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Ignasi Batlle1 and Alejandro Calle5*

1Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,
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Almond breeding is increasingly focusing on kernel quality. However, unlike other

agronomic traits, the genetic basis of physical and chemical kernel quality traits has

been poorly investigated. To address this gap, we conducted a QTL mapping of

these traits to enhance our understanding of their genetic control. We phenotyped

fruit samples from an F1 population derived from the cross between ‘Marcona’ and

‘Marinada’ for up to four years, using conventional and image analysis methods.

Additionally, the 91 individuals of the population were genotyped with the almond

Axiom™ 60K SNP array, and high-density linkage maps were constructed. These

analyses identified several genomic regions of breeding interest. For example, two

regions on chromosome one were found to contain QTLs for kernel shape and

dimension, while another region at the end of the same chromosome contained

QTLs for kernel fatty acid composition. Notably, QTLs for kernel symmetry and

kernel shoulder, reported for the first time in this study, were also mapped on

chromosome one. These QTLs will serve as a foundation for developing molecular

markers linked to kernel physical and chemical quality traits in almonds, facilitating

the integration of marker-assisted selection into breeding programs.
KEYWORDS
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1 Introduction

Almond [Prunus dulcis (Miller) D.A. Webb, syn. P. amygdalus (L.) Batsch] is the most

important tree nut species worldwide, with a production steadily increasing over the last 15

years. In 2022, global in-shell almond production reached nearly 4 million tons, yielding 1.6

M tons of kernel. The U.S. accounted for the majority of the almond production (79%),
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followed by Australia (8%) and Spain (6%) (FAOSTAT, 2024). The

crop exhibits remarkable adaptability to diverse climates and

irrigation regimes (Alonso et al., 2017; Martıńez-Gómez et al.,

2017), ranging from the fully irrigation practiced in California to

the traditional dryland farming in some Mediterranean and Asian

countries (Gradziel et al., 2017). This wide adaptability highlights

almond as a promising crop for addressing the challenges of climate

change in various regions, where less resilient crops may prove

unsuitable for cultivation.

Almond have a wide range of uses, including raw consumption,

snacks, desserts, marzipans, cookies, ice creams, etc. Each

application has specific quality requirements, and different

almond varieties are better suited to particular uses. Thus, several

kernel traits like shape, dimension, fatty acids, lipid content,

vitamins, phytosterol content, minerals, proteins, carbohydrates,

or fiber were described at cultivar levels to assess the quality, and

attractiveness, and study their best industrial performance

(reviewed in Yada et al., 2011; Romero, 2014; Kodad, 2017;

Flankin and Mitchell, 2019). Differences between almond in

physical traits such as kernel dimensions, shape, surface color, or

ease of skin removal are well-characterized and serve as unique

features for usage and marketing. Similarly, variation in nutritional

composition among cultivars highlights the influence of their

genetic makeup and its interaction with factors such as

geographical origin, climatic environment, and growing

conditions (Beltrán et al., 2021; Rabadán et al., 2018; Lipan

et al., 2019).

Despite extensive research on the physico-chemical traits of

almonds, information on their genetic basis remains limited. The

first marker-based genetic studies focused on agronomic traits, such

as self-compatibility (Ballester et al., 1998), flowering time (Ballester

et al., 2001), productivity and ripening date (Sánchez-Pérez et al.,

2007), using low-density linkage maps that identified several major

genes and quantitative trait loci (QTLs). Subsequent genetics

studies on kernel quality traits initially targeted monogenic

features, such as the amygdalin content related to kernel

bitterness/sweetness (Sánchez-Pérez et al., 2007, 2010). Later,

genomic regions associated with the content of chemical

compounds like tocopherol homologues, fatty acids, protein, and

oil were mapped in a ‘Vivot’ × ‘Blanquerna’ almond population

(Font i Forcada et al., 2012; Fernández i Martı ́ et al., 2013).

Additionally, association analyses using a wide almond

germplasm collection investigated the genetic control of kernel

dimensions (width, thickness, and length) and other chemical

traits (Font i Forcada et al., 2015a and 2015b). In recent years,

new genomic tools have been developed, and three different almond

genomes have been released (Sánchez-Pérez et al., 2019; Alioto

et al., 2020; D’Amico-Willman et al., 2022; Castanera et al., 2024)

along with a 60K SNP array for high-throughput genotyping (Duval

et al., 2023). These advances have enabled the development of

highly saturated linkage maps used to search for genetic

associations with traits like shell hardness (Goonetilleke et al.,

2018), the volatilome of roasted kernels (Di Guardo et al., 2021),

and other phenological and nut quality traits (Paizila et al., 2021;

Goonetilleke et al., 2023; Sideli et al., 2023; Pérez de los Cobos et al.,

2023; Sideli et al., 2024). As a result of these efforts, four major
Frontiers in Plant Science 02
genes: self-compatibility, late-blooming, sweet kernel, and shell

hardness are currently being selected with molecular markers in

different breeding programs (Goonetilleke et al., 2018; Sideli et al.,

2023). However, despite the development of a marker for kernel

bitterness (Sánchez-Pérez et al., 2010) along with KASP markers

(Ricciardi et al., 2018; Lotti et al., 2023), no markers of breeding

interest are available for other physicochemical almond

kernel traits.

In this study, the genetic inheritance of kernel quality traits such

as kernel weight, shape-related traits, color, and chemical

composition was investigated in an F1 population from the

‘Marcona’ × ‘Marinada’ cross. This population was phenotyped

for four years for physical traits and one year for kernel chemical

composition. Highly saturated linkage maps were developed using

the genotypes obtained with the almond 60K SNP array (Duval

et al., 2023) and QTL mapping was carried out.
2 Materials and methods

2.1 Plant material

An F1 population of 91 individuals derived from the cross

between ‘Marcona’ and ‘Marinada’ (MC × MI) was used in this

study. ‘Marcona’ is a highly valued traditional Spanish cultivar,

known for its characteristic rounded kernel shape and high level of

fatty acids (Martıń Carratalá et al., 1998; Calle et al., 2024).

‘Marinada’ (‘Lauranne’ × ‘Glorieta’) is a self-compatible breeding

cultivar released by IRTA in 2008, noted for its very sweet kernel

and high percentage of soluble sugars (Vargas et al., 2008; Romero

et al., 2011). Seedlings were grafted onto ‘Garnem®’ rootstock and

planted at 4 × 1.8 m in 2015. The MC × MI population and its

parents are maintained at the IRTA Mas Bové experimental station

(41.170723 N, 1.172942 E) under standard agricultural practices.
2.2 Phenotypic data collection

The MC × MI population and both parents were evaluated for

several physical and chemical traits. The physical traits included

kernel weight, crack-out percentage, kernel size (length, width, and

thickness), kernel shape (roundness, globosity, shoulder, and

symmetry), and tegument and kernel color (L*, a*, b*). The

kernel chemical traits assessed were kernel protein, fiber and fat

content, and fatty acids profile (myristic, palmitic, palmitoleic,

margaric, cis-10-heptadecenoic, stearic, oleic, vaccenic, linoelaidic,

linoleic, arachidic, cis-11-eicosenoic, and cis-11,14-eicosadienoic).

From 2018 to 2021, fifty mature fruits were randomly collected

from each individual of the F1 MC × MI population and its parents.

Fruits were considered mature when the mesocarp was fully dry,

split along the fruit suture, and the peduncle was near complete

abscission. After dehulling, nut weight was measured, shells were

cracked, and kernel weight (KWe) was recorded using an electronic

scale. Crack-out percentage, calculated between 2019 and 2021, was

determined as the ratio of kernel and nut weights. After that, kernel

length (KLen), width (KWidth), and thickness (KThick) was
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measured with a digital Vernier caliper. Kernel roundness

(KRound) and globosity (KGlob) were estimated using the ratios

width/length and width/thickness, respectively. Kernel size and

shape traits were also assessed using image analysis. For that, a

standard photo of six kernels was taken per individual (Figure 1),

and images were analyzed using the Shape Analyzer (SA) software

(Jurado, 2024). This deep learning-based tool automatically detects

almond kernels from images and measures them. The parameters

obtained included kernel length (KLen_SA), width (KWidth_SA),

roundness (KRound_SA), symmetry based on ‘structural similarity

index measure’ (SSIM) (Sym_SSIM), and Jaccard index (Sym_Jacc).

Both indices determine kernel symmetry by comparing the

similarity between the two sides of the kernel along the

longitudinal axes using digital images (Figure 1B). For that, the

box containing the kernel (Figure 1B) was divided in half and right-

flipped to compare the similarity between both sides using the SSIM

and Jaccard coefficient metrics, with a value of 1 indicating perfect

symmetry. These traits were phenotyped in 2020 and 2021.

Additionally, in 2020, the kernel shoulder, referring to anomalies

in the basal area of the kernels (Figure 1), was visually assessed using

a scale from one (no shoulder) to five (marked basal anomaly as

observed in Figure 1C; KShoul_Vis), and measured using the

Tomato analyzer software (Gonzalo et al., 2009) to determine the

angle of the kernel shoulder (KShoul_Angle) as shown in Figure 1.

Tegument (the kernel skin) and kernel color were determined with
Frontiers in Plant Science 03
a Minolta Chroma Meter tri-stimulus color analyzer (CR-3500D;

Minolta, Ramsey, NJ, USA) calibrated to a white porcelain reference

plate using a CIELAB scale with color space coordinates L*, a* and

b* (Tcolor_L, Tcolor_a, Tcolor_b, Kcolor_L, Kcolor_a, Kcolor_b).

Tegument and kernel color were measured from 2018 to 2021.

Fat content was analyzed by Soxhlet method, using 5 – 6 g of

ground blanched almonds and petroleum ether (boiling point 40 to

60 °C) for 7 h in Soxhlet apparatus (Romero et al., 2021; Etheridge

et al., 1998). The fat content was expressed as a percentage (%),

calculated based on the weight of the extracted fat relative to the

total weight of the sample. This trait was measured only in 2021.

Crude protein was analyzed from 2018 to 2021 by Dumas

combustion procedure using Leco FP-528 analyzer as described in

Romero et al. (2021). Briefly, 0.2 g of grounded sample was weighed

in a porcelain sample holder (boat) for introduction into the

combustion chamber (850 ± 1 °C) utilizing an automated sample

loader. The combustion process converts covalently bound 130

nitrogen into nitrogen gas (N2) that is quantified by passing the gas

through a conductivity cell and converted to protein by multiplying

a factor of 6.25. The results were expressed as a percentage (%) of

protein content.

Crude fiber was measured from 2019 to 2021 using 1 g of the

grounded sample. The sample was treated with boiling 0.26 N

sulfuric acid for 30 min, followed by boiling 0.23 N potassium

hydroxide for another 30 min (Romero et al., 2021). The extracted
FIGURE 1

(A) Original and (B) processed images for ‘Marcona’ shape attributes using the Shape analyzer software. (C) Kernel images of three different
individuals from the ‘MC × MI’ population where segregation of kernel shape and the shoulder trait (arrow) are shown.
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residue was dried at 103 ± 1 °C for 3 h, weighed, then placed in a

furnace (550 ± 1 °C for 3 h), and finally, the ashes were weighed.

These results were expressed as a percentage (%) of ash content.

Fatty acids were analyzed by gas-chromatography with a flame

ionization detector (GC-FID) using a capillary column (Romero

et al., 2021). The fatty acid methyl esters (FAMEs) were prepared by

trans-esterification with 0.5 M potassium hydroxide, following the

official method UNE-EN ISO 5509:2000. FAMEs (1 mL) were

separated using a gas-chromatograph (HP 6890; Agilent

Technologies, Barcelona, Spain) equipped with an FID detector

and a capillary column [30 m · 0.25 mm i.d. (HP-Innowax, Agilent

Technologies)]. The carrier gas was helium, with a flow rate of 1

mL/min. The injector and detector temperatures were 220 and 275°

C, respectively. The FAME identification was based on retention

time relative to those of a standard FAME mixture (Sigma-Aldrich,

Madrid, Spain). Fatty acids were measured only in 2021. Results

were expressed in mg/g as average values of three replicates.
2.3 Data analyses

In this study, LSmean, which provides a way to obtain mean

trait values that are adjusted for fixed effects, was considered to

predict the effect of the year, assuming that the environmental

conditions of every year affect all individuals in the population in

the same way. Therefore, for traits with more than one year of data,

the LSmean was calculated according to the following equation:

Pij =   b0 + bi + byearj + eij

where Pij is the phenotypic value of the i-th individual in the j-th

year, b0 is the intercept (overall mean phenotypic value), bi   is the
effect of the i-th individual, byearj is the effect of the j-th year, and eij
is the error term for the i-th individual in the j-th year. The

coefficient of determination (R2) was used to measure how the

LSmean fits the data and how well it can predict outcomes. R2 was

determined using the following formula:

R2 = 1 − SSR – SST

where SST is the sum of squares of the residual errors, and SST

is the total sum of the errors. R2 ranges between 0 and 1, with values

closer to 1 indicating better LSmean prediction.

Pairwise correlation coefficients were calculated for all traits

(single-year data and LSmean data) using the JMP® software

(JMP®, Version 16, SAS Institute Inc.) Significance was calculated

using the Spearman correlation coefficient significant (p<0.001).

Normal distribution was assessed using the Shapiro-Wilk test

(p<0.05) using JMP®.
2.4 Genotyping, SNP filtering, and linkage
map construction

Total genomic DNA from the 91 individuals and two parents

was isolated from young leaves using the CTAB method (Doyle and

Doyle, 1990), adapted for 96-well plates. The DNA samples were
Frontiers in Plant Science 04
genotyped with 33 SSRs and the almond Axiom™ 60K SNP array

(Duval et al., 2023).

For the SSRs, a set of markers that were heterozygous in

‘Marcona’ or in ‘Marinada’ was selected. In genomic regions not

well covered with the initial set of SSRs, new SSRs were designed

using the almond reference genome (Alioto et al., 2020). Primers

were designed using Primer 3 (http://primer3.ut.ee, v4.1.0) with

default parameters. The list of SSR markers used is presented in

Supplementary Table 1. PCR reactions were conducted in a final

volume of 10 mL containing 200 ng of genomic DNA, 1x NH4

reaction buffer, 1.5 mMMgCl2, 0.2 mM dNTPs (10mM), 0.2 mM of

each marker, 1 U of BIOTaq (Bioline, London, UK) and HPLC H2O

to reach the final volume. PCRs were performed in a GeneAmp

PCR System 9700 thermal cycler (Applied Biosystems, CA, USA)

with the following conditions: initial denaturation at 94°C for

1 min, 35 cycles of denaturation at 94°C for 15 s, primer

annealing at a specific temperature for each primer for 15 s,

extension at 72°C for 30 s, and a final extension at 72°C for

5 min. Forward primers were designed with a generic

fluorochrome sequence at the 5’ ends (FAM, VIC, NED, or PET).

PCR products were added to 12 mL of deionized formamide

containing 0.35 mL of GeneScan500 LIZ size standard (Applied

Biosystems, CA, USA) and heated at 94°C for 3 min. Capillary

electrophoresis was performed in an ABI Prism 3130xl automated

sequencer (Applied Biosystems, CA, USA). GeneMapper v5.0

software (Applied Biosystems) was used for SSR allele sizing.

The almond Axiom™ 60K SNP array genotyping was

performed on an Axiom GeneTitan™ (ThermoFisher Scientific)

system at the INRAE Gentyane platform in Clermont-Ferrand

(France). Genotypic data was retrieved using the Axiom Analysis

Suite (ThermoFisher, 2017). Samples were filtered following the

Axiom best practices workflow, setting an average call rate > 95. We

then filtered out SNPs with the following characteristics: (i)

monomorphic SNPs in the progeny; (ii) heterozygous SNPs in

‘Marcona’ and ‘Marinada’ but with only two genotypic classes in the

progeny; (iii) homozygous SNPs in ‘Marcona’ and heterozygous in

‘Marinada’ with three genotypic classes in the progeny; (iv)

homozygous SNPs in ‘Marinada’ and heterozygous in ‘Marcona’,

but with three genotypic classes in the progeny. After filtering based

on segregation, missing data, and putative genotyping error

ident ifica t ion and imputa t ion were per formed wi th

AlphaFamImputed software (Whalen et al., 2020) using default

settings. We then ordered the SNPs based on their physical position

in the ‘Texas’ almond genome v2.0 (Alioto et al., 2020) and phased

them manually. Finally, a set of bins (i.e. groups of SNPs with

identical genotypes for all the individuals) was established, with

each bin separated from the adjacent bin by at least one

recombination event.

Finally, three linkage maps were built using JoinMap 5® (van

Ooijen, 2018). The MC × MI map was constructed using all the

previously selected bins, the ‘Marcona’ map was built using only

bins heterozygous in ‘Marcona’, and the ‘Marinada’ map was built

using only bins heterozygous in ‘Marinada’. For map construction,

a minimum logarithm of odds (LOD) score of 10 was selected for

SNP grouping. Makers showing segregation distortion higher than

0.01 were excluded from linkage mapping unless other distorted
frontiersin.org
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markers with similar ratios surrounded them. The maximum

likelihood algorithm with default parameters and the Kosambi

mapping function were used (Kosambi, 1944).
2.5 QTL mapping

LSmean and single-year data were analyzed for QTL detection

in the three linkage maps (‘Marcona’, ‘Marinada’, and MC × MI)

using MapQTL 6.0® (van Ooijen, 2009). Interval mapping (Lander

and Botstein, 1989) and multiple QTL mapping (Jansen and Stam,

1994) strategies were used for QTL discovery. To determine the

significance threshold for each QTL, LOD was calculated for each

linkage group (LG) and trait using the permutation test (1000

permutations) at a 95% significance level (p < 0.05) (Lander and

Botstein, 1989; van Ooijen, 1992). As most traits had a significance

level similar to 3, a final threshold of LOD 3 was used in all cases.

The QTL confidence interval was defined as the LOD - 1. For traits

with non-normally distributed data, we used the Kruskal-Wallis

non-parametric test in MapQTL, retaining only QTLs that were

significant in this test (p< 0.01) and also significant with interval

mapping (LOD > 3.0). QTLs were named according to the

recommendations for standard QTL nomenclature and reporting

of the Genome Database for Rosaceae (Jung et al., 2019). Graphical

representation of linkage maps and QTLs was created using

MapChart (Voorrips, 2002). The physical positions of the QTLs

are based on the almond reference genome of ‘Texas’ v3.0-F1

(Castanera et al., 2024).
3 Results

3.1 Trait distributions and correlations

We obtained phenotypic data for 22 traits, including both

kernel physical and chemical characteristics. The physical traits

measured were kernel weight, crack-out percentage (crack-out),

kernel size (length, width, and thickness), kernel shape (roundness,

globosity, shoulder, and symmetry), and tegument and kernel color

(L*, a*, b*). The kernel chemical traits included kernel protein, fiber,

and fat content. For the fatty acid profile, we measured myristic,

palmitic, palmitoleic, margaric, cis-10-heptadecenoic, stearic, oleic,

vaccenic, linoelaidic, linoleic, arachidic, cis-11-eicosenoic, and cis-

11,14-eicosadienoic acids.

3.1.1 Trait distributions
‘Marcona’ and ‘Marinada’ showed intermediate values for most

traits, however ‘Marcona’ displayed high kernel width and protein

content compared to the population mean (Figure 2; Supplementary

Table 2). In general, ‘Marcona’ had a larger kernel weight, a rounder

kernel (wider but with a similar length), a lower crack-out percentage,

and a higher protein content compared to ‘Marinada’.

Concerning fruit dimensions, individuals of the ‘Marcona’ ×

‘Marinada’ (MC × MI) population exhibited weights ranging from

0.89 to 1.61 g, lengths from 16.77 to 24.87 mm, widths from 12.17 to
Frontiers in Plant Science 05
17.95 mm, and thicknesses from 7.21 to 11.56 mm (Figure 2;

Supplementary Table 2). In terms of roundness (width/length

ratio) and globosity (width/thickness ratio), the trait distributions

spanned from 0.56 to 0.84 mm and 1.31 to 2.27 mm, respectively,

with a larger number of individuals showing elongated shapes

compared to rounded shapes (Figure 2). Similarly, there was an

evident segregation for the shoulder trait, with a higher frequency of

fruits with less pronounced shoulders. For symmetry, measured

using Jaccard and SSIM indexes, a clear trend towards fruits with

high symmetry was observed. For crack-out percentage, a

distribution biased towards fruits with hard shell (<40%)

was observed.

Regarding the chemical composition of the kernel, protein

content varied between 18.47 and 27.72%, fiber content ranged

from 2.80 to 7.56%, and fat content ranged from 46.62 to 58.83%

(Figure 2). In the individuals of the population, a distribution towards

higher levels of protein and fat content was observed. However, the

distribution of fiber content exhibited a slightly different pattern

towards lower amounts. The predominant fatty acid detected was

oleic (ranging from 52.90 to 160.85 mg/g), followed by linolenic

(5.33-17.12 mg/g), palmitic (6.78-12.84 mg/g), stearic (1.03-3.45 mg/

g), and vaccenic (1.83-3.15 mg/g). Other identified acids, such as

myristic, palmiloleic, margaric, heptadeceonic, linoelaidic, arachidic,

eicosenoic, and eicosadienoic, presented concentrations lower than

1.5 mg/g (Figure 2).

Regarding the color of the tegument, a distribution towards nuts

with darker pigmentation was noted. In contrast, for nuts without

the tegument, minimal differences were observed among

the samples.

The normality of each trait was evaluated using the Shapiro-

Wilk test (Supplementary Table 2). Among the kernel dimension

traits, all followed a normal distribution except for roundness,

symmetry, and kernel shoulder (p< 0.01). Kernel weight also

displayed a normal distribution (W = 0.987, p = 0.514). For

tegument and kernel color traits, only Tegument Color L*

significantly deviated from normality. In terms of chemical

composition, fat content followed a normal distribution, in

contrast to protein and fiber content (Supplementary Table 2).

Among the fatty acids, only palmitoleic, stearic, and vaccenic acids

exhibited a normal distribution pattern.

3.1.2 Trait correlations
The coefficient of determination (R2) was calculated for all traits

phenotyped over multiple years to assess the predictive accuracy of

LSmean values (Supplementary Table 3). Overall, a high prediction

was observed for all traits. The lowest prediction values were

observed for fiber content (R2 = 0.45) and tegument color L*

(0.47) (Supplementary Table 3). Conversely, all the other traits

presented R2 values higher than 0.64 with the highest values

recorded for roundness-SA and symmetry-Jaccard-SA (0.91).

Significant correlations between years were obtained for all

traits, except for tegument and kernel color parameters, which

were only significant between 2020 and 2021 (Supplementary Table

4). Moreover, for all the other traits, higher correlations were

observed between 2020 and 2021 compared to those between
frontiersin.org

https://doi.org/10.3389/fpls.2024.1504198
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
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2018 and 2019. The highest inter-annual correlations were observed

for crack-out percentage (0.89) and kernel roundness (0.88)

between 2020 and 2021, while the lowest correlation was for

kernel thickness (0.25) between 2018 and 2019.

Several sets of correlated traits were identified in the population

(Supplementary Table 4). One set focused on traits associated with

kernel dimensions. Considering only comparisons between

LSmeans of all traits, kernel weight demonstrated intermediate to

high correlations with both kernel length and width, using
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measurements from both manual assessments (0.52 and 0.60,

respectively) and outputs from the Shape Analyzer (SA) software

(0.62 and 0.67, respectively). Conversely, a low correlation of 0.27

was reported between kernel weight and thickness. Regarding

kernel length, a moderate positive correlation with weight (0.52)

was observed, along with a negative correlation with roundness

(-0.67). Interestingly, no significant correlation between kernel

length and width was noted, in contrast to the positive

correlation between width and roundness (0.60) and roundness-
FIGURE 2

Frequency distribution of phenotyped traits. For traits with more than one year of data, LSmean values are used. X axis represents phenotypic values,
and Y axis represents frequency. Grey and black arrows indicate phenotypic values for ‘Marcona’ and ‘Marinada’, respectively.
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SA (0.52). Kernel width also exhibited a moderate correlation with

thickness (0.48), which was correlated with roundness (0.48) and

kernel shoulder (0.53 and 0.46 for angle and visual, respectively). As

expected, high correlations were observed for kernel length (0.82;

KLength vs. KLenght_SA), width (0.83; KWidth vs. KWidth_SA),

and roundness (0.67; KRound vs. KRound_SA) when comparing

manual measures to outputs from the Shape Analyzer software

(Supplementary Table 4).

A different set of interrelated traits was documented for chemical

compounds (Supplementary Table 4). Notably, a negative correlation

was identified between fat and protein content (-0.61), contrasting

with the consistently high positive correlations among all analyzed

fatty acids (ranging from 0.33 to 0.92). There was a low and non-

significant correlation observed between fat, fiber, and protein

content, and the fatty acids (Supplementary Table 4). Additionally,

negative correlations between certain chemical and physical

parameters were noted, such as crack-out percentage and protein

content (-0.34) and fat content and globosity (-0.47).

High correlations were also observed between color parameters

like tegument color a* and tegument color L* (-0.44), and tegument

color a* and tegument color b* (0.55) (Supplementary Table 4).
3.2 Genotyping and linkage
map construction

A total of 9243 SNPs, representing 15.3% of the almond

Axiom™ 60K SNP array, were obtained from the SNP filtering

procedures and used for linkage mapping along with 33 simple-

sequence repeat (SSR) markers. Of these SNPs, 3810 were

heterozygous in ‘Marcona’ and homozygous in ‘Marinada’, 4060

were heterozygous in ‘Marinada’ and homozygous in ‘Marcona’,

and the remaining 1373 SNPs were heterozygous in both parents.

Additionally, 33 SSR markers were included.
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For all constructed linkage maps (‘Marcona’, ‘Marinada’, and

‘MC × MI’), markers were grouped into eight LGs, each

corresponding to an almond chromosome (Supplementary Table

5). The ‘Marcona’ map covered 448.0 cM and presented 370 bins

(i.e., groups of markers in unique genetic positions) (Table 1).

Similarly, the ‘Marinada’ map had 316 bins distributed along 447.0

cM. The ‘MC × MI’ showed higher marker saturation than parental

maps, with 685 bins covering 540.8 cM (Table 1). In the three

linkage maps, LG1 covered the largest genetic distance and included

the highest number of markers. The average distance between

consecutive bins was less than 1 cM in the ‘MC × MI’ map,

whereas for the parental maps, this distance ranged from 1.15

(‘Marcona’; LG1) to 1.61 cM (‘Marinada’; LG7) (Table 1).

Additionally, the linkage maps showed good genome coverage

without major gaps: the average physical distance between

consecutive markers was 196, 555, and 612 Kbp in the ‘MC ×

MI’, ‘Marcona’, and ‘Marinada’ maps, respectively.
3.3 QTL mapping

QTL analyses were performed using single-year data for all

traits, and for those traits with more than one year of data, LSmean

values were also used. All QTLs are presented in Supplementary

Table 6. In most cases, LSmean data identified the most consistent

QTLs, which were detected in at least two different years through

single-year QTL mapping. To simplify data presentation, we

present QTLs using LSmean and those for which only one year of

phenotypic data was available (Table 2).

In total, 51, 18, and 24 QTLs were detected using the MC ×

MI, ‘Marcona’, and ‘Marinada’ genetic maps, respectively. After

excluding QTLs that cosegregate across different maps, a total of

53 unique QTLs were identified (Table 2). Most QTLs detected

with the parental maps were also identified with the MC × MI
TABLE 1 Summary statistics for the ‘Marcona’, ‘Marinada’ and ‘Marcona’ × ‘Marinada’ (MC × MI) genetic maps.

Linkage map LG1 LG2 LG3 LG4 LG5 LG6 LG7 LG8 Total

Number of bins

Marcona 64 49 45 51 35 35 50 41 370

Marinada 64 39 38 37 32 37 33 36 316

MC × MI 129 88 79 89 70 72 84 74 685

Genetic distance (cM)

Marcona 72.4 63.6 58.2 71.7 51.9 44.5 62.5 53.2 448.0

Marinada 91.8 55.3 52.8 51.3 40.8 51.6 51.7 51.7 447.0

MC × MI 84.9 59.4 71.7 73.2 70.8 55.3 64.9 60.6 540.8

Average distance between loci (cM)

Marcona 1.15 1.33 1.32 1.43 1.53 1.31 1.28 1.33 1.34

Marinada 1.46 1.45 1.43 1.42 1.31 1.43 1.61 1.50 1.45

MC × MI 0.66 0.68 0.91 0.83 1.02 0.78 0.78 0.83 0.81

Max. gap between markers (cM)

Marcona 2.3 5.5 3.2 3.6 4.7 2.4 2.4 2.4 3.31

Marinada 5.6 2.4 2.4 3.6 3.0 4.7 4.8 3.6 3.76

MC × MI 1.7 2.6 4.7 2.9 4.2 2.9 4.9 2.3 3.28
fr
These maps were constructed with one genotype per bin of the 1:1 markers segregating in each of the parents and those plus the 1:2:1 markers identifying new bins in the ‘MC × MI’ map.
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TABLE 2 QTL mapping results using single year phenotypic data or, for traits phenotyped for more than one year, least square (LS) estimates.

Trait QTL name Map
Phenotypic

data
Max
LOD

LG
Closest
marker

Physical
position
(Texas
v3.0-F1)

Interval
(cM;
LOD
+/-1)

R2 Additive

Kernel Weight

Kernel Weight qP-KWe3.1 Marcona LSmean 3.2 3 AX-586061740 Chr03_1849248 0.0-11.4 15.4 0.11

Kernel Weight qP-KWe4.1 Marinada LSmean 5.7 4 AX-586079155 Chr04_2621791 0.0-6.4 26.1 0.15

Kernel Weight qP-KWe4.1 MC×MI LSmean 6.5 4 AX-586078061 Chr04_2548827 0.0-9.7 29.0 –

Crackout

Crackout qP-Crack2.1 Marcona LSmean 5.1 2 AX-586057484 Chr02_28853706 47.4-60.1 23.4 -7.31

Crackout qP-Crack2.1 Marinada LSmean 3.5 2 AX-586052317 Chr02_23294133 37.8-49.3 16.7 -6.20

Crackout qP-Crack2.1 MC×MI LSmean 17.2 2 AX-586052397 Chr02_23428499 42.3-46.3 59.7 –

Kernel size and shape

Kernel Lenght qP-KLen1.1 Marinada LSmean 5.6 1 AX-586017842 Chr01_8263778 10.4-19.5 25.8 -1.41

Kernel Length qP-KLen1.1 MC×MI LSmean 7.3 1 AX-586018172 Chr01_9436655 11.4-19.2 32.1 –

Kernel Width qP-KWidth1.1 Marcona LSmean 3.8 1 AX-586030939 Chr01_35727471 42.4-50.5 18.3 0.95

Kernel Width qP-KWidth8.1 Marcona LSmean 3.7 8 AX-586146402 Chr08_15661703 11.6-20.9 17.8 -0.94

Kernel Width qP-KWidth4.1 Marinada LSmean 3.3 4 AX-586077840 Chr04_2108924 0.0-5.4 15.8 0.89

Kernel Width qP-KWidth1.1 MC×MI LSmean 4.9 1 AX-586030002 Chr01_34764133 45.3-57.4 22.9 –

Kernel Width qP-KWidth7.1 MC×MI LSmean 3.7 7 AX-586138643 Chr07_22970625 46.6-65.0 17.9 –

Kernel Width qP-KWidth8.1 MC×MI LSmean 3.9 8 AX-586146402 Chr08_15661703 17.5-25.0 18.7 –

Kernel
Thickness

qP-KThick1.1 Marcona LSmean 4.4 1 AX-586020091 Chr01_12777516 17.5-28.0 20.6 0.78

Kernel
Thickness

qP-KThick4.1 Marinada LSmean 4.2 4 AX-586079155 Chr04_2621791 0.0-6.4 20.0 0.82

Kernel
Thickness

qP-KThick1.1 MC×MI LSmean 5.5 1 AX-586021692 Chr01_19228013 21.8-29.6 25.2 –

Kernel
Thickness

qP-KThick4.1 MC×MI LSmean 5.3 4 AX-586083366 Chr04_8841873 25.3-35.4 24.6 –

Kernel
Roundness

qP-KRound1.1 Marcona LSmean 4.5 1 AX-586018708 Chr01_10422924 5.8-24.4 21.0 0.06

Kernel
Roundness

qP-KRound7.1 Marcona LSmean 4.8 7 AX-586136730 Chr07_21376413 42.6-55.3 22.3 -0.06

Kernel
Roundness

qP-KRound1.1 Marinada LSmean 4.1 1 AX-586016559 Chr01_6865271 5.5-17.1 19.6 0.06

Kernel
Roundness

qP-KRound1.1 MC×MI LSmean 7.8 1 AX-586016378 Chr01_6661966 6.3-19.7 33.9 –

Kernel
Roundness

qP-KRound6.1 MC×MI LSmean 4.2 6 AX-586109783 Chr06_6435616 3.3-14.8 20.1 –

Kernel
Roundness

qP-KRound7.1 MC×MI LSmean 7.2 7 AX-586135231 Chr07_22199172 49.1-54.9 27.5 –

Kernel Globosity qP-KGlob4.1 Marcona LSmean 4.0 4 AX-586087837 Chr04_15732422 48.4-62.5 19.4 0.14

Kernel Globosity qP-KGlob2.1 MC×MI LSmean 5.0 2 AX-586052397 Chr02_23428499 40.0-52.6 23.3 –

Kernel Globosity qP-KGlob3.1 MC×MI LSmean 3.8 3 AX-586074007 Chr03_26939315 57.2-71.5 18.1 –

Kernel Globosity qP-KGlob4.1 MC×MI LSmean 4.6 4 CPPCT046 Chr04_16391606 38.9-65.0 21.5 –
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TABLE 2 Continued

Trait QTL name Map
Phenotypic

data
Max
LOD

LG
Closest
marker

Physical
position
(Texas
v3.0-F1)

Interval
(cM;
LOD
+/-1)

R2 Additive

Kernel size and shape

Kernel
Lenght_SA

qP-Klen_SA1.1 Marinada LSmean 6.3 1 AX-586016345 Chr01_6488397 1.2-10.4 28.5 -1.53

Kernel
Lenght_SA

qP-Klen_SA1.1 MC×MI LSmean 6.8 1 AX-586016345 Chr01_6488397 3.4-9.1 31.2 –

Kernel
Lenght_SA

qP-Klen_SA6.1 MC×MI LSmean 4.2 6 AX-586106625 Chr06_1988726 3.3-16.8 20.2 –

Kernel
Width_SA

qP-Kwidth_SA8.1 Marcona LSmean 4.3 8 AX-586146402 Chr08_15661703 10.5-24.4 20.5 -1.13

Kernel
Width_SA

qP-Kwidth_SA1.1 MC×MI LSmean 4.4 1 AX-586030002 Chr01_34764133 47.8-56.4 20.8 –

Kernel
Width_SA

qP-Kwidth_SA2.1 MC×MI LSmean 3.8 2 AX-586053857 Chr02_25390538 47.4-52.6 18.3 –

Kernel
Width_SA

qP-Kwidth_SA4.1 MC×MI LSmean 4.7 4 AX-159226595 Chr04_1197932 3.3-9.7 20.0 –

Kernel
Width_SA

qP-Kwidth_SA7.1 MC×MI LSmean 3.8 7 AX-586134161 Chr07_21457125 46.6-64.9 18.5 –

Kernel
Width_SA

qP-Kwidth_SA8.1 MC×MI LSmean 4.7 8 AX-586145789 Chr08_14603868 14.6-30.2 22.0 –

Kernel
Roundness_SA

qP-Kround_SA7.1 Marcona LSmean 4.3 7 AX-586136730 Chr07_21376413 42.6-54.2 20.7 -0.02

Kernel
Roundness_SA

qP-Kround_SA2.1 Marinada LSmean 3.8 2 AX-586047267 Chr02_15891435 10.5-26.9 18.3 0.02

Kernel
Roundness_SA

qP-Kround_SA2.1 MC×MI LSmean 4.0 2 AX-586046794 Chr02_15813584 10.8-25.0 19.3 –

Kernel
Roundness_SA

qP-Kround_SA6.1 MC×MI LSmean 4.4 6 AX-586105710 Chr06_3532533 3.3-13.0 21.1 –

Kernel
Roundness_SA

qP-Kround_SA7.1 MC×MI LSmean 5.1 7 AX-586137299 Chr07_21702235 46.9-54.3 23.8 –

Sym_SSIM_SA qP-Sym_SSIM1.1 Marcona LSmean 3.1 1 AX-586025379 Chr01_27873984 36.5-45.8 15.2 -0.01

Sym_SSIM_SA qP-Sym_SSIM1.1 Marinada LSmean 4.6 1 AX-586025148 Chr01_27294920 34.8-42.4 21.9 -0.01

Sym_SSIM_SA qP-Sym_SSIM1.1 MC×MI LSmean 9.4 1 AX-586025038 Chr01_27047791* 38.7-40.9 39.5 –

Sym_SSIM_SA qP-Sym_SSIM8.1 MC×MI LSmean 4.2 8 AX-586139063 Chr08_1942794 4.1-12.6 20.3 –

Sym_Jaccard_SA qP-Sym_Jacc1.1 Marcona LSmean 3.2 1 AX-586025379 Chr01_27873984 36.5-47.0 15.9 -0.04

Sym_Jaccard_SA qP-Sym_Jacc1.1 Marinada LSmean 4.9 1 AX-586025148 Chr01_27294920 23.5-42.4 23.1 -0.05

Sym_Jaccard_SA qP-Sym_Jacc1.1 MC×MI LSmean 9.4 1 AX-586025038 Chr01_27047791* 38.7-40.9 39.6 –

Sym_Jaccard_SA qP-Sym_Jacc8.1 MC×MI LSmean 4.4 8 AX-586141494 Chr08_1101159 5.2-10.3 22.7 –

Kernel Shoulder qP-KShoul_Vis1.1 Marcona 2020 4.2 1 AX-586026674 Chr01_29944777 36.5-49.3 19.9 1.00

Kernel Shoulder qP-KShoul_Vis8.1 Marcona 2020 3.3 8 AX-586139190 Chr08_2202923 0.0-8.0 15.8 -0.90

Kernel Shoulder qP-KShoul_Vis1.1 Marinada 2020 7.9 1 AX-586025148 Chr01_27294920 37.8-42.4 34.1 1.14

Kernel Shoulder qP-KShoul_Vis1.1 MC×MI 2020 11.5 1 AX-586025171 Chr01_27336819 38.7-40.9 45.7 –

Kernel Shoulder qP-KShoul_Vis8.1 MC×MI 2020 4.1 8 AX-586139429 Chr08_3696522 4.1-11.3 19.5 –
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TABLE 2 Continued

Trait QTL name Map
Phenotypic

data
Max
LOD

LG
Closest
marker

Physical
position
(Texas
v3.0-F1)

Interval
(cM;
LOD
+/-1)

R2 Additive

Kernel size and shape

Kernel
Shoulder_angle

qP-KShoul_Angle1.1 Marcona 2020 4.7 1 AX-586025379 Chr01_27873984 34.1-45.6 22.3 7.74

Kernel
Shoulder_angle

qP-KShoul_Angle1.1 Marinada 2020 6.4 1 AX-586016559 Chr01_6865271 7.0-18.5 29.4 8.80

Kernel
Shoulder_angle

qP-KShoul_Angle1.1 MC×MI 2020 10.7 1 CPPCT027 Chr01_14035255 24.5-26.8 43.9 –

Kernel Colour

Kernel_a qP-Kcolor_a1.1 Marinada LSmean 4.8 1 AX-586015732 Chr01_5495727 0.0-3.5 22.3 -0.19

Kernel_a qP-Kcolor_a1.1 MC×MI LSmean 5.5 1 AX-586014695 Chr01_4179608 1.1-6.4 25.3 –

Kernel_b qP-Kcolor_b2.1 Marinada LSmean 5.3 2 AX-586049906 Chr02_21476757* 30.7-38.8 24.5 0.60

Kernel_b qP-Kcolor_b2.1 MC×MI LSmean 6.0 2 AX-586057486 Chr02_28856443 44.0-57.0 27.1 –

Kernel composition

Protein qP-Protein2.1 MC×MI LSmean 4.5 2 AX-586053334 Chr02_24572305 42.3-50.9 21.2 –

Protein qP-Protein3.1 MC×MI LSmean 3.8 3 AX-586075035 Chr03_27000444 56.1-71.7 18.4 –

Protein qP-Protein5.1 MC×MI LSmean 3.7 5 AX-586102987 Chr05_18821223 61.5-69.4 17.6 –

Protein qP-Protein7.1 MC×MI LSmean 3.5 7 AX-586132921 Chr07_17547713 28.5-37.5 16.9 –

Fiber qP-Fiber1.1 MC×MI LSmean 3.4 1 AX-586018168 Chr01_9432165 14.8-23.3 16.2 –

Fat qP-Fat3.1 MC×MI 2021 3.9 3 AX-586061116 Chr03_366840 0.0-3.7 19.5 –

Fat qP-Fat5.1 MC×MI 2021 3.9 5 AX-586103462 Chr05_19354347 48.1-70.8 19.4 –

Myristic acid qP-MyrisitcAc1.1 Marinada 2021 3.4 1 AX-159179465 Chr01_49846435 81.2-91.8 17.7 -0.01

Myristic acid qP-MyrisitcAc1.1 MC×MI 2021 3.8 1 AX-159179465 Chr01_49846435 74.7-85.0 19.7 –

Palmitic acid qP-PalmiticAc1.1 Marcona 2021 3.5 1 AX-586034706 Chr01_40645292* 49.5-58.7 18.4 1.21

Palmitic acid qP-PalmiticAc1.1 Marinada 2021 3.9 1 AX-586041516 Chr01_49772602 83.7-91.8 20.3 -1.27

Palmitic acid qP-PalmiticAc1.1 MC×MI 2021 6.8 1 AX-586036301 Chr01_43754489 69.6-74.1 32.7 –

Palmitoleic acid qP-PalmitoleicAc1.1 Marinada 2021 3.4 1 AX-586041516 Chr01_49772602 75.4-91.8 17.7 -0.17

Palmitoleic acid qP-PalmitoleicAc1.1 MC×MI 2021 4.7 1 AX-586041439 Chr01_49655891 69.6-85.0 24.0 –

Margaric acid qP-MargaricAc1.1 Marcona 2021 3.4 1 AX-586034706 Chr01_40645292* 50.7-61.1 17.9 0.02

Margaric acid qP-MargaricAc1.1 Marinada 2021 5.6 1 AX-586041516 Chr01_49772602 84.9-91.8 27.6 -0.02

Margaric acid qP-MargaricAc1.1 MC×MI 2021 8.2 1 AX-586036301 Chr01_43754489 67.9-72.6 37.9 –

Heptadecenoic
acid

qP-HeptadeAc1.1 Marinada 2021 5.5 1 AX-586041516 Chr01_49772602 84.9-91.8 27.2 -0.04

Heptadecenoic
acid

qP-HeptadeAc1.1 MC×MI 2021 7.1 1 AX-586041439 Chr01_49655891 81.5-85.0 33.8 –

Stearic acid qP-StearicAc1.1 Marinada 2021 6.0 1 AX-586038470 Chr01_46296562 83.7-91.8 29.5 -0.56

Stearic acid qP-StearicAc1.1 MC×MI 2021 6.9 1 AX-586037985 Chr01_45765548 77.6-81.0 33.1 –

Linoleic acid qP-LinoleicAc1.1 Marinada 2021 3.5 1 AX-586041516 Chr01_49772602 83.7-91.8 18.6 -1.98

Linoleic acid qP-LinoleicAc1.1 MC×MI 2021 7.7 1 AX-586036301 Chr01_43754489 69.6-73.4 39.0 –

Oleic acid qP-OleicAc1.1 Marcona 2021 3.0 1 AX-586033374 Chr01_38970432 40.0-58.7 15.9 22.53
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map, except qP-KWe3.1 (only found on ‘Marcona’ map) and qP-

KWidth4.1 (only found on ‘Marinada’ map). Conversely, 20

QTLs (qP-KWidth7.1 , qP-KRound6.1 , qP-KGlob2.1 , qP-

KGlob3.1, qP-KLen_SA6.1, qP-KWidth_SA1.1, qP-KWidth_

SA2.1, qP-KWidth_SA4.1, qP-KWidth_SA7.1, qP-KRound_

SA6.1, qP-Sym_SSIM8.1, qP-Sym_Jacc8.1, qP-Protein2.1, qP-

Protein3.1, qP-Protein5.1, qP-Protein7.1, qP-Fiber1.1, qP-

Fat3.1, qP-Fat5.1, qP-VaccenicAc1.1) were identified on MC ×

MI map but not on the parental maps. All consistent QTLs

identified with the MC × MI map are presented in Figure 3.

At least one QTL was identified for all traits except for the color

parameters Tegument_L, Tegument_a, Tegument_b, Kernel_L, and

linoelaidic acid. For kernel weight, two regions were detected on

LGs 3 and 4 (Table 2), with the major QTL (qP-KWe4.1) found at

the beginning of LG4, explaining 29.0% of the phenotypic variation

(PV) in the MC × MI map and 26.1% in the ‘Marinada’ map. This

QTL showed an additive effect of the ‘Marinada’ allele (+0.11 g)

increasing kernel size in the population (Table 2). A less significant

weight QTL, only detected in the ‘Marcona’map, was also identified

on LG3 (qP-We3.1; PV=15.4%). For crack-out percentage, a highly

significant QTL (qP-Crack2.1) located on LG2 was detected in the

three maps with a LOD of 17.2 and explaining 59.7% of the PV in

the MC × MI map (Table 2; Figure 3).

For kernel size and shape traits, a major QTL was detected at the

beginning of LG1 (11.4-19.2 cM) for kernel length (qP-KLen1.1)

using the ‘Marinada’ and the MC × MI maps, explaining up to

32.1% of the PV. Similarly, another major QTL for kernel width

(qP-KWidth1.1) was identified in the central part of the same LG1

(45.3-57.4 cM) in the ‘Marcona’ (LOD=3.8; PV=18.3%) and MC ×

MI (LOD=4.9; PV=22.9%) maps. Overlapping with qP-KLen1.1,

other consistent QTLs were identified for kernel roundness (qP-

KRound1.1; LOD=4.1 to 7.8; PV=19.6 to 33.9%) and kernel

length_SA (qP-KLen_SA1.1; LOD=6.3 to 6.8; PV=28.5 to 31.2%).

In the same region of qP-KWidth1.1, we identified other QTLs for

kernel width SA (qP-KWidth_SA1.1), kernel symmetry SSIM (qP-

Sym_SSIM1.1), kernel symmetry Jaccard (qP-Sym_Jacc1.1), and

kernel shoulder (qP-KShoul_Vis1.1) (Table 2; Figure 3). For
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kernel thickness and kernel shoulder angle, QTLs (qP-KThick1.1

and qP-KShoul_Angle1.1) were identified in positions near qP-

KLen1.1; however, the LOD plots do not clearly reveal whether

these represent the same QTL or two distinct QTLs located in very

close proximity (Figure 3). Other stable QTLs for kernel width

(LOD = 3.3 to 3.9; PV = 15.8 to 18.7%) were also identified on LGs

4, 7 and 8 (qP-KWidth4.1, qP-KWidth7.1, and qP-KWidth8.1).

Overlapping with qP-KWidth4.1, a consistent QTL for kernel

thickness (qP-KThick4.1) was also identified in ‘Marinada’

(LOD=4.2; PV=20.0%) and MC × MI (LOD=5.3; PV=24.6%)

maps (Table 2; Figure 3). Additional regions with kernel globosity

QTLs were reported on LGs 2, 3, and 4, each showing similar LOD

scores (3.8-5.0) and PV percentages (18.1-23.3%). Comparison of

detected QTLs for kernel length, width, and roundness using

manual determinations and Shape Analyzer (SA) software

measurements revealed QTLs in similar positions, with only a few

QTLs detected exclusively by one method or the other (qP-

KRound1 .1 , qP-Round_SA2 .1 , qP-Wid th_SA2 .1 , qP-

KWidth_SA4.1, qP-KLen_SA6.1).

Regarding the kernel chemical composition, four QTLs for

protein content were mapped on LGs 2, 3, 5, and 7 on the MC ×

MI map (Table 2; Figure 3). Among them, qP-Protein2.1 showed

the highest LOD scores (4.5) and explained the largest proportion of

PV (21.2%). The other three additional protein content QTLs (qP-

Protein3.1, qP-Protein5.1, and qP-Protein7.1) were detected with

lower significance, having LOD scores below 4 and explaining no

more than 19% of the phenotypic variance (Table 2). For fat

content, two QTLs were found on LGs 3 and 5 of the MC × MI

map, both with the same significance (LOD=3.9) and explaining

similar PV (19%) (Table 2). Notably, the protein and fat content

QTLs on LG5 (qP-Protein5.1 and qP-Fat5.1) overlapped in the same

region (Figure 3). For fiber content, a unique QTL mapped on LG1

(14.8-23.3 cM) of the MC × MI map was detected, associated with a

LOD score of 3.4 and explained 16.2% of PV.

For the fatty acid content, QTLs were detected for all

compounds except linoelaidic acid, on MC × MI map within the

same region at the bottom of LG1 (70-85 cM). The QTL with the
TABLE 2 Continued

Trait QTL name Map
Phenotypic

data
Max
LOD

LG
Closest
marker

Physical
position
(Texas
v3.0-F1)

Interval
(cM;
LOD
+/-1)

R2 Additive

Kernel composition

Oleic acid qP-OleicAc1.1 Marinada 2021 5.2 1 AX-586041516 Chr01_49772602 83.7-91.8 26.2 -28.7

Oleic acid qP-OleicAc1.1 MC×MI 2021 7.0 1 AX-586041439 Chr01_49655891 81.0-85.0 33.3 –

Vaccenic acid qP-VaccenicAc1.1 MC×MI 2021 4.6 1 AX-586036301 Chr01_43754489 67.8-75.8 26.7 –

Arachidic acid qP-ArachidicAc1.1 Marinada 2021 4.2 1 AX-586041516 Chr01_49772602 83.7-91.8 22.4 -0.02

Arachidic acid qP-ArachidicAc1.1 MC×MI 2021 5.5 1 AX-586036301 Chr01_43754489 69.6-72.6 27.4 –

Eicosenoic acid qP-EicoAc1.1 Marinada 2021 4.1 1 AX-586041516 Chr01_49772602 83.7-91.8 25.3 -0.02

Eicosenoic acid qP-EicoAc1.1 MC×MI 2021 5.2 1 AX-586041439 Chr01_49655891 75.6-85.0 26.2 –
fr
Physical position based on the ‘Texas’ almond genome v3.0-F1 (Castanera et al., 2024).
* Closest physical position in the almond ‘Texas-V3-F1’ genome. LG: Linkage group. R2: Percentage of phenotypic variance explained by QTL.
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highest LOD score and PV explained for these acids was reported

for margaric acid (LOD=8.2; PV=37.9%), whereas the mystiric

acid QTL presented the lowest significance (LOD=3.8;

PV=19.7%). On the ‘Marinada’ map, all the same QTLs for fatty

acids reported in the MC × MI map were mapped to the same

position of LG1. The ‘Marinada’ allele for these QTLs was

associated with reductions in the mean values of all acids within

the population (Table 2). On the ‘Marcona’ map, only QTLs for

palmitic acid, margaric acid and oleic acid were detected, all found

on the same LG1 interval as for MC × MI and ‘Marinada’ maps,

with PV not exceeding the 20% (Table 2). For these QTLs, the

‘Marcona’ allele was associated with increasing in fatty acid

content. This effect was notable on oleic acid, the main fatty

acid in almonds, where the ‘Marcona’ allele resulted in an increase

of 22 mg per gram of sample.

Finally, two QTLs (qP-KColor_a1.1 and qP-KColor_b2.1)

associated with kernel color were mapped on the MC × MI and

‘Marinada’ maps (Table 2; Figure 3). qP-KColor_a1.1, mapped on

LG1, explained 25.3% of the PV in MC × MI map, whereas qP-

KColor_b2.1, found on LG2 was associated with PV of 27.1% in MC

× MI (Table 2).
4 Discussion

The high number of seedlings produced and assessed each year

in almond breeding programs highlights the importance of new

genomic and phenotypic technologies to enhance breeding
Frontiers in Plant Science 12
efficiency (Font i Forcada et al., 2017). This study examined the

genetic basis of several almond quality traits related to kernel

physical and chemical characteristics. This research was

conducted on a population derived from the cross between the

almond cultivars ‘Marcona’ and ‘Marinada’, aiming to improve

phenotypic screenings and to provide genetic information that

could serve as a foundation for developing DNA markers of

breeding interest related to these traits.

Several QTL analyses have been reported in almond using

biparental populations, most of them employing a relatively low

number of markers (Ballester et al., 1998, 2001; Sánchez-Pérez et al.,

2007; Font i Forcada et al., 2012; Fernández i Martı ́ et al., 2013;
Goonetilleke et al., 2018; Paizila et al., 2021; Goonetilleke et al.,

2023). In this study, we used the recently developed almond

Axiom™ 60K SNP array (Duval et al., 2023), which allows the

development of highly saturated maps and genome-wide

association analyses (Pérez de los Cobos et al., 2023). The marker

saturation observed in the maps generated here greatly improved

upon that reported in previous linkage maps (Sánchez-Pérez et al.,

2007; Font i Forcada et al., 2012; Fernández i Martı ́ et al., 2013;
Goonetilleke et al., 2018), demonstrating that the almond 60K SNP

array is an excellent tool for genetic analyses in almond. The high-

quality linkage map, along with the QTLs reported in this study, will

enable the implementation of efficient marker-assisted selection

strategies aimed at improving kernel quality traits, which are key

almond breeding objectives (Batlle et al., 2017).

High-throughput phenotyping is crucial to increase the

efficiency of breeding programs. To this end, standard
FIGURE 3

Genetic position (cM) on the ‘Marcona’ × ‘Marinada’ map of detected QTLs using LSmean and those for which only one year of data was available.
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phenotyping protocols for almond shape traits were compared with

image analysis using the newly developed artificial intelligence-

based Shape Analyzer software (Jurado, 2024). The strong

correlation observed between traits assessed through conventional

and image analysis methods for kernel length, width, roundness,

and symmetry, along with the discovery of QTLs in identical

positions, underscores the reliability of these phenotyping

protocols for their routine implementation in breeding programs.
4.1 Trait correlations

Most traits phenotyped over multiple years showed significant

correlations across those years. This suggests that the phenotypic

data obtained is of high quality and that most traits exhibit high

heritability. These findings are consistent with other studies on

traits like kernel shape (Martıńez-Garcia et al., 2019), which

facilitates inheritance studies and supports the implementation of

marker-based selection approaches.

Identifying correlations between traits can provide valuable

insights for more efficient breeding and selection. We found

several interesting correlations between physical and chemical

traits: for example, kernel weight is correlated with kernel length

and width, but these two are not correlated with each other.

Additionally, kernel roundness is correlated with kernel length

and width, but not with kernel weight. Kernel thickness is

correlated with kernel width and shape but not with kernel

length, which opens the possibility of discovering kernel shapes

different than those of the parents used. Our results indicate that

kernel weight is more related to the size than the shape of the

kernels, as reported in recent studies (Lipan et al., 2022). High

correlations between morphological traits were also found

previously in progenies derived from ‘Blanquerna’ × ‘Vivot’

(Fernández i Martı ́ et al., 2013) and ‘Nonpareil’ × ‘Lauranne’

(Goonetilleke et al., 2023). Crack-out percentage and globosity are

inversely correlated, and a QTL for both traits has been identified in

the same region of LG2. This correlation between these two traits

has not been previously reported, and further results are needed to

confirm whether this is a common phenomenon in almond or

specific to this population. For the chemical kernel composition, it

is noteworthy that there is no correlation between total fat content

and the composition of fatty acids, but there is a high correlation

between most of the different fatty acids, as previously observed

(Font i Forcada et al., 2012). Additionally, there is a notable negative

correlation between fat and protein content. The highest correlation

between physical and chemical traits was observed for the fat

content, which was inversely correlated with globosity (-0.45),

and for protein content, which is inversely correlated with crack-

out percentage (-0.39). These correlations are particularly

significant, given that the only detected QTL for these traits was

mapped to the same region of chromosome 2. Other interesting

correlations of chemical traits have been explored, such as the

relationship between oleic acid content and shelf life recently

pointed out in rapeseed (Spasibionek et al., 2020) and almond

(Sideli et al., 2024).
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4.2 Genetic analysis of kernel traits

Several QTLs associated with kernel traits were identified by our

study, some of which co-localize QTLs previously identified by other

authors. For instance, the crack-out percentage QTL (qP-Crack2.1),

located on chromosome 2, has been reported by previous studies for

crack-out and shell hardness (Goonetilleke et al., 2018; Pavan et al.,

2021; Sánchez-Pérez et al., 2007; Sideli et al., 2023; Pérez de los Cobos

et al., 2023). Both ‘Marcona’ and ‘Marinada’ exhibited hard shells,

however wide variation was found in their F1 progeny. This suggests

the dominance of hard shells and the presence of alleles in

heterozygosity in the parental cultivars. The additive effect for crack-

out percentage was 6.2% in ‘Marinada’ and 7.3% in ‘Marcona’.

Meanwhile, in the MC × MI map, the difference between the highest

and lowest mean values was 15.7%, closely matching the combined

effect of both parents and supporting this hypothesis. Similarly, for

kernel weight, a major QTL was identified at the beginning of LG4, the

same chromosome where a previous QTL for this trait was identified in

another F1 population derived from the cross ‘R1000’ × ‘Desmayo

Largueta’ (Sánchez-Pérez et al., 2007) but at a slightly different genomic

position (approx. 3 Mbp apart). QTLs for kernel weight have been

identified in various genomic regions across studies (Fernández i Martı ́
et al., 2013; Goonetilleke et al., 2023; Pérez de los Cobos et al., 2023),

suggesting that kernel weight is a quantitative trait controlled by several

genes in the almond germplasm. This was corroborated in our study,

where in addition to the main kernel weight QTL (qP-KWe4.1), an

additional QTL, detected only in the ‘Marcona’ map, indicated the

presence of multiple alleles associated with weight variation in these

cultivars. Additionally, a QTL for kernel width (qP-KWidth_SA4.1)

was also identified, overlapping with qP-We4.1, suggesting that width

may influence the observed differences in fruit weight. These

interactions and the numerous QTLs reported for this trait highlight

the challenges in implementing effective breeding strategies for weight

gain in breeding programs.

QTLs for various kernel morphology traits, including length,

thickness, width, roundness, symmetry, and shoulder angle were

identified at various genomic locations. Notably, major QTLs for

kernel length and width were found 25 Mbps apart on

chromosome 1, suggesting that different genetic mechanisms

control these traits. qP-KLen1.1, associated with kernel length,

had previously been mapped in a panel of 98 almond cultivars

(Font i Forcada et al., 2015a) and in an F1 population (‘Vivot’ ×

‘Blanquerna’) (Fernández i Martı ́ et al., 2013). Additionally,

Goonetilleke et al. (2023) reported two overlapping QTLs for

kernel width and length on LG1 of the ‘Lauranne’ map. However,

this region is situated between the kernel length and width QTLs

identified in the MC × MI population, suggesting that qP-

KWidth1.1 is a new QTL associated with kernel width found in

almonds. For roundness and symmetry, QTLs for the same traits

were recently reported in the same genetic region of chromosome

1 (Goonetilleke et al., 2023). A QTL for kernel thickness was also

identified on LG4 (qP-KThick4.1). Finally, another QTL for

roundness was mapped on LG7 in a different position where a

QTL for sphericity was reported on the same LG in a ‘Nonpareil’ ×

‘Lauranne’ population (Goonetilleke et al., 2023).
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In this population, we studied the segregation of the shoulder

character, which is being analyzed for the first time in this study.

We observed a strong correlation between kernel shoulder, width,

and thickness, with a negative correlation with kernel length.

Similar to the pattern seen with shape QTLs, QTLs associated

with kernel shoulder exhibit a broader confidence interval

compared to those for length or width, and similar to shape–

related traits. This suggests that the QTL for kernel shoulder is

likely influenced by both kernel length and width QTLs. To further

validate QTLs for kernel length and width, it would be preferable to

use a population where the kernel shoulder is not segregating.

Manual measurements for kernel shape traits and image

analysis using artificial intelligence were employed in this study

for QTL mapping. Despite the high correlation between both sets of

phenotypic data, some QTLs identified through image analysis were

not detected with manual measurements. This highlights the

efficiency of using this new phenotyping method, not only in

reducing data collection efforts but also in increasing the

identification of new QTLs.
4.3 Genetic analysis of kernel
chemical composition

A cluster of overlapping QTLs located at the lower end of LG1

was identified for the fatty acids. These results indicate that a single

molecular marker could predict the content of all these fatty acids.

This is particularly significant given the prevalence of these acids in

almonds, their role in health benefits associated with almond

consumption, and their impact on kernel rancidity, which

compromises flavor and postharvest shelf life (Barreca et al.,

2020; Becerra-Tomás et al., 2019; Flankin and Mitchell, 2019).

Although, these fatty acids were quantified in only one year; the

fact that all acids mapped to the same region of LG1, along with the

high percentage of variance explained by these QTLs (over 25% for

most of the acids), underscores the reliability of the results despite

validation with additional year data. Moreover, this region

coincides with a QTL previously documented in almonds

associated with fatty acids content and located at the bottom of

LG1 in a biparental population (‘Vivot’ × ‘Blanquerna’) and a panel

of 98 almond accessions (Font i Forcada et al., 2012, 2015b; Sideli

et al., 2024). Additionally, this region of LG1 encompasses markers

recently associated with different degrees of rancidity (Sideli et al.,

2024). It is known that fatty acids and phenolic compounds are

related to kernel rancidity, so the overlap of these two regions

highlights the impact of these acids on controlling rancidity levels.

Furthermore, the additive effect observed with these acids (up to

28.7 mg/g kernel weight for oleic acid) underscores the significant

potential for improvement through breeding, which could result in

new cultivars with an enhanced fatty acid profile.

We identified four QTLs associated with protein content on

LGs 2, 3, 5, and 7. Among these, only qP-Protein3.1 and qP-

Protein7.1 co-localize with QTLs mapped by previous studies

(Font i Forcada et al., 2012, 2015b). However, the primary QTL
Frontiers in Plant Science 14
for protein content discovered in this study, qP-Protein2.1, did not

align with any previously identified QTL region, suggesting that the

regulation of protein content involves multiple genes. For fiber and

fat content, QTLs related to these traits are reported for the first

time by our study. Both qP-Fiber3.1 and qP-Fat3.1 showed low

significance, which could be related to their dependence on

environmental conditions, as different stresses like drought and

temperature have been linked to interannual variation in these

compounds (Kodad et al., 2018). This is consistent with the low

proportion of phenotypic variability explained by cultivars for fiber

(15.7%) and fat (28.4%) contents in previous studies (Romero et al.,

2011), highlighting the low heritability of these compounds.
5 Conclusions

In this study, several kernel quality and chemical traits were

investigated in a segregating almond F1 population, followed by QTL

analyses. The use of the first high-density SNP array developed in

almond (Axiom™ 60K SNP array), combined with traditional

phenotyping protocols for kernel shape traits with image analysis

using artificial intelligence, enhanced the detection power of QTLs.

Notably, a region at the lower end of LG1 was mapped where QTLs for

different fatty acids co-localized. Additionally, major QTLs for kernel

shape and dimensions were identified in a few genomic regions. The

results revealed multiple QTLs distributed across the entire genome,

with QTL hotspots that can be used by breeders to further implement

marker-assisted breeding in almond. These regions will be targeted for

further finemapping and in silico gene annotation to identify genes and

polymorphisms associated with the phenotypic variation of

these QTLs.
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Martıń Carratalá, M. L., Garcıá-López, C., Berenguer-Navarro, V., and Grané-Teruel,
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