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network in multi-density
environment via
improved YOLOv7
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1Chengdu Polytechnic, Innovation and Practice Base for Postdoctors, Chengdu, Sichuan, China,
2Sichuan Provincial Engineering Research Center of Thermoelectric Materials and Devices, Chengdu,
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Introduction: Accurate detection and recognition of tea bud images can drive

advances in intelligent harvesting machinery for tea gardens and technology for

tea bud pests and diseases. In order to realize the recognition and grading of tea

buds in a complex multi-density tea garden environment.

Methods: This paper proposes an improved YOLOv7 object detection algorithm,

called YOLOv7-DWS, which focuses on improving the accuracy of tea

recognition. First, we make a series of improvements to the YOLOv7 algorithm,

including decouple head to replace the head of YOLOv7, to enhance the feature

extraction ability of themodel and optimize the class decision logic. The problem

of simultaneous detection and classification of one-bud-one-leaf and one-bud-

two-leaves of tea was solved. Secondly, a new loss function WiseIoU is proposed

for the loss function in YOLOv7, which improves the accuracy of the model.

Finally, we evaluate different attention mechanisms to enhance the model’s

focus on key features.

Results and discussion: The experimental results show that the improved

YOLOv7 algorithm has significantly improved over the original algorithm in all

evaluation indexes, especially in the RTea(+6.2%) and mAP@0.5 (+7.7%). From the

results, the algorithm in this paper helps to provide a new perspective and

possibility for the field of tea image recognition.
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1 Introduction

As one of the most popular drinks in the world, the production

and quality control process of tea requires high-precision inspection

technology (Bai et al., 2022). Accurate tea image recognition and

detection is of great value for tea production, quality assessment,

pest prevention and other fields (Xue et al., 2023; Zhao et al., 2022).

Early tea inspection mainly relied on manual inspection, but this

method was inefficient and accuracy was affected by manual skill

and fatigue (Ngugi et al., 2021). With the development of computer

vision and deep learning technology, tea detection technology has

also changed significantly (Liu and Wang, 2021).

The traditional tea detection methods mainly include manual

inspection and mechanical screening technology (Hu et al., 2021;

Tian et al., 2022). Manual inspection usually relies on experienced

workers observing the tea leaves through the eyes to identify the

type and quality of the tea (Lin et al., 2022). Mechanical screening is

to separate different sizes of tea by the size of the sieve (Pruteanu

et al., 2023). In addition, some image processing techniques,

including edge detection, threshold segmentation and color

analysis, are also widely used in tea recognition projects. These

techniques can realize automatic recognition of tea images to a

certain extent (Lu et al., 2023; Li et al., 2020). Karunasena et al.

developed a machine learning method for tea bud recognition, they

used the histogram gradient (HOG) method for tea buds with an

overall recognition accuracy of 55% for tea buds between 0 mm and

40 mm in length (Karunasena and Priyankara, 2020). Bojie et al.

introduced a tea bud point recognition process based on RGB

images, using the HSI color transform and HSV spatial transform

and segmenting the tea bud pictures, and the image of tea buds can

be obtained by setting the threshold to merge the three channel

components, which has a good effect in practical application (Bojie

et al., 2019). However, in order to meet the requirements of fast and

accurate recognition in the vision system of picking robots, deep

learning techniques bring possibilities.

In recent years, the development of deep learning technology

has brought new possibilities to tea detection. Deep learning can

automatically learn features in images, avoiding the complexity of

manual feature extraction and improving the accuracy of tea

detection (Li et al., 2021; Xiong et al., 2020; Yang et al., 2021).

Yang et al. proposed an improved Yolo-v3 algorithm for tea tree

new shoot picking points. The method used image pyramid

structure to integrate tea trees of different levels, and the K-means

method was used to cluster the size of the target frame. Finally, a

high-quality tea tree selection point image dataset was constructed.

The model accuracy rate reached 90%, and the prediction of tea tree

selection point was roughly realized (Yang et al., 2019). Further, the

inference speed of the model is an index that must be considered in

object detection algorithms. In order to solve the problem of slow

inference speed of existing detection models. Zhang et al. proposed

a light tea tree crown growth detection model (TS-YOLO) based on

YOLOv4, with a size of 11.78 M and an improved detection speed of
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11.68 FPS. This model is easier to deploy quickly (Zhang et al.,

2023). In order to achieve the detection of small targets of tea buds,

Wang et al. used the attention mechanism to improve the YOLOv5

tea bud recognition network. More detailed tea bud information

was obtained, and the false detection and omission caused by

different tea bud sizes were reduced. Experimental results showed

that the accuracy rate (P) of the proposed method was 93.38%, and

it could accurately detect the tea bud area (Wang et al., 2024). It can

be seen that the object detection model based on deep learning

technology has been applied to the problem of tea bud recognition.

Some scholars have studied the object detection model of tea bud,

focusing on improving the reasoning speed and lightweight of the

model, but the problem of tea bud classification under multi-density

has been ignored. In the real tea garden environment, because of the

small size and high density of tea buds, the accuracy of target

detection model is very difficult. The purpose of this paper is to

realize the stratified detection of tea buds in multi-density tea

garden environment, including the detection of a single leaf of a

bud and two leaves of a bud at the same time, and to develop a new

tea bud target detection model.

It is noteworthy that the grading of tea buds includes one-bud-

one-leaf and one-bud-two-leaves, and how to achieve the

simultaneous detection and recognition of one bud and one bud

and two leaves in tea bud images will strongly promote the

development process of tea bud picking robots. Base on the

powerful tool of deep learning, this work proposed an improved

YOLOv7 detection algorithm to solve the problem of one-bud-one-

leaf and one-bud-two-leaves detection and classification. The main

contributions of this paper can be summarized as follows:
1. A multi-density tea dataset was constructed, which

included two types: one-bud-one-leaf and one-bud-

two-leaves.

2. The enhanced tea leaf detection algorithm, YOLOv7-DWS

was proposed, which has achieved varying degrees of

improvement in detection performance across different

densities, with the mAP@0.5:0.95 metric experiencing

respective boosts of 5.5%, 6.5%, and 8.2% for low,

medium, and high densities.

3. The experimental results demonstrated that the proposed

method was highly effective in detecting tea leaves under

various density conditions. Through ablation studies, it was

revealed that, compared to the original YOLOv7 algorithm,

the improved YOLOv7-DWS significantly enhances tea leaf

detection with a 6.2% increase in RTea and a 7.7% rise

in mAP@0.5.
The rest of this article is arranged as follows. The second part

provides the basic principles of the relevant models and algorithms

used for training, the relevant information of the data set and the

relevant evaluation criteria. The experimental results are analyzed

and visualized in the third part. The fourth part discusses the
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algorithm of this question and some directions of future

optimization research. The conclusion of this paper is presented

in the fifth part.
2 Materials and methods

2.1 Data collection

The data pertaining to tea was amassed between March 2 and

April 28, 2023. It was gathered from several tea gardens located in

Yingde City, Guangdong Province, PR China. The specific variety of

tea leaves is Yinghong No. 9, a tea variety extensively cultivated in this

location. Yinghong No. 9, known for its distinctive characteristics and

high-quality taste, enjoys a good reputation in both domestic and

international tea markets. We chose this variety for our research with

the intention to deeply analyze and detect its growth under various

conditions. This will potentially improve the efficiency and accuracy

of intelligent harvesting equipment. The authors specifically chose to

work with tea leaves of the type “one-bud-one-leaf” and “one-bud-

two-leaves”. As shown in Figure 1, These types are particularly

significant in tea harvesting as they often represent the ideal

harvesting stage for many tea varieties, offering the best balance

between quality and quantity. A high-resolution image capturing

sensor (Realsense435 camera) was employed to gather detailed

visuals of these tea leaf types. This camera, capable of a resolution

of 1920*1080, allowed us to capture extremely detailed images that

significantly benefited our analysis. All captured images were saved in

the.jpg format and transferred to a computer via a USB connection,

thus preserving their high-quality state while ensuring convenient

accessibility for the research team. The data collected by this sensor

served as the basis for the further stages of our study, including image

processing and feature extraction.
2.2 Dataset

In order to increase the richness of the image and improve the

generalization ability of the model, we captured the tea bud image
Frontiers in Plant Science 03
from multiple distances under different backgrounds and lighting

conditions (morning and afternoon), taking into account different

angles (30 degrees, 60 degrees and 90 degrees). Finally, 945 original

images were collected, and part of the dataset images are shown in

Figure 2. In addition, in order to reduce the factor interference of tea

bud image background and improve the feature extraction ability of

the model, data enhancement methods such as increasing noise,

darkening/brightening image, stretching and rotating image were

adopted. The hue is randomly adjusted by 1.5%, the saturation by

80% and the value by 45% of the image. Moreover, the image is set

to flip up and down with a 50% probability, and the degree of

random is set to 30%. Finally, the image data is annotated with

Labelme and stored in PASCAL VOC format. Among them, the

“one bud, one leaf” type label is designated as “tea11”, while “tea12”

is used to indicate the “one bud, two leaves” type.
2.3 Network structure for detection and
classification of tea buds

YOLOv7 was introduced by Alexey Bochkovskiy in 2022 (Zhou

et al., 2022; Ali et al., 2022). It is mainly composed of a backbone

network, neck network, head network, and loss function. First,

YOLOv7 employs a backbone network called CSPDarknet for

image feature extraction. CSPDarknet serves as the backbone of

the YOLOv7 model, enhancing feature extraction by employing

Cross Stage Partial (CSP) connections. This technique aims to

reduce the computational load while maintaining accuracy,

making it more efficient for real-time applications. Specifically,

CSPDarknet helps in splitting feature maps and re-merging them

to improve gradient flow and reduce memory usage, thus

optimizing the network for object detection tasks (Zhang et al.,

2022). Next, YOLOv7 utilizes an SPP-PAN neck network that

compresses and integrates the output features from the backbone

network, thereby optimizing them for object detection tasks. This

network incorporates pyramid pooling and progressive aggregation

strategies to bolster detection performance. Finally, YOLOv7’s head

network, YOLO-FPN, is used for predicting object locations and

classes. This network features adaptive feature pyramids and a
FIGURE 1

Diagram of different types of picking Yinghong No. 9 tea leaves. (A) one-bud-one-leaf; (B) one-bud-two-leaves.
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feature aggregation module, improving detection accuracy and

speed. Figure 3 shows the network structure diagram of YOLOv7-

DWS improved by YOLOv7.

The original YOLOv7 utilizes a loss function called GIoU-L1 to

measure the distance between predicted boxes and ground truth

boxes. This loss function is an improved version of IoU loss, and it

takes into account factors such as the position, size, and shape of the

predicted boxes, aiming for enhanced detection performance. As

shown in Figure 3, our main improvements include the replacement

of coupled heads in Major improvement areas, the replacement of

IoULoss, and the addition of SimAM.
2.4 Improvements in network structure

2.4.1 Decoupled head
Decoupled head is a concept used within the context of object

detection using deep learning. It refers to an architectural

modification in the head of a neural network to decouple the

various prediction tasks, allowing the network to focus on

different aspects of the prediction separately (Liu et al., 2023).
Frontiers in Plant Science 04
In traditional object detection architectures, the prediction head

of the neural network is responsible for predicting several attributes

of the object, such as its class, bounding box coordinates, and

possibly additional attributes like object pose or segmentation mask.

These predictions are often entangled within the same network

layers, meaning that the same set of neurons is responsible for

handling multiple prediction tasks.

As shown in Figure 4, Decoupled head approach aims to

overcome this limitation by decoupling or separating the

prediction tasks into distinct sets of neurons or layers within the

prediction head. This allows the network to learn features and

representations that are specifically tailored to each prediction task,

such as classification or bounding box regression, without

interference from other tasks.

2.4.2 WiseIoU
Training data inevitably contains low-quality examples. As

such, geometric measurements like distance and aspect ratio tend

to intensify the penalties on these poor-quality samples, which in

turn can degrade the generalization performance of the model (Li

et al., 2023). An effective loss function should mitigate the penalties

from geometric measurements when the anchor boxes sufficiently
FIGURE 3

Network structure of YOLOv7-DWS model.
FIGURE 2

Multi-density images of a partial tea dataset.
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overlap with the target boxes. Minimizing excessive interference

during training can enhance the model’s generalization capabilities.

Building on this principle, a distance attention mechanism is

developed through distance measurement, leading to the creation

of WiseIoU, as depicted in (Equations 1, 2):

LWIoU = RWIoULIoU (1)
Frontiers in Plant Science 05
RWIoU = exp(
(x − xgt)

2 + (y − ygt)
2

(W2
g +H2

g )*
) (2)

WhereWg and Hg represent the width and height of the anchor

box, and W2
g + H2

g represent the diagonal length of the box. The

superscript * indicates a detachment operation, which is used to

prevent RWIoU from producing gradients that hinder convergence.
FIGURE 5

A PyTorch way of implementing SimAM.
FIGURE 4

Decoupled head structure schematic.
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2.4.3 SimAM
SimAM takes inspiration from the concept of energy

exploration in neuroscience, which distinguishes the importance

of neurons, to access the attention mechanism within feature maps

(You et al., 2023). The PyTorch implementation of SimAM is

illustrated in Figure 5.

The integration of SimAM brings about a dynamic perspective

into the neural network by selectively focusing on crucial aspects

within the feature maps. This selective attention enables the model

to learn highly expressive representations which are vital for

complex tasks such as object detection, segmentation, and

classification. As SimAM is grounded in the principles of

neuroscience, it aligns well with the cognitive processes, allowing

for more intuitive and human-like interpretation of data.
2.5 Density analysis

The number of tea leaves in different images is different, which

results in different tea density in the images. In order to see the

performance of the algorithm under different densities, we propose

a tea density distribution index (TDDI) analysis method to analyze

the detection performance of tea images with different densities.

Since there are two types of one-bud-one-leaf and one-bud-two-

leaves in the image, we need to calculate the area of the real

rectangular box of the two types of tea respectively, as shown in

(Equations 3, 4):

AreaN = (HN  * WN )tea11N (3)

AreaM = (HM  * WM)tea11M (4)

Where AreaN and AreaM represent the area of the Nth one-

bud-one-leaf and theMth one-bud-two-leaves, respectively.HN and

WN represent the height and width of the Nth one-bud-one-leaf

rectangular box, HM andWM represent the height and width of the

Mth one-bud-two-leaves rectangular box.

Then calculate the total area of each type of tea, as shown in

(Equations 5, 6):

Totaltea11 =o
N

i=1
AreaN (5)

Totaltea12 =o
M

j=1
AreaM (6)

Where Totaltea11 and Totaltea12 represent the total area of the

one-bud-one-leaf and the one-bud-two-leaves.

Considering that there will be overlapping occlusion between

tea leaves, we then calculate the union of the areas of the real

rectangular boxes of the two types of tea leaves, as shown in

(Equations 7, 8):

Uniontea11 = Area1 ∪
  Area2 ∪

  … ∪  AreaN (7)

Uniontea12 = Area1 ∪
  Area2 ∪

  … ∪  AreaM (8)
Frontiers in Plant Science 06
Where  Uniontea11 and  Uniontea12  represent the union of the

total area of the one-bud-one-leaf and the one-bud-two-leaves.

Then calculate the dense distribution of each tea type, as shown

in (Equations 9, 10):

TDDItea11 = Uniontea11=Totaltea11 (9)

TDDItea12 = Uniontea12=Totaltea12 (10)

Where  TDDItea11   and TDDItea12   represent the dense

distribution index of the one-bud-one-leaf and the one-bud-

two-leaves.

Finally, the overall density distribution index of the image is

judged by combining these two density distribution indexes, as

shown in Equation 11.

TDDI = TDDItea11 * (Totaltea11=Areaimage)

+ TDDItea12 * (Totaltea12=Areaimage) (11)

Where TDDI represent the dense distribution index of tea in the

whole image and Areaimage represent the total area of pixels in

the image.

The formula takes into account the size difference between the

different types of one-bud-one-leaf and one-bud-two-leaves, as well

as the overlap between different tea leaves and the proportion of tea

in the image, which can better reflect the dense distribution of tea in

the image.
2.6 Evaluation metrics

In order to evaluate the performance of the proposed algorithm,

several indicators were proposed in this study, including PTea, RTea,

mAP@0.5, and mAP@0.5:0.95. PTea is the proportion of truly

correctly predicted samples (true positives) among all samples

predicted as positive. RTea is a metric used to evaluate the ability

of a model to identify all relevant instances. These two indicators

can be obtained from (Equations 12, 13):

PTea = TP=(TP + FP) (12)

RTea = TP=(TP + FN) (13)

where TP is true positive; FP is false positive; FN is a

false negative.

Mean average precision (mAP) serves as a measure of the

overall performance of a model’s detection results across all

categories, as shown in Equation 14:

mAP =  o 

APi=C (14)

Where APi represent the ith category of AP, C is the total

number of categories.

For mAP@0.5, when calculating AP, we only consider predictions

with an intersection over union (IoU) greater than 0.5. For mAP@

0.5:0.95, when calculating AP, we consider predictions with IoU values

at 0.5, 0.55,…, 0.95, respectively. Then average all the calculated APs,
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and indicators can be obtained from Equation 15:

mAP@0:5 : 0:95 =  o 

(APi @ r)=(C · R) (15)

Where APi @ r was the AP for the ith class under the prediction

with an IoU of r, and R is the number of IoU thresholds. The mAP@

0.5:0.95 takes into account the degree of match between the

predicted bounding boxes and the actual bounding boxes under

different thresholds. By selecting different thresholds, it considers

the performance of the model under various matching criteria.
3 Results and analysis

3.1 Experimental setting

In this study, the software and hardware environment used in

the experiment was shown in Table 1.

As shown in Table 1, the computer used for training and testing in

this study was configured with: i7-3960X@3.30GHz CPU, 16G RAM,

single NVIDIA GTX 1080TI GPU, and software environment:

Windows 10 operating system, Python 3.8, PyTorch 1.12.1, CUDA

11.3.1, CUDNN 8.4.0. The size off the image used for algorithm input

was 640*640 pixels. The ratio of the training set to the test set was 9:1. A

total of 300 rounds were trained, using Stochastic Gradient Descent

(SGD) as the optimizer. SGD enables faster parameter updates as it

uses only a single training example per iteration, and its noisy updates

can sometimes help the model escape local minima (Wu et al., 2024;

Fang et al., 2024; Guo et al., 2021). Figure 6 shows the changes of

various indicators of the YOLOv7 model in the training process.

The training and validation loss of the model decreased rapidly

in the first 80 times, and slowly decreased in the following 80 to 250

times, and basically stabilized at about 250 times.
3.2 Comparative of IoU experimental

In this section, we will discuss the effect of the improvement of

different algorithm strategies on the detection of one-bud-one-leaf

and one-bud-two-leaves, and conduct ablation experiments on

decoupled head, different loss functions, and attention mechanisms.
Frontiers in Plant Science 07
Indicators used for evaluation included PTea, RTea, mAP@0.5, mAP@

0.5:0.95, parameters and detection speed.

In this paper, we selected YOLOv7 as the base network and

considered replacing the original IoU with SIoU, DIoU, GIoU,

EIoU, and WiseIoU for comparative experiments, thereby

obtaining the IoU with the best recognition accuracy.

As shown in Table 2, YOLOv7+WiseIoU has the overall balanced

detection performance, specifically speaking, The model employing the

WiseIoU loss function achieved a precision (PTea) of 86.3%, which is

considerably higher by 5.9%, 1.5%, 6.0%, and 3.6% compared to the

models using SIoU, DIoU, GIoU, and EIoU loss functions respectively.

This significant improvement in precision with the use of the

WiseIoU loss function suggests that it has a more effective capability

in handling the complexities involved in tea leaf detection. The

higher precision reflects the model’s ability to correctly identify and

classify tea leaves, which is critical for practical applications such as

automated harvesting and quality assessment.

Considering these advantages, adopting WiseIoU as the loss

function can be instrumental in enhancing the robustness and

reliability of tea leaf detection systems. WiseIoU, by providing a

gradient gain allocation strategy, focuses on anchors of ordinary

quality, thereby making the overall performance of the detector

more balanced.
3.3 Comparative of attention
mechanism experimental

In this section, we aim to enhance the algorithm’s efficacy in tea leaf

recognition by incorporating various attention mechanisms. We

contemplate augmenting the original network by separately

integrating SEATT, SimAM, BiFormer, TripleATT, CoTATT, and

ShuffleAttention. Through comparative experiments, we seek to

identify the attention mechanism that yields the highest

recognition accuracy.

After integrating each of these attention mechanisms, rigorous

validation procedures were conducted. The experiments were designed

to measure not only the PTea, RTea, mAP@0.5, mAP@0.5:0.95 but also

other relevant metrics such as parameters and speed, providing a more

holistic view of each mechanism’s performance.

As shown in Table 3, SimAM stands out as the most effective in

boosting the overall performance of the model in tea leaf detection.

The inclusion of SimAM in the model leads to a 4.2% increase in

PTea for tea11 detection, a 4.6% improvement in RTea, a 7.9% rise in

mAP@0.5, and a 6.7% elevation in mAP@0.5:0.95. Notably, these

improvements are achieved with almost no change in the number of

parameters and the detection speed. The experimental results

highlight that employing the SimAM attention mechanism can

effectively enhance tea leaf detection.
3.4 Ablation experimental

To evaluate the efficacy of the proposed algorithm in tea leaf

detection, we conducted ablation studies on decoupled Head, the

WiseIoU loss function, and the SimAM attention mechanism. As
TABLE 1 Hardware and software environments.

Hardware

CPU I7-3960X@3.30GHz

RAM 16G

GPU NVIDIA GTX 1080TI

Software

Operating System Windows 10 Pro

CUDA 11.3.1

CUDNN 8.4.0

Python 3.8

PyTorch 1.12.1
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depicted in Table 4, the experimental results indicated that our

approach, which incorporates structural and strategic enhancements,

is effective.

Compared to the original YOLOv7, the improved YOLOv7-DWS

boasts a significant enhancement, with a 6.2% increase in RTea and a

7.7% rise in mAP@0.5. These significant improvements underscore the

importance of employing an integrative approach to optimization for

enhancing the tea leaf detection algorithm. The refinements in

YOLOv7-DWS have not only elevated the model’s accuracy but also

laid the foundation for its application in more complex and diverse

scenarios. It’s noteworthy that by integrating theWiseIoU loss function

and SimAM attention mechanism, our model exhibits higher

robustness in processing tea leaf images under various conditions.
Frontiers in Plant Science 08
This is crucial for practical applications such as automated harvesting

and tea leaf quality assessment.
3.5 Comparison of results under different
density conditions

In order to further verify the actual effect of our improved

algorithm under different tea densities, we divided the test pictures

into low density, medium density and high density. The

experimental results was shown in Table 5.

As shown in Table 5, the improved YOLOv7-DWS has achieved

commendable performance in detection across various densities.
TABLE 2 Comparative results of IoU experiments (%).

Algorithm Class PTea RTea mAP@0.5 mAP@0.5:0.95

YOLOv7+SIoU
All

Tea11
Tea12

80.2
79.6
80.7

80.6
79.5
81.6

83.5
80.7
86.2

71.5
67.0
76.0

YOLOv7+DIoU
All

Tea11
Tea12

84.8
84.2
85.3

77.0
75.0
79.0

83.0
81.9
84.2

71.0
67.9
74.1

YOLOv7+GIoU
All

Tea11
Tea12

80.3
78.7
81.9

79.1
76.6
81.6

81.5
79.0
84.0

69.5
66.1
72.9

YOLOv7+EIoU
All

Tea11
Tea12

82.7
82.0
83.4

78.4
77.4
79.4

83.1
81.8
84.3

71.5
68.7
74.3

YOLOv7+WiseIoU
All

Tea11
Tea12

86.3
85.7
86.8

74.9
73.5
76.4

83.1
81.2
85.0

72.0
68.2
75.8
FIGURE 6

Visual validation of different attention mechanisms.
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For low density, PTea improved from 76.9% to 81.4%, an increase of

4.5%; RTea rose from 79.6% to 86.5%, a gain of 6.9%; mAP@0.5

increased from 81.2% to 86.7%, a rise of 5.5%; and mAP@0.5:0.95

inched up from 72.7% to 73.0%, a marginal improvement of 0.3%.

In medium density, RTea went up from 79.7% to 83.1%, an increase

of 3.4%; mAP@0.5 escalated from 85.1% to 91.6%, a rise of 6.5%;

and mAP@0.5:0.95 increased from 72.4% to 76.6%, a gain of 4.2%.

For high density, PTea rocketed from 74.4% to 90.4%, a significant

surge of 16.0%; mAP@0.5 improved from 79.1% to 86.0%, a boost of

6.9%; and mAP@0.5:0.95 jumped from 64.9% to 73.1%, an

improvement of 8.2%.

These significant improvements underscore that, through

optimization and refinement, YOLOv7-DWS is adept at

effectively enhancing the precision of tea leaf detection across

various environmental densities. This augmented performance is

vital for practical applications, as the growing conditions of tea

leaves can substantially vary at different times and locations.
3.6 Model visualization analysis

Deep neural networks, while adept at handling object detection

tasks, often fall short in offering insights into which areas of the

input they are focusing on. To address this limitation, this study

employs heat map to contrast the visualization efficacy of the
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enhanced network. Heat map serve as a powerful tool to illustrate

the areas of attention within the network, revealing the regions that

the model deems significant for making its predictions (Yu et al.,

2022). This not only adds a layer of transparency to the workings of

deep neural networks but also aids in understanding and optimizing

their performance. In this study, by integrating heat map, we can

observe and compare how the original and the improved network

focus on different areas of the tea leaf images. This comparison

enables us to discern the advantages of the enhancements we

integrated into the network and their impact on the attention

mechanism. Figure 7 shows the heat map changes of tea with the

addition of different attention modules.

As depicted in Figure 7, as the training time progresses, the

areas of focus in the heat map become increasingly concentrated.

This concentration signifies that the model is gradually honing in

on the relevant features and is likely developing a more refined

understanding of the patterns within the data. As the model

continues to evolve, this could potentially lead to better

performance and improved prediction accuracy, particularly in

complex tasks where discerning subtle features is crucial. The

heat map serves as a valuable tool in visually tracking and

comprehending the model’s learning trajectory.

As shown in Figure 8, the improved YOLOv7-DWS achieves

results that are closer to human annotations across different densities.

This level of accuracy, akin to human annotations, not only reduces
TABLE 4 Results of ablation experiments (%).

Number + Decoupled + WiseIoU + SimAM RTea mAP@0.5 Parameters Speed(ms)

0 77.7 81.4 36,487,166 14.5

1 √ 78.7 83.7 62,644,990 18.8

2 √ 74.9 83.1 36,487,166 14.9

3 √ 80.9 86.1 36,488,702 15.4

4 √ √ √ 83.9 89.1 62,646,526 20.2
TABLE 3 Comparative results of attention mechanism experiments (%).

Algorithm Class PTea RTea mAP@0.5 mAP@0.5:0.95 Parameters Speed(ms)

YOLOv7
Tea11
Tea12

81.3
88.1

75.2
80.1

76.9
85.9

66.1
76.5

36,487,166 14.5

YOLOv7+SEATT
Tea11
Tea12

81.7
83.3

79.3
82.3

84.8
88.0

70.8
79.3

36,890,110 15.5

YOLOv7+SimAM
Tea11
Tea12

85.5
87.7

79.8
82.0

84.8
87.4

72.8
78.7

36,488,702 15.4

YOLOv7+Biformer
Tea11
Tea12

81.2
84.1

77.8
83.1

83.9
89.1

69.3
78.9

49,394,686 26.7

YOLOv7+TripleATT
Tea11
Tea12

79.8
84.7

78.7
82.8

81.5
87.7

69.4
79.2

36,490,802 17.4

YOLOv7+CoTATT
Tea11
Tea12

82.6
82.2

79.3
83.5

86.0
88.7

71.7
78.6

64,648,190 23.4

YOLOv7+
ShuffleAttention

Tea11
Tea12

83.2
84.7

78.7
83.2

84.2
88.4

71.6
79.3

62,646,526 16.7
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the need for human intervention but also provides a more reliable

foundation for automated tools. By minimizing errors and improving

accuracy, YOLOv7-DWS brings potential value to the tea industry,

including optimizing harvest times, improving the quality of tea, and

enhancing decision-making through precise data analysis.
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Moreover, considering the seasonality and environmental

changes in tea cultivation, having a detection algorithm capable of

adapting to these variations is critically important. YOLOv7-DWS

meets this requirement by delivering consistent high performance

under various density conditions.
FIGURE 7

Visual validation of different attention mechanisms.
TABLE 5 Comparison of detection results under different densities (%).

Density Algorithm Class PTea RTea mAP@0.5 mAP@0.5:0.95

Low

YOLOv7
All

Tea11
Tea12

76.9
76.2
77.7

79.6
76.2
82.9

81.2
77.8
84.5

72.7
67.0
78.4

YOLOv7-DWS
All

Tea11
Tea12

81.4
80.7
82.1

86.5
84.4
88.6

86.7
84.5
88.8

73.0
69.2
76.7

Medium

YOLOv7
All

Tea11
Tea12

88.6
86.5
90.7

79.7
78.4
81.0

85.1
82.9
87.4

72.4
68.5
76.2

YOLOv7-DWS
All

Tea11
Tea12

88.5
88.8
88.1

83.1
82.2
84.0

91.6
91.1
92.0

76.6
73.3
79.9

High

YOLOv7
All

Tea11
Tea12

74.4
71.4
77.3

81.7
83.3
80.0

79.1
69.3
89.0

64.9
53.8
75.9

YOLOv7-DWS
All

Tea11
Tea12

90.4
80.9
99.8

75.5
71.0
80.0

86.0
76.2
95.8

73.1
62.6
83.5
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4 Discussion

This article introduces an algorithm called YOLOv7-DWS for

tea leaf detection and classification. By refining and optimizing

YOLOv7, YOLOv7-DWS manages to achieve results that are

remarkably closer to human-annotated outcomes across various

densities. This underscores the algorithm’s efficacy in emulating the

keen insights of human experts.

Moving forward, the noteworthy achievements of YOLOv7-

DWS can serve as a stepping stone for further advancements in

agricultural technology. Its ability to closely mimic human expertise

opens the doors for automation and precision in tea cultivation and

quality control. Moreover, integrating YOLOv7-DWS into smart

agricultural systems could revolutionize the way tea plantations

operate , ult imately leading to enhanced productivity

and sustainability.

Upon identifying the optimal approach for tea leaf detection

and classification, the authors intend to use this as a foundation and

draw inspiration from the concept of knowledge distillation in deep

learning to embark on research focused on making the model

lightweight (Laña et al., 2021). This will contribute to further

advancing the deployment of the algorithm on edge devices.

Specifically, the authors plan to construct a teacher-student

framework. The high-accuracy model that has been trained will

serve as the teacher model, guiding a lighter, student model through

the learning process. The objective is to transfer the knowledge from

the more complex, resource-intensive teacher model to the more

streamlined student model without a significant loss

in performance.

This distillation process will involve training the student model

to mimic the behavior and outputs of the teacher model. Through

this process, it is expected that the student model will acquire the

ability to make similarly accurate predictions but with reduced

computational requirements. Implementing such a lightweight

model is particularly advantageous for deployment on edge

devices, which are often constrained by limited resources. By

reducing the model ’s complexity without substantially

compromising accuracy, it becomes feasible to integrate the

algorithm into real-time applications on edge devices, thus
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providing a practical and efficient solution for tea leaf detection

and classification in the field.

However, despite the promising aspects of YOLOv7-DWS and

the planned knowledge distillation approach, there are still some

challenges and areas that require further improvement. First and

foremost, the diversity and size of the dataset used for training the

model play a critical role in its performance. The current dataset

may not encompass all the variations in tea leaf characteristics

found globally. Thus, expanding the dataset to include a more

diverse set of tea leaves, capturing different species, growth

conditions, and geographical locations, would greatly enhance the

model’s ability to generalize and maintain high accuracy in different

scenarios (Zhang et al., 2023; Wu et al., 2022).

Additionally, it is essential to account for the robustness of the

model in varying environmental conditions. For instance, the

algorithm should be tested and tuned for performance under

different lighting conditions, weather patterns, and levels of

occlusion. This would make the model more adaptable and

practical for real-world implementations where these variables

can significantly affect the detection results (Lehnert et al., 2020).

Another area worth exploring is the integration of YOLOv7-

DWS with other sensors and data sources. For example,

incorporating information from soil sensors, weather data, and

multispectral imagery could allow for a more comprehensive

analysis of the tea crop health and quality (Ouhami et al., 2021).

This multi-modal approach could lead to more informed and

precise decision-making for tea cultivation.

Moreover, while knowledge distillation is a powerful technique

for model optimization, it’s essential to carefully evaluate the trade-

offs between model complexity and performance. There is a risk of

losing some fine-grained information during the distillation

process, which might impact the model’s ability to detect subtle

variations in tea leaves. Developing methods to retain this granular

information while still achieving model compression would be

valuable (Liu et al., 2022).

In conclusion, YOLOv7-DWS represents a significant

advancement in tea leaf detection and classification. However, by

expanding the dataset, ensuring environmental robustness,

integrating with other data sources, and carefully managing the
FIGURE 8

Visual verification of tea detection at different densities.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1503033
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1503033
trade-offs of model compression, further improvements can be

achieved, pushing the boundaries of what is possible in smart

agriculture for tea cultivation.
5 Conclusions

With the development of deep learning technology, the image

recognition technology of tea is also improving. The tea recognition

method based on deep learning achieves better performance and

provides higher accuracy than the traditional tea recognition

method. Secondly, this paper proposes a new tea object detection

algorithm based on YOLOv7 algorithm (YOLOV7-DWS). The

algorithm analyzed tea images in different density environments,

and by comparing the experimental results, the following

conclusions were drawn:
Fron
1. The inclusion of specialized optimization techniques within

YOLOv7-DWS has shown to be critical in boosting the

performance metrics, proving that tailored modifications

can significantly impact the outcomes.

2. The improved YOLOv7-DWS has achieved commendable

performance in detection across various densities. These

significant improvements underscore that, through

optimization and refinement, YOLOv7-DWS is adept at

effectively enhancing the precision of tea leaf detection

across various environmental densities.

3. The experimental results demonstrate that the proposed

method is highly effective in detecting tea leaves under

various density conditions. Through ablation studies, it was

revealed that, compared to the original YOLOv7 algorithm,

the improved YOLOv7-DWS significantly enhances tea leaf

detection with a 6.2% increase in RTea and a 7.7% rise

in mAP@0.5.
The results show that our method can effectively detect tea

under different density conditions. However, there is still a lot of

work that we can continue to explore, and future work will expand

the size of the dataset and test and validate it in richer scenarios to

further optimize the algorithm. At the same time, we expect that

the application of deep learning in tea detection will be more

extensive, providing stronger support for tea production and

quality control.
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