
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Pei Wang,
Southwest University, China

REVIEWED BY

Haikuan Feng,
Beijing Research Center for Information
Technology in Agriculture, China
Elio Romano,
Centro di ricerca per l’Ingegneria e le
Trasformazioni agroalimentari (CREA-IT), Italy
Xiaohui Lei,
Jiangsu Academy of Agricultural Sciences
(JAAS), China

*CORRESPONDENCE

Lejun Yu

yulj@hainanu.edu.cn

RECEIVED 25 September 2024
ACCEPTED 26 December 2024

PUBLISHED 22 January 2025

CITATION

Shi B, Guo L and Yu L (2025) Accurate LAI
estimation of soybean plants in the field
using deep learning and clustering algorithms.
Front. Plant Sci. 15:1501612.
doi: 10.3389/fpls.2024.1501612

COPYRIGHT

© 2025 Shi, Guo and Yu. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 22 January 2025

DOI 10.3389/fpls.2024.1501612
Accurate LAI estimation of
soybean plants in the field
using deep learning and
clustering algorithms
Bing Shi, Luqi Guo and Lejun Yu*

National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute of Hainan University,
Hainan University, Sanya, China
The leaf area index (LAI) is a critical parameter for characterizing plant foliage

abundance, canopy structure changes, and vegetation productivity in

ecosystems. Traditional phenological measurements are often destructive,

time-consuming, and labor-intensive. This paper proposes a high-throughput

3D point cloud data processing pipeline to segment field soybean plants and

estimate their LAI. The 3D point cloud data is obtained from a UAV equipped with

a LiDAR camera. First, The PointNet++ model was applied to simplify the

segmentation process by isolating field soybean plants from their surroundings

and eliminating environmental complexities. Subsequently, individual

segmentation was achieved using the Watershed approach and k-means

clustering algorithms, segmenting the field soybeans into individual plants.

Finally, the LAI of soybean plant was estimated using a machine learning

method and validated against measured values. The PointNet++ model

improved segmentation accuracy by 6.73%, and the watershed algorithm

achieved F1 scores of 0.89–0.90, outperforming k-means in complex

adhesion cases. For LAI estimation, the SVM model showed the highest

accuracy (R² = 0.79, RMSE = 0.47), with RF and XGBoost also performing well

(R² > 0.69, RMSE< 0.65). This indicates that the individual segmentation

algorithm, Watershed-based approach combined with PointNet++, can serve

as a crucial foundation for extracting high-throughput plant phenotypic data.

The experimental results confirm that the proposedmethod can rapidly calculate

the morphological parameters of each soybean plant, making it suitable for high-

throughput soybean phenotyping.
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1 Introduction

Soybean (Glycine max L. Merr.) is one of the most important

protein and oil crops (Kim et al., 2012). The protein component is

the most prominent in soybean seeds (Hartman et al., 2011), while

the oil component accounts for about 18-20% of the seed’s dry

weight and is widely used for human consumption and various

industrial applications (Clemente and Cahoon, 2009). The leaf area

index (LAI) is a key determinant of soybean yield, with optimal

yields achieved at an LAI value of 3.5-4.0 (Malone et al., 2002). LAI

reflects the total leaf area of plants per unit surface area. Traditional

destructive sampling to assess LAI is labor-intensive, time-

consuming, and often lacks scalability, making it impractical for

large-scale or high-throughput measurements. In contrast, our

proposed method offers a non-destructive, efficient, and

automated approach, significantly reducing labor and time

requirements while maintaining high accuracy in large field

environments. The capability to accurately and rapidly acquire

leaf area index (LAI) is essential for process-based ecological

research (Zheng and Moskal, 2009).

The rapid development of UAV technology has enabled the use

of UAV-based multispectral imagery to estimate LAI through

statistical methods (Hunt et al., 2008). UAVs have proven to be

effective remote sensing platforms for monitoring crop conditions

on individual farm fields, and UAV-based photogrammetry can

generate LiDAR-like 3D point cloud data containing crop structure

information (Song et al., 2020). However, studies on plant data

analysis have mainly concentrated on separating plant populations

into separate individuals. Achieving accurate and high-throughput

segmentation of plants in complex datasets, such as distinguishing

soil surface features from seedlings, remains a challenging task

(Yang et al., 2020). To address these challenges, researchers have

developed various approaches, including the use of PointNet deep

learning models to segment organs of sorghum plants from radar

3D point cloud data. The segmentation results were used to extract

sorghum plant phenotypic traits (Patel et al., 2023). Xie et al.’s

hierarchical modeling demonstrated superior performance in point

cloud segmentation (Xie et al., 2024). Li et al. showcased the

potential of deep learning in phenotypic parameter extraction by

applying PointNet for semantic segmentation of maize organs

(Li et al., 2022). However, in practical applications, these methods

have demonstrated limited efficiency (Saeed and Li, 2021). In the

absence of overlap between plants in a population, individual plant

segmentation can be achieved through straightforward division

methods. However, this approach is not applicable to real-world

crop planting and growth conditions, where plant hybridization or

adhesion is common. Achieving accurate single plant segmentation

in cases where plant leaves overlap remains a significant research

challenge. It is a research difficulty to realise individual

segmentation in the case of crossed plant leaves. For example, the

segmentation of overlapping leaves and individual leaf adhesion

cannot be segmented with deep learning methods, and they need to

be segmented with clustering segmentation, and they are segmented

by a region growing algorithm based on the Multiscale Tensor

Voting Method (MSTVM), which is able to produce independent

leaves and overlapping leaves (Li et al., 2022; Liu et al., 2022).
Frontiers in Plant Science 02
To address the challenges of individual maize plant segmentation

caused by leaf overlap, a combination of Euclidean and K-means

clustering based on Euclidean distance was employed. This

approach significantly enhanced segmentation outcomes

compared to using Euclidean clustering alone (Miao et al., 2023).

Hu et al. proposed a point cloud segmentation method combining

an improved point transformer and hierarchical clustering,

achieving better individual tree segmentation with a MIOU of

0.742 (Hu et al., 2023). Miao et al. successfully achieved

individual segmentation by K-means clustering method using

point cloud data collected from banana plants, but did not

analyse it with respect to segmentation accuracy (Miao et al.,

2022). Hui et al. proposed an adaptive kernel bandwidth mean

shift segmentation and hierarchical technique for UAV LiDAR

individual tree extraction, achieving higher accuracy and

completeness than traditional methods, though performance

declines in densely clustered trees (Hui et al., 2021). Li et al.

developed an automated method for pear tree branch and leaf

segmentation using LiDAR point clouds, combining PointNet++

for semantic segmentation and mean shift clustering for individual

leaf extraction (Li et al., 2023). Jin used deep learning and region-

growing algorithms to separate maize plants, achieving an accuracy

of 94% (Jin ShiChao et al., 2018). However, stem and leaf

segmentation methods for monocots are well established but do

not address how to segment monocots of populations. There is no

further research on monocot segmentation methods for large

adhering plants in airborne LiDAR crops, so the segmentation

effect of plants needs to be analyzed at the point cloud level.

Remote sensing is the only feasible method to invert the leaf

area index (LAI) on a large scale or even on a global scale (White

et al., 2000). The use of remote sensing data for LAI estimation

promises accurate measurements on a large scale. Yang et al.

proposed an improved geometry-based method for fisheye-based

forest LAI field measurements, incorporating tree height, crown

depth, and pixel size, which significantly improved accuracy,

reducing RMSE by almost 70% compared to previous methods

(Yang et al., 2023). Passive optical remote sensing, which does not

require the active emission of signals but instead relies on the

reflection or scattering of natural light, offers lower costs and

simpler operational methods. It has been widely used in the

estimation of Leaf Area Index (LAI) (White et al., 2000; Broge

and Leblanc, 2001; Gitelson, 2004). LiDAR is an active remote

sensing technology that scans and analyzes the vertical

characteristics of surface objects or vegetation, improving the

accuracy of ecological parameter estimation such as LAI (White

et al., 2000).LiDAR has been applied for inversion of LAI in forests

(Broge and Leblanc, 2001; Gitelson, 2004; Viña et al., 2011). The

LAI is indirectly estimated by measuring optical characteristics such

as the light transmittance and reflectance of the plant canopy

(Gitelson, 2004; Tang et al., 2012; Zheng et al., 2012). LAI was

estimated for individual sweet corn plants in field experiments

using a UAV-based method, with vegetation indices (NDVI, EVI2,

and SR) validated, where SR showed the strongest correlation with

both yield and LAI estimation (Jung et al., 2023). LiDAR remote

sensing captures the 3D structure and physical features of forests,

effectively reflecting canopy vertical distribution and foliage density,
frontiersin.org
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thereby providing accurate data for LAI estimation (Riaño et al.,

2004; Zhao and Popescu, 2009; Zheng et al., 2012; Luo et al., 2015).

In this paper, taking soybean plants with different genes as the

research object, We used airborne LiDAR to collect point cloud data

of soybean plants and researched individual segmentation methods

based on watershed and K-means clustering. Main tasks include: 1)

An individual segmentation pipeline is proposed; 2) Precision

estimation of Leaf Area Index (LAI) using machine learning.
2 Materials and methods

2.1 Overview

The methodology proposed in this study consists of five

stages: material collection, removing the natural background,

segmentation of individual, phenotypic parameter extraction, and

prediction of leaf area index. Figure 1 illustrates the process of LAI

prediction through 3D point clouds.
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2.2 Dataset acquisition

2.2.1 Study area
Data were collected at the experimental site in Yazhou

(Figure 2), Sanya, Hainan Province, China (18°21’27.11”N, 109°

10’18.70”E). Soybean plants were used as the experimental material,

planted using a double-row method in a plot measuring 13.0 meters

in length and 4.8 meters in width, with plant spacing of 0.15 meters

and ridge spacing of 0.8 meters.

In June 2022, soybean plants were sown according to this planting

scheme. Point cloud data of the soybean plants were collected at 35 and

46 days after planting, corresponding to the maturity stage.

2.2.2 UAV-LiDAR data
LiDAR data were collected using a DJI M300 RTK UAS equipped

with a Zenmuse L1 laser scanner (Figure 3). The Zenmuse L1 has a

ranging accuracy of 3 cm, supports a maximum of three echoes, and

operates with a scanning mode of repetitive scanning with a field of

view (FOV) of 70.4° x 4.5°. The difference between the ground position
FIGURE 1

Workflow of this study: (A) data collection; (B) data preprocessing and dataset construction; (C) removal of natural background based on the
PointNet++ segmentation model; (D) clustering-based segmentation of soybean plots; (E) plant phenotypic parameter extraction; (F) Prediction of
Leaf Area Index Using SVM, RF, and XGBoost Models.
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from remote sensing equipment and the actual position, assessed by the

IMU, is within 5 cm horizontally and 10 cm vertically. The scanner

speed is coordinated with the UAV’s forward velocity to maintain

consistent point spacing. On a scheduled date, UAV-LiDAR data were

collected by flying at an altitude of 20 meters above the ground with a

set speed of 6 m/s. Actual flight altitudes and speeds may have deviated

slightly from these predefined values, which were calculated from

subsequent flight logs. To assess the impact of flight altitude and speed

on the accuracy of the acquired phenological parameters, additional

flights were conducted on subsequent days at altitudes ranging from 10

to 50 meters above ground level and at programmed speeds ranging

from 3 to 8m/s. The optimal results were obtained at 20 m altitude and

6 m/s speed. Higher altitudes or faster speeds reduced point cloud

density, leading to lower data accuracy, while slower speeds increased
Frontiers in Plant Science 04
time costs. At lower altitudes, wind disturbances from the UAV’s rotors

affected data quality.

2.2.3 Field data collection
After collecting the point cloud data, the LAI of soybeans was

measured and recorded using the SS1 SunScan canopy analyzer

from Dalte-T (Figure 4). The LAI of soybeans was determined by

averaging these measurements. This portable leaf area meter

features a maximum measurement width of 1 meter, with an

accuracy of ±10% and a spectral response range of 400-700

nm (PAR).

To validate the estimates obtained by LiDAR, a 12 m × 4 m

sampling area was established within a randomly selected three-

monopoly area in the experimental field. The sampling areas were
FIGURE 3

UAV platform and sensor diagram: (A) UAV platform; (B) LIDAR sensor.
FIGURE 2

Overview of the study area.
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evenly distributed, and measurements were taken from multiple

angles to obtain more accurate canopy height and leaf area

index (LAI).
2.3 Data processing

2.3.1 Point cloud pre-processing
The soybean point cloud generated by DJI Terra exhibits high

density, with each 3D model of soybean plants in the field containing

approximately 10,000 to 20,000 points. A large number of outliers

within the plant model must first be manually removed, followed by

the application of the StatisticalOutlierRemoval algorithm to

eliminate noise. Since most outliers are challenging to remove

manually, point cloud noise can be effectively filtered using

appropriate filtering techniques. In terms of shape and edge

preservation, the StatisticalOutlierRemoval method demonstrates

superior performance, exhibiting high processing speeds and

efficiently handling extensive noise. In contrast, the Statistical Filter

focuses on overall statistical properties and provides superior noise

reduction for smaller noise volumes.

Due to surface ambiguities of the scanned objects and external

environmental noise, point cloud data may contain small fragments

and discrete points different from the main point cloud. This is not

conducive to point cloud extraction and matching. The

StatisticalOutlierRemoval filtering method reduces noise in the

original point cloud data. The principle involves calculating the

mean and standard deviation for each point and its nearest N

neighbors, assuming a normal distribution. Points within a pre-set

range of the standard deviation (e.g., one standard deviation) are

retained; otherwise, they are removed. This method effectively

removes anomalously noisy points, especially when laser scanning
Frontiers in Plant Science 05
produces an inhomogeneous point cloud. After outlier removal, the

point cloud becomes smoother, facilitating the subsequent point

cloud clustering process and easing convergence.

Point cloud annotation typically requires extensive manual effort

(Pope and Treitz, 2013). In this study, CloudCompare software was

used to process the point cloud data, which was classified into ground

and vegetation regions. A dataset consisting of 126 fully annotated

field soybean point cloud files was constructed.

2.3.2 Removing the natural background
2.3.2.1 PointNet++ segmentation model

PointNet++ (Qi et al., 2017a; Qi et al., 2017b) is a deep learning

model that uses hierarchical learning to capture local features at

different scales. As an enhanced version of PointNet (Qi et al.,

2017a), the model focuses on fine-grained local details. In this study,

the segmentation network of PointNet++ is employed for

background removal from field soybean data. PointNet++ extracts

local features layer by layer through local receptive fields, rather

than relying solely on global point cloud information. It selects

points within a specific neighborhood around the soybean plant and

extracts features from these points, helping to identify the true

structure of the plant while minimizing the impact of noise from

weeds or soil. By focusing on the plant’s local region, PointNet++

can effectively filter out noise and capture the plant’s genuine form.

Additionally, ensemble learning, by training multiple PointNet++

models on different datasets or with varied parameters, can enhance

robustness by averaging predictions and reducing errors caused by

noise or outliers.

PointNet++ introduces a hierarchical structure to extract local

features and uses multi-scale abstraction to progressively capture the

finer details of point cloud data. Through a series of Set Abstraction

(SA) layers, the network samples and groups the points, then employs
FIGURE 4

(A) SS1 SunScan canopy analyser used to measure leaf area index of soybean plants; (B) SS1 SunScan measurement orientation map.
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multi-layer perceptrons (MLPs) and max pooling to extract local

features. These local features are integrated across layers to form a

global representation used for point cloud classification or

segmentation. Additionally, PointNet++ enhances detail capture

through upsampling, enabling efficient handling of point clouds

with varying scales and densities. Its ability to learn local features

makes it highly effective for point cloud processing tasks. Figure 5

illustrates the structure of the segmentation network.

2.3.2.2 Model training

The PointNet++ model was implemented using the PyTorch

framework, with an initial learning rate set to 0.001. The ADAM

and SGD optimizers dynamically adjusted the learning rate based

on the current state of the model. The experiment was trained for

251 epochs on a Windows 11 22H2 operating system, utilizing an

Intel 8th Gen processor, 256 GB of RAM, and an NVIDIA GTX

4070 GPU.

2.3.2.3 Removing natural backgrounds

Segmenting plants from the background is essential for accurately

assessing plant characteristics. Before segmenting individual soybean

plots, they must first be separated from the background. The nature

of the captured data makes it difficult to remove the soil background

based on depth or color information. Paulus et al (Paulus, 2019).

captured the geometric morphology of plant organs to achieve more

precise segmentation. However, the high dimensionality may hinder

the effective integration of spatial and color information, limiting its

performance in certain applications. Rusu et al (Rusu et al., 2009).

transformed point cloud features into histograms, reducing the

complexity of point cloud data, thereby improving processing

speed and aiding in the recognition and classification of different

objects. This method utilizes differential geometric properties to

generate surface histograms, ensuring density and positional

invariance of surface features and suitability.

In this study, a segmentation network based on an PointNet++

model was introduced for field soybean background removal. This

network facilitates the automatic point-by-point classification of
Frontiers in Plant Science 06
soybean and soil backgrounds, improving the efficiency and

accuracy of the segmentation process.

2.3.3 Individual segmentation of kmeans-
based clustering

Single plant segmentation using K-means clustering commences

by initializing the cluster centers through the Max-Min distance

algorithm, followed by K-means clustering to determine the final

cluster labels. Initially, a random point in the point cloud is selected as

the first clustering center, K1. The pattern sample with the maximum

Euclidean distance from K1 is then chosen as the second clustering

center, K2. Subsequently, for each point, the Euclidean distances to all

identified cluster centers are calculated, and the smallest distance is

selected for each point. If the number of pattern samples is N, N

minimum distances are chosen, from which the maximum value is

selected. If the total number of cluster centers has not yet been

determined, the pattern sample corresponding to the maximum

distance is designated as the next cluster center, Z3, and this

process is iterated to identify subsequent cluster centers.

Once all cluster centers are established, the calculation step

concludes. The distance from each data point to the K initialized

cluster centers is computed, and the data points are assigned to the

closest cluster. Once all data points are allocated, K clusters are

formed. The mean of the data points within each cluster is

recalculated, and this new mean becomes the updated cluster

center. The distances are then recalculated for each data point

relative to the updated cluster centers, and the reallocation process

is repeated iteratively. The cluster centers are updated after each

iteration, and the process continues until no further data points can

be reassigned. Based on these initial cluster centers, subsequent K-

means clustering is executed to achieve precise individual

plant segmentation.

2.3.4 Watershed-based
monoculture segmentation

Watershed-based individual segmentation maps the x and y

coordinates of a point cloud to a discrete 2D grid. A binary image is
FIGURE 5

Structure of PointNet++ segmented network. n denotes the number of points, k denotes the number of groups, d denotes the coordinate
dimension, and C denotes the feature dimension.
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created by mapping the point cloud in the x and y directions. The

distance to the nearest zero-valued pixel from each marked position

on the grid is calculated, resulting in a greyscale image. Watershed

segmentation is then performed using the negative distance

transform to form the segmented regions. The point cloud data is

rasterized to generate the depth image, and greyscale assignment is

performed. After obtaining the greyscale image, the segmentation

results are indexed back into the original point cloud data to obtain

the final segmentation results of the point cloud data (Figure 6). The

Watershed-based monoculture segmentation demonstrates

superior performance in cases of severe plant overlap or irregular

plant shapes, as it is better able to distinguish boundaries based on

the local intensity gradients of the data.
2.3.5 Estimation of soybean plant
phenotypic traits

In this study, the leaf area index was estimated using an

individual soybean plant point cloud model. Voxels were created

by using the Octree data structure in PCL (Point Cloud Library).

The number of voxels that split the point cloud along the X and Y

directions was calculated based on the specified resolution. The

product of the number of voxels along the X and Y directions is the

total number of voxels in the first layer. The number of occupied

voxel centre points is then calculated. In addition, the LiDAR beam

could not penetrate the interior of the soybean region, and it was

necessary to fit the missing points in the middle using the geometric

features of the surrounding blank area. The value of 0.59 in

Equation 2 is based on empirical experimental results.
Frontiers in Plant Science 07
p = int
Zmax − Zmin

VOS

� �
        (1)

k =
Xmax − Xmin − 0:59

VOS
 ，k = max(k, 0) (2)

VOG =op
p=1

2n1(p) + pk2

2nT (p)
(3)

In Equation 3, VOG represents the voxel occupancy ratio, VOS

represents voxel size, n_1 (p)represents the total number of voxels

in the first layer, n_T (p)represents the number of body mass

centers occupied by each layer. p is the number of layers of voxels

along the z-axis, which is determined by the length of the whole

voxel edge and the set voxel block edge.

Different voxel sizes result in different voxel forms, and in the

experimental process, the voxel size should neither be too small nor

too large. The minimum distance between neighboring points in the

point cloud is 0.008 cm, and the maximum distance is 0.14 cm. To

find the optimal voxel size, the voxel size range is set from 0.008 cm

to 0.14 cm. Specifically, the voxel size is set from 0.002 cm to 0.14

cm, with an increment of 0.02 cm. Different voxel sizes were used to

segment the individual point cloud, and the Pearson’s correlation

coefficients between the Volume of Interest (VOI) measured using

voxel blocks of different sizes and the actual measurements

were calculated.

Canopy Roughness (Herrero-Huerta et al., 2020), introduced as

a novel phenotypic trait, quantifies the irregularity and complexity

of the canopy surface. It was calculated from high-resolution 3D
FIGURE 6

Workflow of individual segmentation based on watershed algorithm: (A) adhering soybean point cloud data; (B) point cloud side view; (C) linear
transformation of the point cloud; (D) mapping of the binary image; (E) inversion of the binary image; (F) watershed segmentation of the binary map.
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point cloud data acquired by a LiDAR-equipped unmanned aircraft

system (UAS). The calculation involved two key steps: first, point

ambiguity was determined by analyzing the spatial relationship

between each point and its neighboring points within a defined

radius, using the Euclidean distance between each point and the

best-fit plane of its neighborhood. This provided a local measure of

surface complexity. Second, Canopy Roughness (CR) was derived

by combining the interquartile range (IQR) and the median of these

point ambiguities across the entire canopy. The resulting CR value,

expressed in meters, effectively captures the variability and

roughness of the canopy surface, offering a robust descriptor that

correlates with LAI and other phenotypic traits.

CR = IQRmed (4)

Plant height was determined by analyzing the Z-coordinates of

the point cloud, focusing on the top 20% of the plant height to

minimize ground-level disturbances. Canopy cover was estimated

by projecting the 3D point cloud onto the XY plane, with the area

calculated using the trapezoidal method. Canopy volume was

computed by dividing the 2D projection into grid cells and

summing the volume of each cell based on height differences

within the grid. The canopy surface area was estimated using

surface reconstruction techniques, converting the point cloud into

a triangular mesh and summing the areas of the triangles. These

methods provide a comprehensive approach to accurately estimate

LAI and other phenotypic traits of soybean plants.

2.3.6 Manual point cloud segmentation
The population soybean point cloud was read into the

CloudCompare software, and the individual soybean plant point

cloud was manually segmented by the polygonal point cloud

segmentation method in the software as the true value of the

soybean plant segmentation.
2.4 Evaluation metrics

The accuracy of the automatic segmentation method was

assessed by comparing its results with manual annotations. The

analysis was conducted at the level of individual soybean plant plots.

If two or more complete plant plots were segmented into a

individual plot, the segmentation was considered incorrect.

Conversely, if individual plant plots were segmented correctly, the

segmentation was deemed accurate. Accuracy (A) was calculated

using Equation 5. Additionally, for plants that were truly segmented

at the individual level, additional analysis was conducted on the

number of points. Precision (P), recall (R), and F1 score (F1) were

calculated using Equations 6, 7, and 8, respectively. Combining the

individual level and point cloud level analyses, the precision

multiplied by the F1 score (A * F1) was used to comprehensively

evaluate the soybean plot segmentation.

A =
TPC

ACp
(5)
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where A, and are the accuracy, the number of truly segmented

plants, and the actual number of plants, respectively.

P =
TPC

TPC + FPC
   (6)

R =
TPC

TPC + FNC
   (7)

F1 =
2PR
P + R

   (8)

Where P, R, and F1 represent precision, recall, and F1 score,

respectively. The other terms refer to the number of points correctly

assigned to the corresponding soybean plants, the number of points

incorrectly assigned to the corresponding soybean plants, and the

number of points misassigned to other soybean plants.

In the Remove Natural Background section, the classification

accuracy was validated using manually segmented data and

calculated using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
   (9)

True Positive (TP), True Negative (TN), False Positive (FP), and

False Negative (FN) are the four basic metrics used to assess the

accuracy of a classification algorithm.TP refers to the number of

points that the algorithm correctly identifies as plants, TN is the

number of points that the algorithm correctly identifies as non-

plants. FP is the number of points that the algorithm incorrectly

labeled non-plants as plants, and FN is the number of points where

the algorithm incorrectly labeled plants as non-plants.
3 Results and discussion

3.1 Removal of natural background

Before phenotypic analysis, the natural background of soybean

plants needs to be removed. The accuracy of background removal

was assessed by analyzing the extent to which soybean plants were

successfully extracted from the original point cloud data after

background elimination. Automatic point-by-point classification

of soybean plant and background was performed using techniques

based on an PointNet++ model. Figure 7 illustrates the results of

natural background removal for field-grown soybean plants. The

first column presents the RGB image of the soybean fields captured

by our platform, while the second and third columns show point

clouds of soybean plants extracted from the background.

Based on the point cloud data of the soybean fields, the dataset

was partitioned into 6x7 soybean plots for subsequent analysis. The

PointNet++ segmentation model was compared with the RANSAC

algorithm-based segmentation model using 6x7 soybean plots as

samples. According to Formula (9), the segmentation accuracy of

the PointNet++ model exceeds that of the RANSAC algorithm

by 6.73%.
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3.2 Individual segmentation results

To verify the individual segmentation results for soybean plants

with different complex growth layouts, the plots were classified into

three categories based on the degree of adhesion between them:

simple (no overlapping regions), ordinary (one overlapping region

with a low degree of adherence), and complex (completely

overlapping regions with a low degree of adherence). The

quantities of the three plant types for evaluation are 15, 18, and 9,

respectively, with examples shown in Figure 8.

Segmentation of the point cloud of 42 soybean plots using

kmeans-based algorithm and watershed-based algorithm, as shown

in Figure 8. Visual inspection indicated that the watershed-based

algorithm produced a more complete soybean point cloud

compared to the kmeans-based algorithm (Figures 8A–C).

The k-means clustering algorithm was used to evaluate the

performance of the watershed-based segmentation method. The

results demonstrated that this method can effectively segment

the plots (Figure 8B). However, when soybean plots adhesion

complexity was high, the k-means algorithm performed poorly

(Figure 8C). Specifically, the k-means algorithm failed to

accurately segment each plot from multiple adherent soybean

plots (Figure 8B). The watershed-based segmentation method

performed significantly better, each contact point in the localized

region will separate different clustering results, thus completing the

segmentation. particularly in completely segmenting each complex

adhesion (Figure 8C). The k-means algorithm struggled with

recognizing edge and height features with a high degree of

adhesion, resulting in substantial segmentation boundary

errors (Figure 8B).

The performance of the two methods was evaluated using

manually segmented point clouds (Table 1). T-tests were
Frontiers in Plant Science 09
performed to evaluate the mean precision, recall, and F1 scores

between the two algorithms (Table 2). The results in Table 1 are

further illustrated with box-and-line plots (Figure 9). For the

watershed algorithm, the average F1 scores across the three types

of soybean plants varied between 0.89 and 0.90, with average

precision values spanning 0.95 to 0.96, and recall values between

0.85 and 0.86. The increased mean recall value and slight decrease in

standard deviation compared to the k-means clustering algorithm

suggest better segmentation in plot segmentation.
3.3 Comparison of LAI estimation models

After combining UAV-derived plant traits with machine

learning algorithms, the feature selection showed voxel occupancy

ratio to be superior to other features. Finally, six vegetation traits

(plant height, Canopy Roughness, surface area, volume, cover, and

voxel occupancy ratio) were selected to construct LAI prediction

model using three machine learning algorithms: RF, SVM,

and XGBoost.

Data from 35 and 46 days after soybean sowing in the field were

divided into training and test sets in the ratio of 3:7. The LAI

estimation model was constructed using vegetation phenotypes as

multivariate input variables. Among the modeling methods, the RF

model performed the best in the calibration set (R² = 0.89, RMSE =

0.22, RRMSE = 0.1373), followed by the SVM model (R² = 0.73,

RMSE = 0.52, RRMSE = 0.2406). In the validation set, the SVM

model performed best (R² = 0.79, RMSE = 0.47, RRMSE = 0.2183),

while the RF model’s R² dropped from 0.89 to 0.73, with a 20.18%

increase in RMSE and a 10.33 increase in RRMSE. The XGBoost

model performed slightly worse than the other two, but still

maintained good precision (R² > 0.69, RMSE< 0.65). These results
FIGURE 7

Field-grown soybean plants natural background removal Typical examples of natural background processing results are (A) RGB point cloud image
(B) removal results after pointnet++ natural background processing (C) removal results after ransac natural background processing.
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FIGURE 8

Visualisation of point cloud segmentation using kmeans-based algorithm and watershed-based algorithm. The first, second and third rows are one
of the simple, normal and complex plant-type structures, respectively. (A) is a field soybean plant to be segmented. (B) is the segmentation result of
the kmeans-based algorithm. Red circled regions indicate incorrect segmentation. Blue circled regions indicate correct segmentation. Contact
points between each soybean plot are indicated by black dots. (C) Segmentation results based on the watershed algorithm.
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indicate that the SVMmodel offers the best estimation accuracy and

stability, with the other two models also yielding strong predictive

performance. SVM outperformed both RF and XGBoost in

validation, particularly due to its ability to model complex,

nonlinear relationships in high-dimensional data. While RF and

XGBoost are robust ensemble methods, their reliance on tree
Frontiers in Plant Science 11
structures requires additional tuning to effectively capture such

complexities. Moreover, SVM’s inherent feature selection

minimizes overfitting, enhancing model accuracy and explaining

its superior performance in our study.

The scatter plot in Figure 10 shows that the predicted LAI

values are similar to the actual values, with RMSE between 0.47 and
FIGURE 9

Box plot of precision metrics between k-means and watershed-based algorithms: (A) is recall; (B) is precision; (C) is F1 score.
TABLE 1 Mean and standard deviation of precision, recall and F1 score values using k-means versus watershed-based algorithms.

Plant category Simple Ordinary Complex

Precision indicators p r F1 p r F1 p r F1

Kmeans clustering algorithm 0.9964 0.9943 0.9952 0.9671 0.9206 0.9388 0.9452 0.9398 0.9412

Watershed-based clustering algorithm 0.9955 1 0.9977 0.9384 0.9632 0.9482 0.9502 0.982 0.9654
fro
All results are calculated based on manual segmentation. p, precision; r, recall; f1, F1-Score.
TABLE 2 t-test for precision, recall and F1 score using k-means with watershed-based algorithm.

Plant category Simple Ordinary Complex

Precision indicators p r F1 p r F1 p r F1

t 0.516 -1 -0.838 2.133 -2.339 -0.79 -0.48 -4.038 -3.231

p 0.62 0.347 0.426 0.048* 0.032* 0.44 0.638 0.001* 0.006*
* indicates a significance level of 0.05.
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0.57, and RRMSE between 0.2183 and 0.2641. Incorporating canopy

phenotypic traits, optimal estimates were achieved using three

different machine learning models. Although this study focuses

on soybean, the methodology can be adapted to other crops with

similar growth patterns, such as maize, wheat, or rice. To improve

scalability, future work could integrate additional remote sensing

data, like multispectral or hyperspectral imagery, for enhanced

accuracy. Optimizing the computational efficiency of the pipeline

would also enable large-scale agricultural monitoring across

different crops and environments.
4 Conclusions

In summary, this study proposed an automated pipeline

combining deep learning and clustering algorithms for individual
Frontiers in Plant Science 12
segmentation and LAI estimation in field-grown soybean plants.

The The PointNet++ model significantly improved background

segmentation, achieving an IOU of 0.86 and an accuracy of 0.95.

The clustering algorithm effectively addressed challenges in

individual segmentation, particularly in adhesion regions. The

estimated LAI showed a strong correlation with measurements

(R²=0.88). This method offers an efficient approach for monocot

segmentation and plant phenotyping, particularly beneficial for

soybean breeding. The results demonstrate the method’s high

accuracy and potential for automated, high-precision LAI

extraction in precision agriculture. This method could

significantly impact farmers by enabling efficient, large-scale

monitoring of crop health and growth. Automated LAI

estimation provides timely insights into crop development,

optimizing resource management and supporting informed

decisions to maximize yield and sustainability.
FIGURE 10

Accuracy evaluation results of LAI estimation models. The models evaluated are: (A) XGBoost; (B) RF; (C) SVM.
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