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Monitoring of agricultural
progress in rice-wheat rotation
area based on UAV RGB images
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Hui Wang4, Yuanyuan Zhao1,2, Jiacheng Wang1,2,
Zhaosheng Yao1,2, Chengming Sun1,2 and Tao Liu1,2*

1Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation
and Physiology, Agricultural College of Yangzhou University, Yangzhou, China, 2Jiangsu Co-
Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University,
Yangzhou, China, 3Zhenjiang Agricultural Science Research Institute of Jiangsu Hilly Area,
Jurong, China, 4Institute of Agricultural Sciences, Lixiahe Region in Jiangsu, Yangzhou, China
Real-time monitoring of rice-wheat rotation areas is crucial for improving

agricultural productivity and ensuring the overall yield of rice and wheat.

However, the current monitoring methods mainly rely on manual recording

and observation, leading to low monitoring efficiency. This study addresses the

challenges of monitoring agricultural progress and the time-consuming and

labor-intensive nature of the monitoring process. By integrating Unmanned

aerial vehicle (UAV) image analysis technology and deep learning techniques,

we proposed a method for precise monitoring of agricultural progress in rice-

wheat rotation areas. The proposed method was initially used to extract color,

texture, and convolutional features from RGB images for model construction.

Then, redundant features were removed through feature correlation analysis.

Additionally, activation layer features suitable for agricultural progress

classification were proposed using the deep learning framework, enhancing

classification accuracy. The results showed that the classification accuracies

obtained by combining Color+Texture, Color+L08CON, Color+ResNet50, and

Color+Texture+L08CON with the random forest model were 0.91, 0.99, 0.98,

and 0.99, respectively. In contrast, the model using only color features had an

accuracy of 85.3%, which is significantly lower than that of the multi-feature

combination models. Color feature extraction took the shortest processing time

(0.19 s) for a single image. The proposed Color+L08CON method achieved high

accuracy with a processing time of 1.25 s, much faster than directly using deep

learning models. This method effectively meets the need for real-time

monitoring of agricultural progress.
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1 Introduction

In the rice-wheat rotation areas, strictly following the rotation

schedule is essential for the full growth and maturity of both crops

and for effective agricultural progress management. Timely

harvesting of rice is crucial for maximizing the utilization of

seasonal and land resources for subsequent wheat planting. Late

rice harvesting results in delayed wheat sowing, thereby affecting the

entire growth cycle of wheat, especially its growth and maturation

stages. Conversely, early harvest of rice affects its yield (Zhang L.

et al., 2024). Time management and precise agricultural progress

are essential in ensuring that crops are sown and harvested at

optimal times, thereby improving the overall yield and quality. As

rice and wheat production scales up, mastering the agricultural

progress of different fields is critical for improving the overall work

efficiency. A timely and accurate understanding of the agricultural

progress of different fields is essential for effective agricultural

management, enabling better planning and execution of key

planting and harvesting activities to optimize crop production

(Khormizi et al., 2024). Currently, agricultural progress

monitoring is mainly conducted through manual surveys and

records, which are labor-intensive and are easily susceptible to

subjective factors (Du et al., 2024).

In recent years, the application of UAV remote sensing

technology in agriculture has gained widespread attention. UAVs

have become important tools for agricultural monitoring owing to

their high flexibility, high resolution, and low cost. Additionally,

UAVs can be equipped with various sensors, such as RGB,

multispectral, and thermal imaging cameras, to capture high-

resolution images of fields (Colomina and Molina, 2014). These

sensors can be used to monitor crop growth, detect pests and

diseases, and assess soil conditions (Zhang and Kovacs, 2012). In

crop growth monitoring, UAV images are widely used to assess the

growth and health of rice and wheat. The growth status and biomass

of crops can be assessed by analyzing vegetation indices (such as

normalized difference vegetation index (NDVI)) (Li et al., 2019;

Najafi et al., 2023). For example, studies have shown that

multispectral images obtained using UAV can accurately assess

the growth status and predict the yield of rice (Zhou et al., 2017).

Additionally, UAV images can be used for wheat growth

monitoring and for obtaining vegetation indices from high-

resolution image data to assess the growth and health of wheat

(Su et al., 2019). UAV images also play an important role in pest

and weed detection. The application of UAVs to identify disease

spots and pest traces on crop leaves provides early warning and

effective control measures in agricultural management. Previous

studies have shown that multispectral images from the UAV can be

used to detect rice blast disease with an accuracy of over 85% (Cao

et al., 2013). The application of UAV images is highly effective in

identifying common diseases in wheat, such as rust and powdery

mildew (Garcia-Ruiz et al., 2013). In addition, UAV remote sensing

technology has been well applied in land type classification. By

obtaining high-resolution image data, researchers can classify

different types of land. Previous studies have classified different

land types, such as farmland, water bodies, and buildings, using

multispectral images obtained using UAVs (Tong et al., 2020). In
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recent years, the application of deep learning technology in UAV

remote sensing image processing has received considerable

attention. Deep learning technology is used to develop complex

neural network models for automatically extracting features from

large-scale image data, enabling efficient image classification and

object detection. Studies have shown that convolutional neural

networks (CNNs) can significantly improve the classification

accuracy of UAV images (Kamilaris and Prenafeta-Boldú, 2018).

In agricultural applications, deep learning technology can achieve

precise classification of crop growth, pests, and land types. For

example, the deep learning model ResNet50 can be used to

accurately classify different growth stages and pest conditions of

rice and wheat (Fuentes et al., 2017).

Although UAV remote sensing technology has been widely

used in agricultural monitoring, there are still some limitations in

monitoring farming progress (Zhang W. et al., 2024). Most studies

focus on crop growth status or pest and disease monitoring at a

single point in time, lacking continuous monitoring of the entire

farming process (Mulla, 2013)ADDIN. This shortcoming limits the

comprehensive understanding of farming progress, affecting the

precision of agricultural management. Traditional image processing

methods lack accuracy and efficiency in complex farmland

environments. Different crop types, soil conditions, and

management practices across fields pose challenges for traditional

methods in distinguishing similar farming activities (Timsina and

Connor, 2001). For example, ploughing and harrowing are the two

common farming activities with their image features, making them

difficult to distinguish using traditional image processing (Li et al.,

2024). Moreover, manual labeling is not only time-consuming and

labor-intensive but also prone to subjective influences, resulting in

poor accuracy and consistency of data. This problem is mostly

common in large-scale applications, limiting the widespread use of

UAV remote sensing technology in farming progress monitoring

(Hunt Jr. et al., 2010).

Thus, this research utilized high-resolution image data captured by

UAVs. Furthermore, these data were employed to extract image

features using deep learning models, enabling precise classification of

farming activities in rice-wheat rotation areas. This method improved

the classification accuracy and reduced manual intervention, thereby

enhancing the objectivity and consistency of the data. This study aimed

1) to identify different types of farming activities in rice-wheat rotation

fields and their corresponding image features: By analyzing UAV

images, image features of different farming activities, such as color,

texture, and deep learning features, were extracted to achieve the

classification of different farming activities; 2) to identify effective

indices that can be used for farming activity classification: By

comparing the classification effects of different image features, the

most representative and capable indices were selected to provide data

support for the subsequent construction of classification models; 3) to

construct a precise and efficient farming activity classification model:

Using the selected effective indices and combining them with deep

learning technology, a precise and efficient farming activity

classification model was developed to achieve real-time monitoring

and management of farming activities in rice-wheat rotation areas. The

research findings provide farmers and agricultural managers withmore

accurate information on plot farming activities, facilitating the
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optimization of agricultural management efficiency and scientific

decision-making. In the context of precision agriculture management

(Lu et al., 2023), this study enables real-time monitoring of farming

activities, offering a scientific basis for adjusting planting and harvesting

plans. This approach maximizes the utilization of land and seasonal

resources, optimizes crop production systems, and enhances

agricultural yield and quality. Such technological application holds

not only scientific significance but also substantial practical value in

advancing precision agriculture management.
2 Materials and methods

In this research, rice-wheat rotation areas were chosen as the

focus, with the monitoring period spanning from the rice harvest to

the completion of wheat planting. During this period, the fields

were divided into six types based on farming progress: immature

rice (I), harvestable rice (II), harvested rice (III), ploughed land

(IV), rotary tillage land (V), and wheat was sown (VI) (Figure 1A).

High-resolution visible light images of the fields were obtained

using a UAV equipped with a high-resolution camera (Figure 1B).

The UAV followed a predetermined route and altitude under clear

and windless conditions to ensure the images covered the entire

study area and maintained high quality and consistency.
Frontiers in Plant Science 03
The obtained images were processed using computer vision and

deep learning algorithms for field-type classification. First, the color

features, texture features, high-level convolutional features, and

activation layer features extracted using a CNN were extracted

from the images, as shown in Figure 1C. These features were input

to various classification models for field-type classification. By

comparing the performance of different models, the optimal

model was selected for final classification. To verify the accuracy

of the classification results, ground survey data were combined to

validate the UAV image classification results, ensuring consistency

with the actual farming progress.
2.1 Experimental design and
image acquisition

The experiment was conducted from 2020 to 2023 at the Modern

Agricultural Science and Technology Comprehensive Demonstration

Base in Huai’an City (Figure 2), Jiangsu Province, China (33°35′ N,
118°51′ E) and Yangzhou City (Figure 2), Yangzhou University Farm
(32°23′ N, 119°24′ E), which belongs to the multi-year, multi-

locational field experiment. The true values of the field types were

obtained through surveys conducted by experienced farm staff.

Determining the maturity and harvestability of the rice is
FIGURE 1

Technical flow of the study. (A) Depicts the six categories of agricultural operations in the rice-wheat rotation system; (B) offers a detailed
classification of these operations: immature rice (I), harvestable rice (II), harvested rice (III), ploughed land (IV), rotary tillage land (V), and land where
wheat was sown (VI); (C) illustrates the experimental methodology through a flowchart, comprising agricultural images acquired via RGB drones, an
overview of the feature extraction algorithms, and the outputs of the classification model.
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challenging. The following specific criteria are used: golden yellow

grains, yellow and withering leaves, drooping ears, and a rice

moisture content of approximately 20% measured with a moisture

meter. If these criteria are met, the rice is considered harvestable;

otherwise, it is immature rice. Harvested rice refers to rice harvested

using medium to large harvesters. Ploughed land refers to farmland

ploughed using a ploughing tractor. Rotary tillage land refers to

farmland tilled using a rotary tiller. Wheat that has been sown refers

to wheat planted using a strip seeder. A DJI Mavic 3E aerial survey

UAV (Shenzhen DJI Innovation Technology Co., Ltd, China) was

used to collect RGB images of the fields. The visible light camera had

an effective pixel count of 20 million, and the flight altitude was set to

15 m. The images were collected on clear, sunny days.
2.2 Image feature extraction

2.2.1 Image preprocessing
In this study, the DJI Enterprise software (Shenzhen DJI

Innovation Technology Co., Ltd, China) was used to complete

image stitching and to obtain orthophotos. ArcMap10.8 (Esri

Corporation, USA) was used to perform image alignment, geo-

registration, experimental field clipping, and calibration of the UAV

images. To obtain more accurate datasets based on the spatial
Frontiers in Plant Science 04
resolution of the images, the growth conditions of the rice, and

the preprocessing results of the true color images, the calibrated

UAV images of the six types of fields were cut into 0.60 × 0.60 m

images. During the plant target segmentation process, images

smaller than 0.36 m² were excluded, resulting in a total of 30,000

0.36 m² field images. These images were manually classified into the

six aforementioned datasets, with 50% of the images used for model

training and 50% for model testing.

2.2.2 Color indices and texture features
In this study, based on preliminary experiments (Table A.1 of

Appendix A), some features that were highly correlated with the six

types of fields were selected, and 12 common color vegetation

indices were calculated (Table 1). Moreover, texture features were

selected, and the contrast (CON) of UAV images was extracted

using a gray-level co-occurrence matrix (Liu et al., 2024). CON

reflected the image clarity and the depth of the texture grooves. The

deeper the texture grooves, the greater the contrast, resulting in a

clearer effect. Conversely, with a smaller contrast value, the grooves

are shallow, and the effect is blurry, making it suitable for classifying

different types of fields. The calculation formula is as follows:

Contrast =o
i
o
j
(i − j)2Cij (1)
FIGURE 2

Study sites.
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where i  and j represent the pixel values of the gray level. The

value of GLCM (i, j) is the number of times that pixels with value i

are adjacent to pixels with value j in the image.

2.2.3 Deep learning ResNet50 features
Traditional deep neural networks are prone to gradient vanishing

or exploding issues when the number of layers increases, making

training difficult. However, Residual Network (ResNet) can effectively

solve this problem (Hu et al., 2021). The most commonly used

ResNets include ResNet50 and ResNet101. Among them, ResNet50

has better recognition accuracy and real-time performance (Shabbir

et al., 2021). In this study, ResNet50 was used to extract features of

UAV RGB images of six types of fields and analyze and compare

them with the network structure shown in Figure 3.

Based on the ResNet50 model, 64 activation layers were extracted,

and texture feature analysis was conducted on the activation maps of

each layer, as these layers reflect structural changes across six types of

plots. The pre-experimental analysis methods included: 1)

normalization preprocessing for each activation layer; 2) texture

feature extraction using the gray-level co-occurrence matrix (GLCM)

method; 3) correlation analysis to assess texture differences and

classification performance across the six plot types for each activation

layer; and 4) selection of activation layers that demonstrated superior

texture differentiation and classification performance based on the pre-

experimental findings. Six activation layers—L02, L08, L23, L36, L55,

and L64—were identified in this experiment as exhibiting notable

performance in texture differentiation and classification effectiveness,

and their corresponding texture features were subsequently computed.
TABLE 1 Definitions of the color indices extracted from the
orthorectified RGB images.

Color indices Formula Reference

Excess green vegetation index (ExG) 2G-R-B (Zhao et al., 2023)

Color intensity index (INT) (R+G+B)/3 (Ahmad and
Reid, 1996)

Kawashima index (IKAW) (R-B)/(R+B) ADDIN (Gitelson
et al., 2002)

Visible atmospherically resistant
index (VARI)

(G-R)/(G
+R-B)

(Torres-Sánchez
et al., 2014)

Excess red vegetation index (ExR) 1.4R-G (Liu et al., 2020)

Green leaf index (GLI) (2G-R-B)/(2G
+R+B)

(Nie et al., 2016)

Excess green minus excess red
index (ExGR)

3G-2.4R-B
(Kerkech et al., 2018)

Normalized green-red difference
index (NGRDI)

(G-R)/(G+R)
(Jannoura et al., 2015)

Normalized green-blue difference
index (NGBDI)

(G-B)/(G+B)
(Wang et al., 2023)

Modified green red vegetation
index (MGRVI)

(G²-
R²)/(G²+R²)

(Zhang et al., 2019)

Red green blue vegetation
index (RGBVI)

(G²B*R)/
(G²+B*R)

(Bendig et al., 2015)

Red-green ratio index (RGRI) R/G (Qi et al., 2021)
In the table, R, G, and B are the average color components of red, green, and blue of the true
color mask image, respectively.
FIGURE 3

Convolutional feature extraction network architecture. The upper part of the figure provides an overview of the ResNet50 network architecture,
including the algorithms involved: convolutional layers (convolution operation), pooling layers (max pooling), activation layers (ReLU activation
function), fully connected layers, Softmax, and addition operations (implementing the residual structure). The lower part of the figure illustrates the
process of extracting convolutional features from RGB images.
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2.3 Modeling and validation

The random forest (RF) classification method was applied to

classify six different plots. RF is a new classification algorithm

proposed by the American scientist Breiman. It can efficiently

handle datasets with multiple features, and it seeks the optimal

solution for category attribution through cross-validation of sample

features. It has advantages such as fast training speed, insensitivity

to sample size, high classification accuracy, and strong noise

resistance. It is one of the machine algorithms widely used in

agricultural remote sensing big data intelligent learning. In the

model validation stage, four metrics were used for evaluation:

accuracy, recall, F1 score, and confusion matrix (Chicco and

Jurman, 2020; Powers, 2020; Wen et al., 2022). The running time

of models built with various methods was calculated to select the

most accurate and efficient model. The formulas used are as follows:

Accuracy = TP+TN
TP+FP+FN+TN (2)

Recall = TP
TP+FN (3)

F1   score = 2PR
P+R (4)

where TP, FP, FN, and TN indicate true positive, false positive,

false negative, and true negative cases, respectively. P and R

represent accuracy and recall, respectively.
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In this study, models were developed for six different types of

plots using four different methods: color vegetation index features,

color + texture vegetation index features, color + activated layer L8

features, and color + ResNet50 (2048 features). To prevent model

overfitting, the dataset was divided into test sets and training sets in

a 5:5 ratio. SHapley Additive exPlanation (SHAP) values were

calculated for the test set. SHAP is a method used to explain

machine learning model predictions. It is based on the Shapley

values from game theory. It can analyze the importance of each

feature in the model and quantify the contribution of each feature to

the prediction of a given model for individual instances (Dikshit

and Pradhan, 2021).
3 Results and analysis

3.1 Feature correlation analysis

In the preliminary experiment (Table A.1 of Appendix A), after

the image features correlated with six types of plots were initially

screened, a Pearson’s correlation analysis was conducted on color

and texture features commonly used in agricultural research to

identify and filter out redundant features, thereby optimizing

subsequent data processing and modeling work. The analysis

results, shown as a heatmap (Figure 4), revealed a high

correlation (correlation coefficient of 0.94) between EXGR and
FIGURE 4

Pearson correlation analysis of RGB image features.
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NGBDI. Additionally, the correlation coefficient between RGBVI

and MGRVI was 0.94. These high correlation indicators suggest

that while these features may play an important role in monitoring

vegetation growth and health, they provide similar information,

indicating that only one feature was retained during data

simplification and model building. In subsequent analyses, a

representative feature was selected from each pair of highly

correlated feature groups to reduce model complexity and prevent

multicollinearity issues.
3.2 Common image features of fields

Analyzing the six different features of the six types of plots

selected in the previous section, as shown in Figure 5, CON shows a

significant overlap between categories V and VI. The overlap

indicates that the two categories are similar in the CON feature,

making CON unsuitable for distinguishing between them.

However, the CON values for categories I and II were relatively

dispersed. The CON values show significant differences for

categories III, IV, and V. The lower CON value for category IV

might help distinguish it from other categories. ExG values were

significantly high in category I, clearly distinguishing it from other

categories. However, there were many overlapping areas for

categories IV, V, and VI, making them prone to errors when used

to classify these three types of plots. ExR exhibited the opposite

pattern to ExG, but the difference between categories IV and V was

significant, which can be used to improve the classification of these

plots. The overall performance of INT was not as good as that of the

previous three features, and it also showed significant differences in

categories I and II but exhibited higher overlapping areas in the

latter categories. MGRVI showed high values only in category I,

with varying degrees of overlap among the other five types of plots.

RGBVI values for categories I and II were significantly higher than
Frontiers in Plant Science 07
those for the other categories. However, considerable overlap was

observed among the remaining four types of plots, especially

between categories III and IV.

In summary, the six features show significant differences across

the six types of plots. Specifically, categories I and II exhibited

significant differences, making them easier to identify through color

and texture features. Category III exhibited high texture features but

small differences in color features compared with the other

categories. Distinguishing categories IV, V, and VI was more

challenging due to their small differences in both color and

texture features.
3.3 Deep learning features

To further improve the accuracy of plot classification and

enhance the classification accuracy of plots with similar color and

texture features, we used ResNet50 to extract convolution features

(mean and variance of features extracted by convolutional

networks) of images from six types of plots. It was used to

analyze the 64 activation layers of ResNet50, selecting L02, L08,

L23, L36, L55, and L64 activation layers with significant differences

among the six types of plots for further analysis and screening. The

activation layers of the six types of plots are shown in Figure 6A.

The activation layer images clearly distinguish changes in the

surface structure of the plots, which is beneficial for plot

differentiation. Further analysis of the contrast of the six

activation layer images showed that the activation layer features

of the six types of plots had significant differences compared with

their color and texture features. As shown in Figure 6B, except for

L23CON, significant differences were observed in the activation

layer features of category V and VI plots. The observed difference

can mitigate the difficulty in classifying these two types of plots

using color and texture. Additionally, slight differences were
FIGURE 5

Box line plot of partial image features for six types of fields.
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observed among categories II, IV, V, and VI in L02CON, with some

overlap with category IV. Moreover, slight differences were

observed between categories I and II in L36CON. L55CON was

similar to L02CON, with slight differences observed between

categories V and VI, but with a larger overlapping than L02CON.

L64CON exhibited overall differences among the six types of plots,

with some overlap observed only between categories III and V and

categories II and VI. In L08CON, differences were observed among

the six types of plots with minimal overlapping values, except for
Frontiers in Plant Science 08
small overlaps between categories II, III, and IV. Therefore, this

feature was selected to establish the plot classification model.
3.4 Principal component analysis

Principal Component Analysis (PCA) was conducted using color

indices, combined color and texture indices, and convolutional

features to examine the differences among data groups across six
FIGURE 6

Partial RGB image of six types of fields visualized with the eighth layer of features of the activation layer. (A) Presents RGB images alongside six
classification images derived from activation layers L02, L08, L23, L36, L55, and L64 using the ResNet50 algorithm; (B) demonstrates the
effectiveness of contrast features from the activation layers in field classification applications.
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field categories (Figure 7). For the PCA based on color features, there

was limited overlap between category I and the other categories,

whereas significant overlap was observed among the remaining

categories. This suggests that individual color indices exhibit

limited discriminatory power. Additionally, the variance explained
Frontiers in Plant Science 09
by the first two principal components was below 70%, indicating that

the information is distributed across multiple components. When

texture features were incorporated, the PCA results demonstrated

improved category separation compared to those based solely on

color features. Specifically, the boundary between category I and
FIGURE 8

Four methods of confusion matrices.
FIGURE 7

PCA plot of features.
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category IV became more distinct, and categories V and VI exhibited

clearer clustering patterns. These improvements highlight the

substantial contribution of texture features to the principal

components, with the explained variance exceeding 80%. In

contrast, convolutional features extracted using ResNet50 displayed

a different pattern compared to color and texture features. Category

III fields were distinctly separated from the others, and the boundary

between categories V and VI was well-defined. However,

performance for categories I and II was comparatively weaker.

Notably, ResNet50 achieved an explained variance of 90–95%,

reflecting the high concentration of inter-category differences in the

low-dimensional space. The PCA findings further suggest that while

color features are effective for rapid preliminary classification,

auxiliary features may be necessary to distinguish complex or

highly similar categories. Texture features contributed additional

spatial information, enhancing the separation of categories with

similar colors. Meanwhile, convolutional features provided

information distinct from both color and texture, enabling effective

differentiation among categories.
3.5 Image feature classification results

An RF classification model and different feature combinations

were used to classify the plots. The confusion matrix is shown in

Figure 8. When only color features were used for classification, both

the overall misidentification and omission values were high, with

significant errors. When combining color and texture, the recognition

accuracy improved, especially in reducing the misidentification and

omission of category V plots. The introduction of ResNet50 features

(2048 sets) or L08CON features significantly improved accuracy,

particularly in addressing the misidentification and omission issues

between category V and VI plots, with L08CON performing better

than ResNet50.

Further analysis of the overall accuracy, recall, F1 score, and run

time for different combinations, as shown in Table 2, reveals that the

overall accuracy is consistent with the confusion matrix analysis

results. Both Color+L08CON and Color+ResNet50 achieved an

accuracy of over 98%. The addition of texture on the basis of Color

+L08CON did not significantly improve classification accuracy. In

terms of classification time per image, the color feature extraction

time was the shortest, at 0.19 s. The ResNet50 feature extraction time

was the longest, exceeding 6 s; the texture feature extraction time was

relatively long, exceeding 4 s. The L08CON extraction time was

approximately 1.20 s. Although the Color+Texture+L08CON
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combination achieved the highest accuracy, its feature extraction

time was relatively long, which is not conducive to real-time

plot detection.

The test set for the RF classification model, built with four

methods, was calculated to obtain the SHAP values of each feature

in the model and visualize them (Figure 9). The SHAP values reveal

that the texture feature CON, the color features ExG and ExR, and

L08CON contribute the most to the model. The features VARI,

RGBVI, INT, and MGRVI have the least impact, while the

contributions of the remaining features are even smaller and not

listed here.
4 Discussion

This research integrated UAV imaging technology with diverse

feature extraction and classification methods to achieve precise

monitoring of agricultural activities in rice-wheat rotation areas.

The results showed that different image features have unique

strengths and limitations in field classification. Initially, the feature

correlation analysis demonstrated that several color and texture

features (e.g., EXGR and NGBDI, RGBVI and MGRVI) showed

strong correlations. This observation implies that redundant features

were excluded during data simplification and modeling processes to

reduce the complexity of the model, aligning with methodologies

reported in previous studies (Mutlag et al., 2020; Xie and Yang, 2020).

The retention of only one representative feature after screening

improved the computational efficiency and the stability of the

model. In analyzing common color vegetation index features in

fields, although color features showed significant differences

between certain categories, their effectiveness was limited in

distinguishing similar categories (e.g., IV, V, and VI). These results

reveal the issue that solely relying on a single type of feature in field

classification may lead to classification inaccuracy, especially for post-

rice harvest field images. To address this issue, in this study, we

further introduced deep learning features. The convolutional features

and activation layer features extracted with ResNet50 significantly

improved the classification accuracy, especially in distinguishing

categories with similar color and texture features (e.g., V and VI).

The results showed that convolutional features had significant

advantages in capturing surface structure changes in fields,

compensating for the shortcomings of traditional color and texture

features in distinguishing certain categories. PCA further confirmed

the effectiveness of feature combinations. Although color features are

suitable for rapid preliminary classification, texture features and
TABLE 2 Classification results and running time of each methodological model.

Validation index

Model

Color
features

Color+
Texture

Color+
L08CON

Color+
ResNet50

Color+Texture+
L08CON

Accuracy (%) 80.54% 90.63% 98.76% 98.04% 98.96%

Recall (%) 82.01% 91.28% 98.17% 98.37% 98.66%

F1 score (%) 79.92% 91.21% 98.54% 98.19% 98.62%

Run time (s) 0.19 4.71 1.25 6.93 6.35
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convolutional features are needed to distinguish complex or similar

categories. Convolutional features provided complementary

information to color and texture features in classification, effectively

enhancing the separation of different categories. The final

classification results showed that the integrated model using color,

texture, and convolutional features (e.g., Color+L08CON and Color

+ResNet50) achieved an accuracy of over 98%, significantly higher

than the classification results of single features. Although the Color

+Texture+L08CON combination achieved the highest accuracy, its

feature extraction time was relatively long, making it unsuitable for

real-time field detection. Therefore, in practical applications, a

balance must be established between classification accuracy and

processing time.

This study evaluated and compared the classification performance

of the widely used deep learning algorithm LeNet-5 on field plots

(Figure 10). The findings revealed that, following extensive training,

LeNet-5 demonstrated satisfactory classification accuracy, particularly

for categories II, III, and IV, yielding results comparable to those of the

method proposed in this study. However, for categories I and V, LeNet-

5 exhibited significantly lower accuracy compared to the method

introduced here. Deep learning models such as LeNet-5 demand

extensive initial training, with their accuracy being heavily dependent

on the diversity and comprehensiveness of the dataset. Consequently,

achieving high-precision classification necessitates large and diverse

training datasets, which can present practical challenges in terms of

data collection and annotation. Furthermore, in terms of processing

speed, LeNet-5 required approximately 3 seconds longer per image than

the method employed in this study, potentially limiting its applicability

for real-time detection in large-scale field monitoring. While LeNet-5

performed well in identifying certain categories, its elevated training and

runtime requirements pose challenges. In contrast, the method

proposed in this study offers a more balanced and efficient approach,
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optimizing classification performance, training effort, and runtime

efficiency. Therefore, for practical applications, the method presented

here ensures robust classification accuracy while maintaining superior

real-time performance and operational feasibility. Future research could

focus on further optimizing deep learning models and exploring their

integration into agricultural progress monitoring within rice-wheat

rotation systems. This effort could involve combining deep learning

approaches with traditional image processing techniques to achieve

enhanced efficiency in agricultural monitoring.

The method used in this study has similarities and some

significant differences with traditional remote sensing technology

in land type classification research. The proposed agricultural

progress classification method relies on high-resolution image

data and uses various image features for classification. Remote

sensing technology extracts spectral, texture, and shape features of

land cover types from satellite images or UAV images and then uses

classification algorithms to classify different land types (Al-Najjar

et al., 2019), which is similar to the method used in this study.

Meanwhile, the proposed method also extracts color features,

texture features, and convolutional features. Additionally, it uses

an RF classification model for field classification. These methods

essentially distinguish different land cover types by analyzing the

features of image data (Bai et al., 2021). However, due to the tight

timing of agricultural progress and the slight differences in arable

land types, using only traditional remote sensing classification

methods is not ideal for agricultural progress classification. This

study mainly focused on real-time monitoring of agricultural

progress, not just the static classification of land cover types.

Traditional remote sensing research is mostly used for large-scale

land use and cover change monitoring, with low temporal

resolution (Wang et al., 2022). In contrast, this study used UAV

images to obtain high-frequency image data, enabling high

temporal resolution monitoring and timely management of

agricultural activities. A significant feature of this study is the

application of convolutional features. The convolutional features
FIGURE 9

Visualization of SHAP values for each group of features. In the
legend, (I)–(III) represent six different plot types: immature rice (I),
harvestable rice (II), harvested rice (III), ploughed land (IV), rotary
tillage land (V), and wheat has been sown (VI). The colored
rectangles indicate their respective contribution proportions in the
model, with longer rectangle lengths signifying
greater contributions.
FIGURE 10

Confusion matrix for LeNet-5 results.
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extracted with deep learning models (such as ResNet50) proved

more effective in distinguishing subtle changes under the same land

cover types. This efficacy enabled our study to accurately

differentiate subtle agricultural changes, such as differences in

ploughing, tilling, and seeding land types, where traditional

remote sensing classification methods are limited. Convolutional

features provide richer spatial information, facilitating the capture

of small changes in field surface structures, thus improving

classification accuracy. The study inherits some classic methods of

remote sensing technology in land classification but enhances real-

time performance and classification accuracy by introducing UAV

and deep learning technology, making it particularly suitable for

agricultural progress monitoring in rice-wheat rotation areas.
5 Conclusion

This study successfully achieved precise monitoring of

agricultural progress in rice-wheat rotation areas by integrating

UAV imaging technology with various feature extraction and

classification methods. The findings demonstrate that multiple

image features offer distinct advantages in plot classification. By

combining color, texture, and convolutional features extracted

through deep learning, significant improvements in classification

accuracy were achieved. The results indicate that integrated models

using color, texture, and convolutional features (such as Color

+L08CON and Color+ResNet50) can achieve an accuracy exceeding

98%, significantly reducing overall misclassification and omission

rates compared to methods relying on a single feature. Specifically,

the Color+L08CON model attained an accuracy of 98.76%, while the

model using only color features achieved an accuracy of 80.54%. In

terms of processing time for a single image, color feature extraction

was the fastest at 0.19 seconds, followed by Color+L08CON at 1.25

seconds, whereas ResNet50 feature extraction took the longest,

exceeding 6 seconds. The proposed Color+L08CON model not only

achieved high accuracy but also minimized the processing time per

image, meeting the requirements for real-time land type detection.

Overall, this study demonstrated that combining UAV imaging with

multiple feature extraction and classification methods enables efficient

and accurate monitoring of agricultural progress in rice-wheat

rotation areas. By adjusting model parameters and expanding

training datasets, this method can be adapted to complex field

environments and diverse crop planting patterns, offering reliable

technological support for precision agricultural management. Future

research should focus on optimizing feature extraction and

classification algorithms to enhance real-time monitoring efficiency

and accuracy. Additionally, integrating other remote sensing data and

ground sensors would enable the development of a more

comprehensive monitoring system, supporting scientific agricultural

management and sustainable development.
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