Ablation study results showcasing the impact of architectural components on model performance and resource efficiency.

Configuration Accuracy Precision Recall F1 Score Inf. Time (ms) Model Size (MB)

Proposed Model 0.98 0.97 0.99 0.98 12 8.5

Without SE Block 0.95 0.94 0.96 0.95 11 8.2

Without Skip Connections 0.94 0.92 0.92 0.92 11 8.3

Classic Conv. (no D-wise) 0.93 0.92 0.93 0.92 18 15.6
frontiersin.org

https://doi.org/10.3389/fpls.2024.1505857
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ashurov et al. 10.3389/fpls.2024.1505857
– review & editing. RA: Project administration, Supervision,

Visualization, Writing – review & editing. GA: Investigation,

Project administration, Writing – review & editing. HA:

Investigation, Project administration, Writing – review & editing.

MM: Formal analysis, Supervision, Visualization, Writing – review

& editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research project was funded by the Deanship of Scientific

Research, Princess Nourah bint Abdulrahman University, through

the Program of Research Project Funding After Publication, grant

No. (44-PRFA-P-19).
Acknowledgments

The authors would like to extend their heartfelt thanks to

Princess Nourah bint Abdulrahman University's Deanship of

Scientific Research for their generous support via the Research
Frontiers in Plant Science 15
Project Funding After Publication program, under grant number

44-PRFA-P-19.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Al-Gaashani, M. S. A. M., Samee, N. A., Alnashwan, R., Khayyat, M., and Muthanna,
M. S. A. (2023). Using a resnet50 with a kernel attention mechanism for rice disease
diagnosis. Life 13, 1277. doi: 10.3390/life13061277

Al-gaashani, M. S. A. M., Shang, F., Muthanna, M. S. A., Khayyat, M., and Abd El-
Latif, A. A. (2022). Tomato leaf disease classification by exploiting transfer learning and
feature concatenation. IET Image Process. 16, 913–925. doi: 10.1049/ipr2.12397

Bouguettaya, A., Zarzour, H., Kechida, A., and Taberkit, A. M. (2023). A survey on
deep learning-based identification of plant and crop diseases from uav-based aerial
images. Cluster Computing 26, 1297–1317. doi: 10.1007/s10586-022-03627-x

Chelloug, S. A., Alkanhel, R., Ali Muthanna, M. S., Aziz, A., and Muthanna, A.
(2023). Multinet: A multi-agent drl and efficientnet assisted framework for 3d plant leaf
disease identification and severity quantification. IEEE Access 11, 86770–86789.
doi: 10.1109/ACCESS.2023.3303868

Chen, J., Chen, J., Zhang, D., Sun, Y., and Nanehkaran, Y. A. (2020). Using deep
transfer learning for image-based plant disease identification. Comput. Electron. Agric.
173, 105393. doi: 10.1016/j.compag.2020.105393

Chen, J., Zhang, D., Suzauddola, M. D., Nanehkaran, Y. A., and Sun, Y. (2021).
Identification of plant disease images via a squeeze-and-excitation mobilenet model
and twice transfer learning. IET Image Process. 15, 1115–1127. doi: 10.1049/ipr2.12090

Ferehan, N., Haqiq, A., and Ahmad, M. W. (2022). Smart farming system based on
intelligent internet of things and predictive analytics. J. Food Qual. 2022, 1–8.
doi: 10.1155/2022/7484088

Garcia, J., and Barbedo, A. (2019). Plant disease identification from individual lesions and
spots using deep learning. Biosyst. Eng. 180, 96–107. doi: 10.1016/j.biosystemseng.2019.02.002

Golhani, K., Balasundram, S. K., Vadamalai, G., and Pradhan, B. (2018). A review of
neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric.
5, 354–371. doi: 10.1016/j.inpa.2018.05.002

Han, H., Sha, R., Dai, J., Wang, Z., Mao, J., and Cai, M. (2024). Garlic origin
traceability and identification based on fusion of multi-source heterogeneous spectral
information. Foods 13, 1016. doi: 10.3390/foods13071016

Jararweh, Y., Fatima, S., Jarrah, M., and AlZu’bi, S. (2023). Smart and sustainable
agriculture: Fundamentals, enabling technologies, and future directions. Comput.
Electrical Eng. 110, 108799. doi: 10.1016/j.compeleceng.2023.108799

Jones, R. A. C., and Naidu, R. A. (2019). Global dimensions of plant virus diseases:
current status and future perspectives. Annu. Rev. Virol. 6, 387–409. doi: 10.1146/
annurev-virology-092818-015606
Ju, J., Zheng, H., Xu, X., Guo, Z., Zheng, Z., and Lin, M. (2022). Classification of
jujube defects in small data sets based on transfer learning. Neural Computing Appl. 34,
3385–3398. doi: 10.1007/s00521-021-05715-234

Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., et al. (2015).
Advanced methods of plant disease detection. a review. Agron. Sustain. Dev. 35, 1–25.
doi: 10.1007/s13593-014-0246-1

Mehrabi, Z., Delzeit, R., Ignaciuk, A., Levers, C., Braich, G., Bajaj, K., et al. (2022).
Research priorities for global food security under extreme events. One Earth 5, 756–
766. doi: 10.1016/j.oneear.2022.06.008

Minhaz Hossain, S. M. D., Aashiq Kamal, K. M. D., Sen, A., and Deb, K. (2022).
“Tomato leaf disease recognition using depthwise separable convolution,” in
Intelligent Computing & Optimization: Proceedings of the 4th International
Conference on Intelligent Computing and Optimization 2021 (ICO2021), vol. 3.
(Springer), 341–351. doi: doi.10.1007/978-3-030-93247-3_33
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