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Root rot is a general term for soil-borne diseases that cause the necrosis and

decay of underground plant parts. It has a wide host range and occurs in various

types of plants, including crops, horticultural crops and medicinal plants. Due to

the fact that medicinal plants generally have a long growth cycle and are primarily

the root and rhizome herbs. This results in root rot causing more serious damage

in medicinal plant cultivation than in other plants. Infected medicinal plants have

shrivel or yellowed leaves, rotting rhizomes, and even death of the entire plant,

resulting in a sharp decline in yield or even total crop failure, but also seriously

reduce the commercial specifications and effective ingredient content of

medicinal plants. The pathogens of root rot are complex and diverse, and

Fusarium fungi have been reported as the most widespread pathogen. With

the expansion of medicinal plant cultivation, root rot has occurred frequently in

many medicinal plants such as Araliaceae, Fabaceae, Ranunculaceae, and

Solanaceae and other medicinal plants. This article reviews recent research

progress on root rot in medicinal plants, covering various aspects such as

disease characteristics, occurrence, pathogen species, damage to medicinal

plants, disease mechanisms, control measures, and genetic factors. The aim is

to provide reference for better control of root rot of medicinal plants.
KEYWORDS

root rot, medicinal plant, pathogen, fungi, management strategies
1 Introduction

Medicinal plants are an important component of the plant kingdom, distributed across

multiple plant families and genera. They play a crucial role in ecosystems and hold

significant economic and cultural value in both traditional and modern medicine. With the

increasing demand for natural therapies and health products, the cultivation of medicinal
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plants is also on the rise. Since medicinal plants are mostly used as

medicines in the form of roots or rhizomes and are grown for a long

period of time, they face numerous challenges during cultivation

and production. Currently, root rot disease, a typical root-related

disease, poses the most severe threat to medicinal plants.

Root rot disease is a plant disease caused by various soil-borne

pathogens, primarily characterized by the necrosis and decay of

plant roots and root tubers (Bischoff and Goodwin, 2022). Root rot

disease widely occurs in the cultivation of medicinal plants,

especially in perennial root-based herbs such as Panax ginseng (Li

Q, et al., 2022), Panax notoginseng (Wang P, et al., 2022), Astragalus

membranaceus (Qi et al., 2022), and Codonopsis pilosula (Yu et al.,

2015), severely impacting the growth of these medicinal plants. The

occurrence of root rot is closely related to the growing environment,

soil conditions, cultivation management practices, and continuous

cropping systems of the plants cultivation site. The harm caused by

root rot to medicinal plants is not only reflected in stunted growth

but also directly sacrifice the yield and quality of the medicinal

materials (Yang et al., 2020). When root rot occurs, the root

development of effected plants is restricted, leading to diminished

water and nutrient absorption capabilities, which in turn causes

physiological dysfunction, wilting, yellowing, and even total plant

death. Additionally, root rot hazards the accumulation of medicinal

components in the plants, compromising the efficacy of the

medicinal materials. Currently, the yield loss and quality decline

caused by root rot has become significant bottlenecks in the

development of the traditional Chinese medicine industry.

In recent years, as occurrences of root rot in medicinal plants

have increased, researchers have been conducting studies on the

isolation and identification of pathogens, pathogenic mechanisms,

influencing factors, and control technologies. Research on pathogen

types indicates that fungi from the Fusarium genus are among the

most common pathogens responsible for root rot in medicinal

plants (Zhu et al., 2023), while bacterial pathogens are also

gradually recognized as proven causative factors. The damage

caused by these pathogens varies note worthily among different

medicinal plants. To effectively address the threat posed by root rot

and enhance the production efficiency of medicinal plants,

researchers continuously explore and innovate in control

techniques. Currently, multiple comprehensive prevention and

control strategies such as agricultural management, chemical

control, and biological control have been proposed. Additionally,

breeding disease-resistant varieties to mitigate root rot from a

genetic perspective has also become a hot topic of interest (Chen

et al., 2020).

However, despite multifarious advancements in research, the

complexity and diversity of the mechanisms underlying root rot

disease still presents many research challenges. This article reviews

the current research status of root rot in medicinal plants, focusing

on seven aspects: the typical characteristics of root rot, its

occurrence, pathogens, the harm to medicinal plants, inducing

factors, control strategies, and genetic factors associated with root

rot. The aim is to provide a macro perspective on the current state
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of research on root rot in medicinal plants and to offer guidance for

effective prevention and control of this disease.
2 Typical symptoms of root rot in
medicinal plants

Root rot in medicinal plants has some common typical

symptoms. Usually, the progression of the disease begins with the

pathogen invasion of individual branched and fibrous roots, caused

leaf yellowing, branch die backs and generalized defoliation.

Subsequently, it extends to the main root, causing severe damage

to cells and vascular bundles. As the disease progresses, the plants

struggle to absorb water and nutrients from the soil ultimately

resulting in stunted growth with shrinking, yellowing and wilting

leaves. In the late stage of infection, the stems of infected plant

decayed with yellowed and withered leaves, and overall,

culminating in the demise of the entire plants. Due to the

difference of pathogens and medicinal plant species, the

symptoms of root rot disease varied in some extent and often

were described as wet rot, brown rot, black rot, dry rot etc.

(Figure 1) (Li L. et al., 2021; Abbas et al., 2022).

Wet rot manifests as soft, saturated, and dark brown to black

lesions on the roots, which tend to soften and may become mushy.

As the condition advances, the interior of the roots progressively

breaks down. This disease is frequently observed in the Araliaceae

family, impacting species such as Aralia elata, P. notoginseng, and P.

quinquefolius (Zheng et al., 2023, 2021; Zhang et al., 2020; Li et al.,

2023). Plants like Isatis indigotica belonging to the Brassicaceae

family, A. macrocephala from the Asteraceae family, and

Rehmannia glutinosa from the Scrophulariaceae family are also

commonly stricken by wet rot. These symptoms not only damage to

the appearance of the roots but also significantly impair the plants’

ability to take up water and nutrients, leading to a decline in their

health and vigor (Yang et al., 2012; Wang et al., 2013).

Brown rot affects plants, leading to wilting, necrotic lesions, and

ultimately death, with the roots taking on a brown hue. This type of

root rot is especially common in Ranunculaceae plants such as

Paeonia lactiflora, Coptis chinensis, P. suffruticosa, and Aconitum

carmichaelii, where the symptomatic brown discoloration is a key

indicator (Ma et al., 2023). Moreover, brown rot is a frequent issue

in the decaying parts of plants from families like Solanaceae,

Asparagaceae, Orchidaceae, and Liliaceae. The disease results in

the internal deterioration of the root tissues, giving them a definitive

brownish tint, which can often be confused with the natural aging

or drying of plant material. It is crucial to distinguish these

symptoms to implement appropriate control measures (Hu et al.,

2023; Liu et al., 2021).

Black rot infected plants are characterized by the emergence of

black brown lesions with irregular outlines on their roots, while the

leaves above ground turn yellow. In the advanced stages of the

disease, the plants undergo defoliation, halt their growth, and
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eventually wilt and succumb. Leguminous plants, including

Medicago sativa , Glycyrrhiza uralensis , and Astragalus

mongholicus, are notably prone to this type of rot (Larsen et al.,

2004; Ma et al., 2022; Guan et al., 2020). Furthermore, Camellia and

members of the Gentianaceae family also have a heightened

vulnerability to black rot. It is essential to monitor for these

symptoms to ensure timely intervention and prevent the disease

from spreading (Yang et al., 2023; Liu K, et al., 2022).

Beyond the manifestations of wet rot, brown rot, and black rot,

dry rot presents its own set of characteristic symptoms. The

hallmark signs of dry rot include the above ground portions of

the plant becoming readily detachable, the contraction of the plant’s

epidermis due to water loss, and the formation of dark brown,

hollowed-out areas within the tissue. This disease is prevalent

among plants in the Oleaceae family, including Forsythia

suspensa, and also occurrences in the Taxodiaceae, Rubiaceae,

Asparagaceae, and Caryophyllaceae families (Zhou et al., 2023;

Zheng et al., 2022a; Liu C, et al., 2023).
3 Occurrence of root rot in
medicinal plants

Root rot frequently affects medicinal plants that are valued for

their roots, such as those in the Araliaceae, Fabaceae,

Ranunculaceae, and Solanaceae families, which usually require 3-

5 years of growth before they can be harvested. The incidence of this

disease is alarmingly high, typically falling between 30% and 50%.
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In some extreme cases, the rate can exceed 70%, and there is a

troubling trend of increasing severity each year (Gao et al., 2005; Li

et al., 2024; Gao et al., 2014; Ma et al., 2023). Therefore, the

establishment of effective prevention and treatment measures for

root rot is significantly more critical for these perennial medicinal

plants than for annual crops.
3.1 The occurrence of root rot in China

In China, the root rot was initially identified in 1989, that

subsequent reports indicating its presence in northwest (Xinjiang,

Gansu) and northeast (Heilongjiang, Jilin). (Zhang J. et al., 2024;

Guan et al., 2020a; Liu et al., 2022; Li et al., 2022; Bernardi-Wenzel

et al., 2016). These regions are significant pastoral and agricultural

hubs (Table 1) (Wu W. et al., 2020; Yang Y. et al., 2024; Zhang Z. et

al., 2021; Ni et al., 2021; Sun X. et al., 2024; Shen et al., 2022; Tang et

al., 2020; Wu H. et al., 2020; Su and Fu et al., 2013; Cai F. et al., 2021;

Chu et al., 2024; Li and Cheng, 2021). Notably, root rot of

leguminous plants often occurs in Heilongjing, Liaoning, and

Tibet (Guan et al., 2020a; Abbas et al., 2022). For plants in the

Araliaceae family, root rot is commonly reported in Jilin and

Yunnan (Zhang et al., 2020; Gao et al., 2014; Mao et al., 2014).

Gansu has emerged as a region where root rot is prevalent among

plants from the Apiaceae family, Platycodon family, and legumes

family (Zhang J. N., et al., 2024; Zhao et al., 2021; Cai W, et al.,

2021), while in Guizhou and Sichuan, the disease also occurs

frequently (Wu H. et al., 2020; Chen et al., 2020). It can be seen
FIGURE 1

Four types of typical symptoms of root rot in medicinal plants. (A) The brown rot symptom on Gastrodia elata (Tang et al., 2022); (B) The dry rot
symptom on Atractylodes macrocephala (Yang et al., 2012); (C) The black rot symptom on A. membranaceus (Zhang X. C. et al., 2024); (D) The wet
rot symptoms on Glehnia littoralis (Lu et al., 2023).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1504370
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Han et al. 10.3389/fpls.2024.1504370
TABLE 1 The climate zone distribution in China where root rot disease has been reported occurring in medicinal plants.

Medicinal plant Fungi Climate zone Latitude and longitude Incidence rate

R. glutinosa F. solani1 Temperate continent
34°79′N,
113°79′E -

A. sinensis - Temperate continent
34°53′-35°25′N,
103°44′-104°20′E

-

P. notoginseng - Tropical monsoon
25°33′98′′N,
103°03′72′′E

-

C. chinensis - Subtropical monsoon
30°01′99′′N,
106°26′48′′E -

P. ginseng - Temperate monsoons
41°42′-42°25′N,
127°28′-128°16′E

-

G. elata - Subtropical monsoons
28°16′-28°22′N,
107°55′-108°22′E

25%

C. pilosula - Temperate monsoons
34°53′-35°25′N,
103°44′-104°20′E

-

M. sativa - Temperate continent
38°21′30′′-39°00′30′′N,
101°34′41′′-102°34′26′′E

-

L. chuanxiong - Subtropical monsoon
31°08′11′′N,
104°02′14′′E -

R. glutinosa F. oxysporum2 Subtropical monsoon
34°52′-35°2′N,
112°51′-113°13′E

-

Pulsatilla koreana - Temperate continent
38°43′-43°26′N,
118°53′-125°46′E

45%

C. pilosula - Temperate continent
34°53′-35°25′N,
103°44′-104°20′E 20%

A. sinensis - Temperate monsoon
34°53′-35°25′N,
103°44′-104°20′E

-

P. notoginseng - Tropical monsoons
25°33′98′′N,
103°03′72′′E

-

C. chinensis - Temperate monsoons
30°01′99′′N,
106°26′48′′E

-

P. ginseng - Temperate monsoons
41°42′-42°25′N,
127°28′-128°16′E

-

M. sativa - Temperate continent
38°21′30′′-39°00′30′′N,
101°34′41′′-102°34′26′′E -

P. odoratum - Temperate monsoons
41°23′32′′N,
124°04′27′′E

40%-50%

Gentiana scabra bunge - Temperate monsoons
41°47′28′′N,
124°21′35′′E

25%

L. chuanxiong - Subtropical monsoon
30°54′-31°26′N,
103°40′-104°10′E

-

A. sinensis F. redolens3 Temperate continent
35°00′39′′N,
104°63′49′′E

-

M. sativa - Temperate continent
38°21′30′′-39°00′30′′N,
101°34′41′′-102°34′26′′E -

A. sinensis F. avenaceum4 Temperate continent
34°26′22′′N,
104°02′13′′E

-

C. pilosula - Subtropical monsoon
34°53′-35°25′N,
103°44′-104°20′E

-

(Continued)
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TABLE 1 Continued

Medicinal plant Fungi Climate zone Latitude and longitude Incidence rate

C. chinensis F. tricinctum5 Temperate monsoons
30°01′99′′N,
106°26′48′′E

-

Ophiopogon japonicus F. acuminatum6 Subtropical monsoons
30°83′N,
112°53′E

75%

M. sativa F. verticillioides7 Plateau continent
38°21′30′′-39°00′30′′N,
101°34′41′′-102°34′26′′E

-

M. sativa F. proliferatum8 Temperate continent
38°21′30′′-39°00′30′′N,
101°34′41′′-102°34′26′′E

-Schisandra chinensis - Temperate monsoons
21°29′57′′N,
122°52′33′′E

A. carmichaelii - Subtropical monsoon
31°47′N,
104°45′E

M. sativa F. equiseti9 Temperate continent
38°21′30′′-39°00′30′′N,
101°34′41′′-102°34′26′′E

-

R. glutinosa F. moniliforme10 Subtropical monsoon
34°52′-35°2′N,
112°51′-113°13′E

-

M. sativa F. thapsinum11 Plateau continent
31°90′′-39°19′N,
89°35′-103°04′E

-

M. sativa F. incarnatum12 Temperate monsoons
44°04′-46°40′N,
125°42′-130°10′E -

P. quinquefolius F. proliferatum13 Temperate monsoons
33°17′42′′-33°53′29′′N,
106°38′05′′-107°18′14′′E

-

Dendrobium officinale F. sambucium14 Subtropical monsoon
28°31′N,
119°27′E

-

M. sativa T. roseum15 Plateau continent
31°90′′-39°19′N,
89°35′-103°04′E -

C. pilosula I. robusta16 Temperate continent
30°45′59′′N,
109°36′36′′E

-

P. quinquefolius C. destructans17 Tropical monsoons
33°17′42′′-33°53′29′′N,
106°38′05′′-107°18′14′′E

27.4%

R. glutinosa A. niger18 Subtropical monsoon
34°52′-35°2′N,
112°51′-113°13′E

-

R. glutinosa P. cactorum19 Subtropical monsoon
34°52′-35°2′N,
112°51′-113°13′E

-

R. glutinosa T. basicola20 Subtropical monsoon
34°52′-35°2′N,
112°51′-113°13′E -

L. chuanxiong Ph. glomerata21 Subtropical monsoon
30°54′-31°26′N,
103°40′-104°10′E

-

L. chuanxiong P. cucumerina22 Subtropical monsoon
30°44′54′′-31°22′09′′N,
103°25′42′′-103°47′E

-

P. notoginseng A. tenuis23 Tropical monsoons
23°16′-23°44′N,
103°43′-104°27′E -

P. notoginseng Pseudomonas sp.24 Tropical monsoons
25°33′98′′N,
103°03′72′′E

-

A. sinensis P. syringae25 Temperate monsoon
34°53′-35°25′N,
103°44′-104°20′E

-

P. notoginseng C. indoloqenes26 Tropical monsoons
23°16′-23°44′N,
103°43′-104°27′E

-

F
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* The “-” in the column of fungi represents the pathogen above. The “-” in the column of incidence rate represents no data. The superscript numbers in the column of fungi correspond to the
numbers in Figure 2, indicating the same pathogen.
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that root rot has caused extensive damage to the production of

medicinal plants in China (Li et al., 2020; Liu et al., 2023; Zhu et al.,

2020; Zheng et al., 2022b; Miao et al., 2006; Liu N. et al., 2020; Wang

H. et al., 2024; Zhang C. et al., 2021; Wu X. et al., 2020).

The soil texture can significantly impact the distribution of

pathogens within the soil as well as the plants resistance to diseases

(Cruz et al., 2020; Nielsen et al., 2009; Wang Y. et al., 2023; Wang Y.

et al., 2022). The International Soil Texture Classification System

categorizes soil textures into four major groups based on the

content of clay particles: sandy soils, loam soils, clay loam soils,

and clay soils. Each of these soil textures exhibits distinct properties.

According to the current literature reports, the soil type in most

root rot disease areas is loam soil, which can be seen to cause the

incidence of root rot disease (Zhang et al., 2020; Gao et al., 2014;

Zhang et al., 2024; Mao et al., 2014). Beyond soil factors, climatic

conditions exert a more substantial influence on the occurrence of

root rot disease. Considering the diverse climatic conditions across

the country, China is categorized into five climatic regions: tropical,

subtropical, temperate, cold, and plateau. In the subsequent

discussion, we will delve into the classification based on the

climatic divisions of production areas and the corresponding

distribution of root rot in medicinal plants (Figure 2).
3.2 Disease onset status in other countries

As a global soil disease, root rot has caused damage to medicinal

plants in various countries such as the United States, India,

Vietnam, and Hungary (Liyanapathiranage et al., 2023; Moparthi

et al., 2021). Root rot of the medicinal plant Gynostemma

pentaphyllum has been discovered and studied at Tam Dao, Vinh
Frontiers in Plant Science 06
Phuc, Vietnam (Chu et al., 2022). Nagy et al. discovered symptoms

of root rot in common sage in Somogy and Zala counties in

Hungary (Nagy et al., 2024). Root rot shows various symptoms

like yellowing and wilting of leaves, brown to black roots, oozing,

putrefaction and decaying of roots (Hu et al., 2021; ÖLmez et al.,

2021). The distribution of medicinal plant root rot is intricately

linked to environmental factors and soil types. According to foreign

research, the occurrence of root rot is also closely related to soil

types. The soil types of root rot endemic areas in Hungary, southern

India, Vietnam and the United States are loamy. This conclusion is

consistent with the results of soil types in China (Li et al., 2023). In

Hungary, Salvia officinalis is often infected by Phytophthora

pseudocryptogea. The disease occurred at a frequency of 15-20%

(Nagy et al., 2024). Root rot is the major disease of C. forskohlii

causing heavy losses (>50%) in South India (Singh et al., 2011). In

areas with limited rainfall, like certain regions in the United States

and Australia, plant thrives, particularly during rainless years. On

the other hand, regions experiencing high rainfall, such as eastern

Australia and cooler elevated areas in the United States, witness the

dominance of climate change. Indian and North Dakota root rot is

also found on Nepeta cataria, Tagetes erecta, and Cannabis sativa,

which are often damaged by F. solani, with an incidence rate of up

to 30% (Nishad et al., 2018; Saroj et al., 2013; Khan et al., 2022).
4 Root rot causing pathogens

Root rot in medicinal plants is primarily caused by pathogenic

fungus, while bacteria and nematodes can also cause disease (Guan

et al., 2020b). However, little research has been conducted on these

non-fungal pathogens recently. There are numerous pathogenic
FIGURE 2

Medicinal plants susceptible to root rot in different climatic zones of China. (The medicinal plants listed are the species with the highest morbidity in
each climatic condition. The numbers correspond to the pathogen numbered in Table 1).
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fungi, each with unique structural characteristics and pathogenic

symptoms. As a result, a thorough understanding for the

characteristics of these fungal diseases is crucial for the successful

control of root rot in medicinal plants, both theoretically and

practically value. The correct identification of pathogenic fungi

provides a scientific foundation for the development of targeted

control measures to protect the healthy growth of medicinal plants

and ensure the quality and production of medicinal herbs.

Among the known fungal pathogens, Fusarium is widely

recognized as a significant pathogenic bacterium for medicinal

plant root rot. This fungus may live in soil for long periods of

time and is spread by rain or irrigation water. F. solani and F.

oxysporum are the most common pathogens responsible for root rot

in a wide range of medicinal plants, including A. sinensis, P. ginseng,

P. notoginseng, C. chinensis and G. uralensis (De Lamo and Takken,

2020; Coleman, 2016; Cao X. 2013; Liang et al., 2022). In addition,

F. redolens, F. avenaceum and F. tricinctum have also been

documented to cause the condition (Wang Y. et al., 2022; Cao X.

2013, Liang et al., 2022). The genus of Fusarium, being the most

common causative agents of root rot, have been extensively studied

and widely focused on. Common modes of transmission for

Fusarium include vertical and horizontal spread (Nelson, 1992).

The former involves transmission to the next generation of seeds or

asexual propagation through infected plant breeding. The latter

occurs via mycelium lurking in the soil and spores in the air, which

infect susceptible plant tissues (Headrick and Pataky, 1991; Wang L,

et al., 2024). The genus Fusarium interacts with its host after

infection, resulting in physiological interactions or the production

of secondary metabolites that trigger the development of root rot in

plants (Lin et al., 2014). Wang et al. found that after inoculation

with M. sativa, the content of soluble sugars, soluble proteins, and

malondialdehyde significantly changed in multiple alfalfa varieties

(Wang S, et al., 2023). Haidoulis et al. performed transcriptome

analysis on the roots of small-grain cereals at the early stages of F.
Frontiers in Plant Science 07
graminearum infection, revealing that the expression of core tissue-

specific genes, such as those for cell wall-degrading enzyme

synthesis, was elevated. Additionally, some tissue-dependent

genes, including those for aurofusarin production and cutin

degradation, also showed increased expression (Haidoulis and

Nicholson, 2022). F. solani also changes the expression of

alkaloid-related bio-synthetic genes in the roots of C. chinensis

thereby reducing the synthesis of active medicinal components

(Song X, et al., 2023). The genus Fusarium produces many types

of toxins, leading to diverse symptoms and levels of damage in

plants, with fusaric acid (FA) being the primary one. FA can cause

programmed cell death in various plant species. Reveglia et al.

revealed how plant toxins from F. acuminatum (such as FA) and

other potential metabolites cause wilting in grapevine plants

(Reveglia et al., 2018).

The occurrence of root rot in medicinal plants, apart from being

induced by pathogenic Fusarium species, is also influenced by the

co-action of other pathogens. For example, the root rot pathogens

of Angelica sinensis include F. solani, F. oxysporum, F. acuminatum,

F. redolens, F. avenaceum and R. solani. Of these, F. acuminatum is

the main causal agent (Zhang T. et al., 2024). The root rot

pathogens of R. glutinosa include F. solani, F. oxysporum, A.

niger, T. basicola and R. solani. The main causal agent is the

fungus Fusarium sp (Wu et al., 2021). The same fungus, however,

can cause root rot in a variety of medicinal herbs. For example, the

most common F. solani not only infests A. sinensis, but may also

infest herbs P. notoginseng, C. chinensis, P. ginseng and C. tangshen

(Farh et al., 2018).

Some bacteria are also capable of causing root rot in medicinal

plants, but there is limited literature on this. Pseudomonas sp. and

C. indoloqenes can cause root rot in P. notoginseng. Similarly, P.

syringae can cause root rot in A. sinensis (Zhang M. et al., 2021). In

addition, when the roots of medicinal plants are damaged by

underground pests and nematodes, these wounds facilitate the
FIGURE 3

Pathogens of root rot disease in medicinal plant. (Statistics by type of pathogens).
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invasion of pathogens that accelerate and exacerbate the

development of root rot. Therefore, bacterial, subterranean pest

and nematode infestations also play an important role in the

development of root rot and need to be taken into account

during disease management.

Different medicinal plants may be affected by pathogens that are

peculiar to them. Therefore, exploring the pathogen of root rot in

different medicinal plant is critical for developing a precise control

approach to prevent and manage the root rot diseases. The

pathogens that have been reported in the literature so far are

summarized in Figure 3.
5 The damage of root rot to
medicinal plants

Root rot has extensive and profound implications for medicinal

plants, resulting in decreased production and quality. The disease

attacks the plant’s roots, causing root rot, which decreases the plant’s

ability to absorb water and nutrients. As the disease advances, the

plant’s growth and development are inhibited, perhaps leading to

plant mortality. This not only reduces the availability of medicinal

plants, but also has a substantial impact on the economics of their

production. The damage of root rot on medicinal plants in terms of

production and quality will be discussed below.
5.1 Decrease in production

Root rot poses a serious threat to the production of medicinal

plants and is capable of triggering varying degrees of production

reduction. In the case of Salvia miltiorrhiza, a severe incidence of

root rot may result in a production reduction of more than 50%.

The root rot of Beta vulgaris was initially discovered in the United

States and has since emerged in countries such as India and China.

The disease is particularly severe in the Chinese provinces of

Heilongjiang and Jilin, where it typically causes a 10%-40%

reduction in B. vulgaris production, and in severe cases may even

lead to complete crop failure. In addition, M. sativa has been

severely infected by root rot in several countries around the

world, including the United States, Canada, Australia, Russia,

Japan and Argentina. The disease has also been recorded in

Xinjiang, Qinghai and Gansu regions of China. Root rot can

cause mortality rates in M. sativa ranging from 60.08% to 73.45%,

resulting in annual production reductions of about 20% globally. In

some severe cases, the reduction in production can be as high as

40% (Hu, 2009; Chatterton, 2022). The problem of root rot disease

during cultivation of P. quinquefolium is also prominent, with a

perennial incidence of about 30%, and up to 90% in severe cases

(Sun et al., 2023). Root rot of R. glutinosa indicus generally leads to

a production loss of 10% ~ 30%, and in severe cases, it reaches more

than 50% (Wang et al., 2013). P. notoginseng suffers annual losses of

5% ~ 20% due to root rot, and in severe cases, it can reach 70% or
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even crop failure (Liao et al., 2006). All these data emphasize the

profound impact of root rot on the yield and agricultural

production of medicinal plants.
5.2 Decline in quality

Root rot poses a serious threat to the quality of medicinal plants

while reducing their production. This disease not only causes

diseased spot on the medicinal parts, directly reducing the

commercial value, but also reduces the content of important

active components in medicinal plants, thereby lowering the

overall quality of the herbs. In addition, the accumulation of

toxins produced by root rot pathogenic bacteria can exacerbate

root rot and in severe cases lead to the death of the entire plant.

These factors work together to affect the commercial and medicinal

value of medicinal plants.

The quality of Chinese medicinal materials is usually evaluated

by their appearance characteristics. Medicinal plants that are

seriously affected by root rot, such as L. chuanxiong, P.

quinquefolium and P. ginseng, have brown or black spots on their

roots (Sun X, et al., 2024; Lan et al., 2022; Farh et al., 2018). These

diseased spots greatly affect the appearance and quality of the

medicinal herbs, resulting in lower market prices for them. In

addition to affecting the appearance of herbs, root rot can damage

the structure and function of the roots of medicinal plants,

preventing the synthesis and accumulation of active components

in the roots from being impeded. Studies show that the degree of

decay of P. quinquefolium root is closely related to its saponin

content. Specifically, the content of the two monomeric saponins,

Re and Rb1, is significantly reduced in the more severely decayed

roots of P. quinquefolium (Fan et al., 2021). Rahman’s study

discovered that the amount of six key monomeric saponins (Re,

Rg1, Rb1, Rb2, Rc and Rd) is reduced by 40 to 50% in diseased P.

quinquefolium root (Rahman and Punja, 2005). Ginsenosides have

the properties of strengthening the body, regulating the nervous

system and slowing down the aging process. When P. ginseng is

attacked by root rot, the content of ginsenosides will also be

significantly reduced (Guan et al., 2020; Bischoff and Goodwin,

2022). Triterpenoid saponins and flavonoids in A. membranaceus

roots, compounds that are important in immune enhancement and

anti-inflammatory properties, are likewise reduced in content by the

effects of root rot (Qi et al., 2022). Furthermore, after invading the

roots of medicinal plants, the pathogenic bacteria will continuously

produce conidia and toxins. The accumulation of these toxins

exacerbates the degree of root infestation and seriously affects the

plant’s normal absorption and utilization of soil nutrients and

water, which in turn leads to yellowing and wilting of the above-

ground portion of the plant and reduces the quality of the medicinal

plant (Xu et al., 2021). For example, fungi of the genus Fusarium

produce fusaric acid, a non-specific toxin that can reduce root vigor

by altering the permeability of the plant’s root membrane (Hong

et al., 2023). R. solani toxin can damage cell structure, causing

disintegration or even disappearance of cell membranes, as well as
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leading to changes in organelles and nucleus structure (Qin et al.,

2020). Studies shows that the Rhizoctonia solani toxin also induces

the synthesis of chitinase and b-1, 3-glucanase in rice plants (Sriram

et al., 2001). Mycotoxins produced by Aspergillus niger,

Monocephalosporin compounds in Trichothecene mycotoxins

and toxins produced by P. coctarum are also important causes of

root rot in medicinal plants (Jin et al., 2015, 2007). Other

mycotoxins causing root rot have not been reported.

Root rot has a significant impact on medicinal plants, causing a

partial reduction in plant productivity in minor cases, and in severe

cases it may even cause complete crop failure. The disease may also

impair the quality of the medicinal portions, lowering the

therapeutic value of the plants. As a result, measures to minimize

the negative impact of root rot on the production and quality of

medicinal plants are essential to ensure the stability of the supply of

medicinal herbs and to promote the sustainable use of medicinal

plant resources.
6 Related factors of root rot
occurrence in medicinal plants

Root rot of medicinal plants primarily affects the roots and

rhizomes of Chinese herbal medicines. Its typically triggered by a

variety of pathogens that infiltrate through wounds in the plants

roots or stems. Over the past decade, the incidence of root rot has

become increasingly severe across various species of Chinese

medicinal plants and in different herbal production regions

nationwide, worsening year by year (Shen et al., 2014). Due to the

factors that cause root rot are complex, no effective methods for

prevention and control have yet been established. Therefore,

identifying the causal factors associated with affected plants is

crucial for effectively preventing and managing root rot. This part

give priority to the influencing factors of root rot incidence in
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medicinal plants, examining aspects such as environmental

conditions, genetic factors, field management, and plant

continuous cropping (Figure 4).
6.1 Environmental factor

6.1.1 Altitude
There is a correlation between the altitude of the area where

medicinal plants are cultivated and the incidence of root rot. In

Zhou’s study, the incidence of root rot in P. notoginseng was found

to be 15.00% at altitudes below 500 meters. At altitudes ranging

from 500 to 1000 meters, the incidence dropped to below 8.00%,

and further decreased to 5.60% at altitudes between 1000 and 1300

meters (Zhou et al., 2016). The majority of the surveyed locations

exhibited either sporadic occurrences of the disease or none at all,

indicating a significant decline in root rot incidence of P.

notoginseng with increasing altitude. Similarly, research on the

incidence of root rot in Aucklandia Lappa at altitudes of 1250 to

1690 meters revealed a similar trend: root rot incidence decreased

with rising altitude (Li et al., 2020). This phenomenon is primarily

attributed to temperature variations. At higher altitudes,

temperatures are relatively lower, which inhibits the growth of

root rot pathogens. Conversely, as altitude decreases and

temperatures rise, the warmer climate creates more favorable

conditions for the growth and reproduction of these pathogens,

leading to more severe disease occurrences.

6.1.2 Soil moisture content
Soil plays a crucial role in influencing both plant health and

adaptability, with soil moisture content playing a vital role in

shaping the inter-root soil microbe of medicinal plants. The

growth and development of plants and crops are inherently

linked to water availability. Appropriate soil moisture is essential
FIGURE 4

Factors associated with the occurrence of root rot in medicinal plants and prevention methods.
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for the normal survival of plants. However, excessive water can lead

to a higher incidence of plant diseases, jeopardizing plant survival.

In the study by Zhao et al., the maximum water holding capacities

(w) in the field were set at 45%, 60%, 70%, and 85% (Zhao et al.,

2014). The results indicated a rapid increase in the incidence of root

rot in P. notoginseng with rising soil moisture content. Specifically,

the 85% w treatment resulted in a 166.67% increase in root rot

incidence compared to the 70% w treatment. Yang et al. investigated

the effect of different soil textures on the occurrence of root rot in C.

chinensis (Yang L, et al., 2024). They analyzed 19 plots with varying

soil textures and found that the root rot incidence in clayey soil was

15.51% higher than in loam soil. This rise in incidence can be linked

to the enhanced water retention characteristic of clayey soils and

low-lying regions. Under these conditions, the soil becomes severely

oxygen-depleted, causing plant roots and rhizomes to shift from

aerobic to anaerobic respiration. This anaerobic process generates

significant amounts of ethanol, which can be toxic to the roots and

rhizomes. Ethanol poisoning results in root and rhizome injuries,

allowing pathogens to invade through these wounds, exacerbating

rot and ultimately leading to root rot. Thus, it is evident that soil

moisture levels profoundly influence the incidence of root rot.

6.1.3 Temperature and humidity levels
The temperature and humidity of the environment significantly

influences the occurrence, severity, and prevalence of root rot

diseases in various medicinal plants. In China, areas such as

Sichuan Province, which experience excessive rainfall, intensive

irrigation, and poor soil drainage, have a higher incidence of

oomycetes root rot compared to the northwest (Xinjiang and

Gansu) and north (Inner Mongolia) regions. This results in a

higher prevalence of root rot disease in M. sativa.

In the main production area of P. notoginseng in Wenshan,

Yunnan, two peaks of disease occurrence are observed each year

(Liang et al., 2006). The first peak occurs between March and April,

during the period from sowing to seedling emergence, when relative

humidity exceeds 85% (Cai et al., 2021). This primarily affects

seedlings, often resulting in failure to emerge. The second peak

appears from July to August, when relative humidity rises above

80%-90% and temperatures reach around 20 degrees Celsius,

leading to rapid disease spread. These observations indicate that

root rot is more likely to develop in cultivation areas characterized

by high temperatures and high humidity.
6.2 Genetic factors

Root rots resistance varies significantly among individuals of

different medicinal plants, and its occurrence is also linked to

genetic factors of these plants. Chen et al. developed the first

disease-resistant cultivar of P. notoginseng, named “Miaoxiang

Kangqi 1” (Chen et al., 2017). Results from root rot resistance

tests indicated that its two-year-old seedlings demonstrated

substantial resistance to the root rot pathogen F. oxysporum.

When compared to common cultivars, the disease index for root

rot in these resistant varieties was notably reduced by 35.8% to
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resistant cultivars, root rot incidence was effectively managed at the

genetic level, thereby minimizing the losses incurred by this disease

in medicinal production.
6.3 Field management

Effective field management directly impacts the incidence of

root rot. As a soil-borne ailment, root rot can be effectively

mitigated by controlling the microbial population through

management practices. For instance, burning diseased plant

residues, stubble, and weeds can help reduce the spread of

disease. Additionally, proper water and fertilizer management

during cultivation significantly impacts root rot incidence. The

use of green organic manure, farmyard manure, and organic

fertilizers (such as compost, green manure, and animal manure)

not only reduces the incidence of root rot but also fosters the growth

of beneficial soil microorganisms (Wiggins and Kinkel, 2005).

Wang et al. examined the incidence of root rot in P. notoginseng

under various management practices, revealing a marked difference

in disease severity between fine and loose management approaches

(Wang et al., 1998). For instance, the incidence rate of root rot at

Yanshan Farm, which is under careful management, was

approximately 0.5%. In contrast, at Wenshan Gumu and

Pingbazhai, where management practices were more lax, the

incidence rate soared to 30.7%. This illustrates a significant

disparity of 30% in the occurrence of diseased plants. Zhang et al.

demonstrated that enhancing the application of compound

fertilizers, phosphate fertilizers, and potash while maintaining

local traditional fertilizer levels along with increasing the use of

microbial fungicides, could reduce the incidence of Pseudostellaria

heterophylla from 19.06% to 6.89% (Zhang et al., 2015). Similarly,

Yao et al. managed to decrease the incidence of root rot in A.

membranaceus from 52% to 34.1% by exclusively applying organic

fertilizers instead of formulated chemical fertilizers. Furthermore,

Yao et al. conducted a two-year study on the effects of different

irrigation methods on root rot in P. notoginseng cultivation sites.

Their results indicated that alternating irrigation volumes of 0.125

m³ and 0.375 m³ significantly reduced the occurrence of root rot

(Yao et al., 2024). Overall, effective water and fertilizer management

tailored to local conditions plays a crucial role in minimizing root

rot incidence in plants.
6.4 Damage of continuous cultivation on
root health of medicinal plants

Continuous cropping disorder refers to the phenomenon where

planting the same or similar crops in the same soil for several

consecutive years leads to growth retardation, quality deterioration,

and yield reduction (Liu Z, et al., 2020). Yang et al. investigated the

occurrence of root rot in four S. miltiorrhiza production areas in

Henan Province, revealing average root rot rates of 7.2%, 34.2%,

32.2%, and 37.1%, respectively (Yang et al., 2021). Notably, the
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highest incidence of the disease was found in continuous cropping

fields, where the rate of diseased plants reached 85.0%. In another

study, Yang et al. selected 14 plots of C. chinensis with 3 to 4 years of

growth to analyze root rot occurrence across different cropping

systems (Yang L. et al., 2024). They found that the rates of root rot

in C. chinensis were lower than 15.67% in barren plots and 20.97%

in rotated plots, while continuous cropping plots exhibited a

significantly higher root rot rate of 55.32%. Li et al. conducted

research in Shibing County, Guizhou Province, where the incidence

of root rot in P. heterophylla was relatively low at 2.00%. However,

they discovered that the disease incidence and disease index for

plots subjected to 2 years and 4 years of continuous cropping were

36.67% and 46.00%, respectively (Li et al., 2017). This indicates a

strong correlation between the duration of continuous cropping

and the occurrence of root rot disease in medicinal herbs.

Self-toxicity caused by allelopathic substances is recognized as a

significant cause of root rot in medicinal plants, primarily due to the

disorder associated with continuous cropping. Studies have

demonstrated that, following prolonged continuous cropping,

certain medicinal plants release harmful substances into the soil,

which can directly or indirectly affect their own development and

growth, leading to toxic effects known as chemosensory self-

toxicity. Ren et al. indicated that changes in the content of b-
ODAP are closely linked to the occurrence of root rot in P.

quinquefolius. Specifically, the longer the period of continuous

cropping, the greater the accumulation of b-ODAP and the more

severe the incidence of root rot (Ren et al., 2018). It has been further

hypothesized that the severity of root rot may be positively

correlated with the concentration of b-ODAP secreted into the

soil. Since over 70% of Chinese herbal medicines consist of roots

and rhizomes, chemosensory substances in the soil can significantly

disrupt the soil micro-ecosystem, causing severe damage to the

growth of medicinal plants and consequently leading to a high

incidence of root rot (Zhao et al., 2024).

Significant reductions in the number and diversity indices of

inter-root fungi, along with notable changes in the community

composition caused by continuous cropping, are widely recognized

as the primary factors contributing to root rot in plants. Tan et al.

demonstrated that the diversity of inter-root and endophytic fungi

in P. quinquefolius soil significantly decreased as the number of

years of continuous cropping increased (Tan et al., 2017). Yu et al.

employed Illumina MiSeq high-throughput sequencing to analyze

the changes in fungal community diversity and composition

between unplanted P. quinquefolius soil and the inter-root soil of

four-year-old healthy and root-rotted ginseng in a new stubble field

(Yu et al., 2018). Their findings revealed a significant decline in both

species richness and diversity indices of inter-root fungi in

continuous four-year planting of P. quinquefolius compared to a

blank field. Notably, the diversity index of soil fungi in the root-

rotted ginseng was the lowest among the samples. Chen et al.

investigated the bases of P. quinquefolius in the Huai-rou of Beijing,

finding that the number of inter-root fungi in soil from heavily

cropped P. quinquefolius decreased by 50% to 63%, while the

diversity index (H’) dropped by 39% to 43% compared to new

land where ginseng had not been planted (Chen et al., 2012). Lu

et al. compared the inter-root soil fungal community structures
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between root-rot diseased and healthy P. sibiricum. Their results

revealed that the number of operational taxonomic units in the soil

samples from the diseased plant group was significantly lower than

that in the healthy group and the blank group (Lu et al., 2021). The

diversity index for the diseased group was the lowest, while the

blank group exhibited the highest diversity. These findings

underscore the multifaceted effects of plant succession on the

health of medicinal plant root and highlight the need for strategic

interventions to mitigate these challenges and sustain long-term

productivity in medicinal plant cultivation.
7 Strategies for managing root rot in
medicinal plants

The escalating severity of root rot poses significant challenges to

medicinal plants, prized for their therapeutic properties. This issue

leads to reduced yield sand compromised quality, becoming a

critical concern as global economic dynamics evolve with a

heightened emphasis on quality standards. Successfully addressing

root rot without heavily relying on chemical interventions has

become a pressing challenge. Controlling soil-borne diseases,

particularly root rot, is inherently complex. Contemporary

approaches encompass a range of methods such as physical

control, agricultural practices, chemical control, biological control,

and integrated control strategies. These varied approaches aim to

strike a careful balance, effectively managing root rot while

promoting sustainable cultivation practices that minimize

dependence on chemical inputs for medicinal plants (Figure 5).
7.1 Agricultural measures for prevention
and control

Agricultural control is fundamental in combating root rot

diseases. Select suitable planting plots and select high-quality

seeds with high moisture content and purity for planting. The soil

should be disinfected before planting to avoid mechanical damage

to plants during planting. At the same time, careful water and

nutrient management is implemented to ensure that the field has

good drainage. These measures help to increase the yield of

medicinal plants, improve nutrient absorption, and enhance the

plant’s defense against external pathogens (Zhang J. N. et al., 2024;

Yang Y. et al., 2024). Researchers have discovered that a balanced

application of nitrogen, phosphorus, and potassium, coupled with

the incorporation of green manure into the soil, can significantly

reduce the incidence of root rot in plants of the Araliaceae family,

achieving an impressive inhibition rate of up to 50% (Zhang et al.,

2021). In another study, Liu and colleagues demonstrated that the

use of bio-char to amend soils for continuous cropping not only

boosts soil fertility, but also diminishes the relative abundance of

root rot pathogens (Liu C. et al., 2022).

Exquisite agricultural field management, such as the adoption of

rational crop rotation and intercropping, can use the chemical

sensitive substances secreted by the roots of different plants to

overcome the barriers of continuous cropping (Chen et al., 2022).
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Reductive soil disinfestation is a method of soil treatment before

planting crops, which can be used as a barrier removal technique to

rebalance the soil microflora of P. ginseng cultivation (Li et al., 2019;

Duan et al., 2025). Native microbiome inoculation restore soil

capacity to suppress a root disease (Zhou et al., 2023). Studies

have shown that the soil under continuous cropping has higher

fungal diversity, the organic matter, pH, catalase and other enzyme

activities in the soil are significantly reduced, while the content of

available phosphorus (AP) and potassium (AK) are significantly

increased. Crop rotation is a very important means, which can

change the structure of soil microbial communities, affecting the

ecological function of the soil. Liu found that rotating corn or

cowpea with ginseng can reduce the root rot of ginseng, corn

rotation can increase root biomass and reduce root rot, significantly

increasing the relative abundance of beneficial bacteria (Liu C. et al.,

2022). The impact of different rotational crops on microbes varies,

making the selection of suitable rotational plants very important.

The advantage of agricultural management lies in its environmental

friendliness, avoiding negative effects on soil and plants, but it

requires long-term experience and practice, and its impact will not

be particularly significant.
7.2 Chemical control

Chemical control, characterized by its swift action, simplicity,

and immediate results, serves as a crucial tactic in the management

of medicinal plants. According to the statistics of Pesticide
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Information Network (http://www.jsppa.com.cn/news/yanfa/

11912.html), a total of 286 pesticides are registered for root rot

control in China, of which the most registered is fludioxonil,

followed by propiconazole, thiram, hymexazol and so on.

Researchers including Ma utilized carbendazim and Fumeishuang

as seed treatments to inhibit the pathogens causing root rot in

legumes (Ma et al., 2010). Similarly, Li and colleagues found that the

application of 98% dazomet granules, chloropicrin, and phenyl

compounds to soils in continuously cropped areas significantly

suppressed root rot in Araliaceae plants (Li Z. et al., 2022). The

triazole compound agent benzoyl propiconazole has the best control

effect on F. oxysporum, mancozeb and fludioxonil can produce

different degrees of inhibition on a variety of Fusarium fungi (Ma

et al., 2022; Zhang T. et al., 2024). Pyraclostro-bin, metconazole,

saphire and tebuconazole exhibited relative higher inhibitory on F.

proliferatum (Wu et al., 2023). Pentazolol, fluzoyl hydroxyl amine,

pyrimethystrobin and thiopazim can be used as rotating agents to slow

the development of resistance in pathogenic bacteria (Cui et al., 2022).

Despite its efficacy, chemical control faces challenges in the

production of Chinese medicinal materials, which is predominantly

managed by individual farmers. These farmers often lack

professional knowledge, leading to excessive use of potent, low-

cost pesticides (Duke, 2018). This practice not only results in the

violation of pesticide residue standards, but also compromises the

quality of medicinal materials. It has sparked concerns over

environmental contamination and the rise of pathogen resistance

to treatments, thereby restricting the broad adoption of chemical

control methods (Tudi et al., 2021).
FIGURE 5

Control measures for root rot of medicinal plants. Images sourced from Scientific Image and Illustration Software | BioRender.
frontiersin.org

http://www.jsppa.com.cn/news/yanfa/11912.html
http://www.jsppa.com.cn/news/yanfa/11912.html
https://doi.org/10.3389/fpls.2024.1504370
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Han et al. 10.3389/fpls.2024.1504370
TABLE 2 Disease resistance related genes.

Source plants Genes Diseases Bio-function

Medicinal plants P. notoginseng PnWRKY22 Root rot Resistant gene

P. notoginseng PnPR-like gene Root rot Resistant genes

P. notoginseng PnWRKY9 Root rot Resistant gene

P. notoginseng PnCHI3 Root rot Resistant gene

M. sativa MsSPL15 Root rot Resistant gene

C. sativa CsMLO1、CsMLO4 Powdery mildew Susceptible genes

Chrysanthemum CmbHLH18 Black spot disease Resistant gene

Crops and other plants Tobacco NtSWEET1 Root rot Resistant gene

Pea Psat7g091800.1 Root rot Resistant gene

L. regale LrWRKY2 Root rot Resistant gene

Apple MdCERK1 Root rot Susceptible gene

Soybean GmMYB78 Phytophthora root rot Susceptible gene

Soybean RpsSDB
Phytophthora root and
stem rot

Resistant gene

Soybean GmMPK6
Phytophthora root and
stem rot

Resistant gene

Soybean CaAMP1
Phytophthora root and
stem rot

Resistant gene

Soybean TaBln1 Stripe rust Susceptible gene

Soybean SRA2、SRZ4
Soybean Mosaic Virus、
Tobacco mosaic virus

Resistant genes

Wheat TaWRKY19 Stripe Rust Susceptible gene

Wheat Rps14 Phytophthora sojae Resistant gene

Wheat Mlo locus Powdery mildew Susceptible genes

Wheat MLIW30 Powdery mildew Resistant gene

Maize ZmNANMT
Southern leaf blight、northern
leaf blight、Fusarium stalk rot

Resistant gene

Rice Pi21、Bsrd1、Xa5 Rice blast、bacterial blight Resistant genes

C. arietinum RsAFP2 Fusarium wilt Resistant gene

Source plants Genes Diseases Bio-function

Medicinal plants P. notoginseng PnWRKY22 Root rot Resistant gene

P. notoginseng PnPR-like gene Root rot Resistant genes

P. notoginseng PnWRKY9 Root rot Resistant gene

P. notoginseng PnCHI3 Root rot Resistant gene

M. sativa MsSPL15 Root rot Resistant gene

C. sativa CsMLO1、CsMLO4 Powdery mildew Susceptible genes

Chrysanthemum CmbHLH18 Black spot disease Resistant gene

Crops and other plants Tobacco NtSWEET1 Root rot Resistant gene

Pea Psat7g091800.1 Root rot Resistant gene

L. regale LrWRKY2 Root rot Resistant gene

Apple MdCERK1 Root rot Susceptible gene

(Continued)
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7.3 Biological control

Biological control methods mainly utilize organic fertilizers to

modulate the bacteria associated with plant roots. Some studies

evidence the preventative and curative effects of biogas residue and

biogas liquid on root rot disease. Fungi and mycoviruses have

biocontrol capabilities to resisting pests like nematodes and

microbial pathogens that infect various parts of the plant, such as

yeasts, Trichoderma harzianum and Bacillus subtilis. These are

biocontrol agents that have been effectively commercialized (Seitz

et al., 2023; Umer et al., 2023; Freimoser et al., 2019; Wang Y. et al.,

2023). T. harzianum controls rates of root rot over 70%, increased

yield enhancements between 14.2% and 24.5% for L. chuanxiong, S.

miltiorrhiza, and O. japonicus. It also have antagonistic effects

against root rot in leguminous plants and also promote plant

growth. B. subtilis and B. pumilus have shown notable efficacy in

the control of root rot for Asteraceae and Fabaceae plants, achieving

inhibition rates of 72.79% to 81.09% (Bae et al., 2011; Park et al.,

2019; Li et al., 2007). Streptomyces XTBG45 can enrich the healthy

rhizosphere and effectively control root rot caused by F. oxysporum

and anthracnose (Pang et al., 2022). Arbuscular mycorrhizal as they

have been shown to reduce the incidence of fungal diseases and

nematode attacks on host plants by 30%-42% and 44-57%,

respectively (Basiru et al., 2023). Besides, microbial volatile

compounds, like Bacillus species, that can be used for biocontrol
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of plant pathogens, such as bacteria, oomycetes and fungi, are a

sustainable first choice for synthetic fungicides (Xia et al., 2023;

Tilocca et al., 2020).

Phage cocktails are a feasible option for controlling a variety of

plant diseases (Kering et al., 2019; Mani, 2023). We can also insert

mutations into specific regions in the genome with high precision,

and efficiency using techniques like Crispr/Cas and mutations. It can

be induced in numerous genes at the same time, which aid in

determining the role of different genes in biocontrol (Park et al.,

2024). Microbiome engineering is an intriguing option for improving

a plant’s biological capabilities, which has the potential to have a big

impact on agriculture (Afridi et al., 2022; Song et al., 2023; Jansson

et al., 2023). Predatory protists may therefore represent promising

biological agents that can contribute to sustainable agricultural

practices by promoting interactions between the plant and its

microbiome (Guo et al., 2024). In addition, Agricultural Jiaosu has

effectively managed F. oxysporum with a semi-maximum inhibitory

concentration of 13.64% (Gao H, et al., 2022). Biological control

methods are lauded for their minimal environmental impact, their

capacity to sustain the equilibrium of soil microbial communities,

and their role in maintaining the stability of agricultural ecosystems.

Nevertheless, these approaches are highly susceptible to variations in

field environments and weather conditions, which can restrict their

practical application in farming (Gao et al., 2022; Ma et al., 2021; Tsai

et al., 2023).
TABLE 2 Continued

Source plants Genes Diseases Bio-function

Soybean GmMYB78 Phytophthora root rot Susceptible gene

Soybean RpsSDB
Phytophthora root and
stem rot

Resistant gene

Soybean GmMPK6
Phytophthora root and
stem rot

Resistant gene

Soybean CaAMP1
Phytophthora root and
stem rot

Resistant gene

Soybean TaBln1 Stripe rust Susceptible gene

Soybean SRA2、SRZ4
Soybean Mosaic Virus、
Tobacco mosaic virus

Resistant genes

Wheat TaWRKY19 Stripe Rust Susceptible gene

Wheat Rps14 Phytophthora sojae Resistant gene

Wheat Mlo locus Powdery mildew Susceptible genes

Wheat MLIW30 Powdery mildew Resistant gene

Maize ZmNANMT
Southern leaf blight、northern
leaf blight、Fusarium stalk rot

Resistant gene

Rice Pi21、Bsrd1、Xa5 Rice blast、bacterial blight Resistant genes

C. arietinum RsAFP2 Fusarium wilt Resistant gene

Source plants Genes Diseases Bio-function
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8 Genetic mechanism in the
occurrence and control of root rot

As the demand for medicinal plants continues to grow, the

cultivation area of medicinal plants with roots and root tubers as

the primary medicinal parts is also expanding. However, the high

incidence of root rot disease is one of the main reasons for the

reduction in the yield of medicinal plants. While it is currently

recognized that pathogens are the major cause of root rot in

medicinal plants, efforts to reduce the occurrence of this disease

through optimized management practices and the application of

chemical pesticides during cultivation and management have not

yielded satisfactory results. Therefore, there is an urgent need for the

cultivation of newmedicinal plant varieties that are highly resistant to

disease, the mechanisms of disease resistance is a prerequisite for

breeding highly resistant varieties of medicinal plants.

Throughout the process of plant growth and evolutionary

development, plants are often threatened by various pathogenic

microorganisms. In addition to producing a range of secondary

metabolites as a result of evolution, they also generate a series of

immune regulatory responses. During the plant immune response,

resistance genes play a crucial role in defending against pathogen

invasion. To date, more than 100 disease-resistant genes have been

cloned from various plants (Dangl and Jones, 2001), such as

soybean (Niu et al., 2022; Million et al., 2019; Gao et al., 2024;

You et al., 2023; Gao Y. et al., 2022; Guo et al., 2022; Shao YY, et al.,

2024), wheat (Geng et al., 2016; Wang N. et al., 2022; Wang et al.,

2014), maize (Li et al., 2023), rice (Tian et al., 2022; Wang N et al.,

2022; Tao et al., 2021), tobacco (Gai et al., 2021), pea (Kälin et al.,

2024), Lilium regale (Li S. et al., 2024), apple (Pei et al., 2024), and

Cicer arietinum (Sadhu et al., 2023) (Table 2). The research on the

genetic mechanism of root rot disease in medicinal plants started

later than that in crops, but the discovery and functional verification

of disease-resistant genes are also developing rapidly (Jamann et al.,

2016; Wang H. L. et al., 2024; Pépin et al., 2021; Wang et al., 2014;

Ding et al., 2023; Parkunan et al., 2014; ShaoW. et al., 2024). In root

rot research on medicinal plants, the use of transcriptome and

resequencing technologies to screen for resistance-related

regulatory genes against root rot has emerged as a new approach

for developing root rot-resistant varieties. Kang et al. screened for

disease resistance genes through transcriptomic analysis of the roots

of P. notoginseng and conducted quantitative analysis of hormone

levels using UPLC-MS. The results indicated that the transient

overexpression of the gene PnWRKY22 increased salicylic acid

levels in the leaves of Sanqi, enhancing its resistance to root rot

disease, suggesting that PnWRKY22 is an important disease

resistance gene for P. notoginseng root rot (Kang et al., 2021;

Ning et al., 2021; Li S. et al., 2021). Li et al. showed that the

PnPR-like gene exhibited significant in vitro antifungal activity, and

the overexpression of PnPR-like resulted in transgenic tobacco

plants displaying high resistance to the root rot pathogen F.

solani (Li et al., 2020). Zheng et al. demonstrated that the
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transcription factor PnWRKY9 could activate the transcription of

the defense-related defensin gene PnDEFL1 against F. solani, and

that PnWRKY9 works synergistically with the jasmonic acid (JA)

signaling pathway to enhance disease resistance, indicating that

PnWRKY9 has a positive effect on plant defenses against root rot

pathogens (Zheng et al., 2022). Zhao et al. conducted

transcriptomic analysis on two disease-resistant genotypes of the

same variety of M. sativa that showed different resistance levels to

root rot, successfully screening for the candidate disease resistance

gene MsSPL15 (Zhao et al., 2023). By investigating the resistance

and susceptibility genes associated with root rot disease, we can gain

deeper insights into the mechanisms of disease resistance in

medicinal plants. This research provides a foundation for tackling

the challenges posed by root rot disease and for the development of

disease-resistant varieties of medicinal plants (Gao Y. et al., 2022; Li

et al., 2024; Zhang X. et al., 2024; Song S. et al., 2023; Sun B. et

al., 2024).
9 Discussion

To date, research on root rot in medicinal plants has primarily

focused on the families such as Araliaceae, Fabaceae,

Ranunculaceae, and Solanaceae. Given the growing concern

regarding root rot in medicinal plants, this review aims to present

the current state of research in this field. By summarizing the

progress made in root rot of medicinal plants, it seeks to provide

valuable references for related studies, including effective disease

prediction, control measures, and the standardized cultivation of

medicinal plants. It also proposes reasonable future research

directions in the area of root rot in medicinal plants.

The prevention and control of root rot in medicinal plants is a

valuable research field. Although existing studies have achieved

diversified progress in the research and prevention of root rot,

mainstream control methods, including agricultural management,

biological control, and chemical control, exhibit their own

limitations. Although agricultural and biological controls are

environmentally friendly, they tend to be slow-acting and may not

be effectively applied during the mid-to late stages of root rot outbreaks.

On the other hand, while chemical control is highly efficient, it presents

challenges such as drug residues and the gradual development of

pathogen resistance. Furthermore, significant differences among plant

types, the complexity of pathogenic causes, poor varietal stability, and

long breeding cycles have impeded the progress of selecting disease-

resistant germplasm. Thus, there is an urgent need to devise reasonable

methods for effectively preventing root rot in medicinal plants to guide

scientifically sound cultivation practices. In terms of biological control,

optimizing the formulation of biological fertilizers and other biocontrol

agents can enhance the efficacy of biological control while achieving a

balance between environmental safety and practical efficiency. In plant

breeding, in addition to traditional germplasm selection methods,

utilizing multi-omics technologies to identify disease-resistant genes
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can speed up the breeding process. Genome editing technologies for

plants offer vast opportunities for the development of disease-resistant

varieties in medicinal plants. The ability to achieve efficient, precise,

and targeted mutations throughout the entire genome, combined with

complementary technologies such as high-throughput phenotyping,

genomic selection, and rapid breeding, holds promise for ensuring the

widespread application of genome editing.

In addition to precise control, effective prediction is also crucial for

mitigating disease severity and reducing losses. As a typical soil-borne

disease, root rot initially manifests in the roots and root tubers of plants

before symptoms appear on the entire plant. This often results in

growers being unable to monitor and control the disease in its early

stages. Therefore, the development of reliable and non-destructive early

disease detection technology is vital. For example, hyperspectral

reflectance imaging technology was used for non-destructive detection

of carotenoids, starch, and sucrose levels in P. ginseng, enabling real-

time monitoring and prediction of root rot occurrence based on

detection results (Park et al., 2023). Similarly, hyperspectral imaging

technology was employed to detect spectral changes in chili leaves to

predict root rot incidence (Shao YY, et al., 2024). However, due to

significant individual variation among medicinal plants, detection

technologies that are applicable to a single plant species may have

limited applicability. Therefore, there is an urgent need to develop early

detection techniques that can be broadly applied to root rot across

various plant species.

The occurrence of root rot in medicinal plants is the result of a

complex interplay between pathogens and environmental conditions.

The onset of root rot is closely related to the environmental factors

affecting the growth of medicinal plants, field management practices,

and individual variations among plants. With global climate change

and shifts in agricultural production patterns, the incidence of root

rot may also change. Future research should focus more on the

dynamic monitoring of root rot under different environmental and

management conditions, as well as its interactions with the growth of

medicinal plants. By deepening our understanding of the

mechanisms underlying root rot occurrence and its influencing

factors, we can integrate modern biotechnology with traditional

agricultural management practices to promote the breeding of

quality varieties and sustainable cultivation of medicinal plants,

thereby ensuring the healthy development of the medicinal plant

industry, which is also critical for maintaining the economic viability

of medicinal plant cultivation.
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