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Introduction: Pests are important factors affecting the growth of cotton, and it is

a challenge to accurately detect cotton pests under complex natural conditions,

such as low-light environments. This paper proposes a low-light environments

cotton pest detection method, DCP-YOLOv7x, based on YOLOv7x, to address

the issues of degraded image quality, difficult feature extraction, and low

detection precision of cotton pests in low-light environments.

Methods: The DCP-YOLOv7x method first enhances low-quality cotton pest

images using FFDNet (Fast and Flexible Denoising Convolutional Neural

Network) and the EnlightenGAN low-light image enhancement network. This

aims to generate high-quality pest images, reduce redundant noise, and improve

target features and texture details in low-light environments. Next, the

DAttention (Deformable Attention) mechanism is introduced into the SPPCSPC

module of the YOLOv7x network to dynamically adjust the computation area of

attention and enhance the feature extraction capability. Meanwhile, the loss

function is modified, and NWD (Normalized Wasserstein Distance) is introduced

to significantly improve the detection precision and convergence speed of small

targets. In addition, the model detection head part is replaced with a DyHead

(Dynamic Head) structure, which dynamically fuses the features at different

scales by introducing dynamic convolution and multi-head attention

mechanism to enhance the model's ability to cope with the problem of target

morphology and location variability.

Results: The model was fine-tuned and tested on the Exdark and Dk-

CottonInsect datasets. Experimental results show that the detection Precision

(P) of DCP-YOLOv7x for cotton pests is 95.9%, and the Mean Average Precision

(mAP@0.5) is 95.4% under a low-light environments, showing improvements of

14.4% and 15.6%, respectively, compared to YOLOv7x. Experiments on the Exdark

datasets also achieved better detection results, verifying the effectiveness of the

DCP-YOLOv7x model in different low-light environments.
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Discussion: Fast and accurate detection of cotton pests using DCP-YOLOv7x

provides strong theoretical support for improving cotton quality and yield.

Additionally, this method can be further integrated into agricultural edge

computing devices to enhance its practical application value.
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1 Introduction

China is one of the world’s largest producers and consumers of

cotton (Chen, 2024), which plays a pivotal role in China’s

agricultural and textile industries. However, various pests often

threaten cotton during its growth process (Li et al., 2024a). Some

pests hinder plant growth by feeding on cotton leaves and bolls,

while others suck cotton sap and transmit diseases, resulting in

disease or death of cotton. On the contrary, cotton-beneficial insects

reduce the reproduction and spread of pests by feeding on or

parasitizing them, and some of them also feed on weed leaves to

control weed growth and promote the development of cotton

ecosystems. Therefore, detecting and distinguishing cotton pests

and beneficial insects is crucial for production. With the

modernization and intelligence of agriculture, using deep learning

object detection methods to detect insects quickly and accurately

provides a powerful tool for pest control in cotton fields.

Despite the significant progress of deep learning in object

detection, in the practical application of cotton pest detection,

complex natural conditions, especially low-light environments,

can cause some adverse effects on the detection task. In low-light

environments, the acquired image noise increases, brightness and

contrast decrease, and problems such as blurring of image details

and underexposure may occur, leading to difficulties in effectively

extracting and recognizing pest features, and the degradation of

image quality seriously affects the performance of the detection

system. Existing deep learning object detection models, such as the

YOLO (You Only Look Once) (Terven et al., 2023) series, perform

well under standard lighting conditions. However, their

performance in low-light environments is significantly reduced.

Therefore, designing or improving the object detection model to

overcome the underexposure and noise problems, improve the

precision and robustness of pest detection, and ensure the yield

and quality of the crop has become an urgent problem.

Currently, some low-light object detection methods use

enhancement algorithms to improve image quality. However,

these methods often amplify image noise, which negatively

impacts the subsequent detection performance. Other studies

have modified object detection network architectures to enhance

feature extraction capabilities, which, to some extent, improve

detection performance in low-light environments. However, these
02
approaches still fail to cope with extremely dark conditions, making

it difficult to ensure detection accuracy and reliability.

By combining advanced image enhancement techniques with

optimized deep learning object detection algorithms, this study

solves the challenges of low image quality, difficulty in pest feature

extraction, and low detection accuracy of models in low-light

environments for cotton pest detection. we first employ a

denoising network to remove noise from low-quality images, and

then use low-light image enhancement methods for further

unpaired training to improve image quality. This approach

effectively mitigates the impact of noise on detection accuracy

while enhancing image contrast and brightness, overcoming the

limitations of existing low-light object detection methods. For the

object detection network, we introduce an attention mechanism,

optimize the loss function, and improve the detection head design,

further enhancing the model’s feature extraction capabilities. By

jointly optimizing both image enhancement and network

improvements, this method provides an effective and accurate

solution to the challenge of cotton pest detection in low-light

environments, even under extreme conditions.

Overall, our main contributions can be summarized as follows:
• A new module, DA-SPPCSPC, is proposed to replace the

SPPCSPC (Li et al., 2023) module in the Neck part of the

YOLOv7x network architecture. Add the DAttention (Xia

et al., 2022) mechanism after the last convolutional layer of

the SPPCSPC module, by dynamically adjusting the

attention weights, the model’s attention is focused on the

weak features, such as the edges and textures of the target

insects, reducing the effect of insufficient light and

improving the model’s feature extraction ability, which

leads to a higher detection precision.

• For the pest detection task, the loss function of the

YOLOv7x model is optimized by replacing the original

CIOU (Complete Intersection Over Union) (Zheng et al.,

2020) loss with the NWD loss (Wang et al., 2021) in the

base loss calculation module and replacing the CIOU loss

with the NWD loss in the optimal transmission allocation

loss calculation module, then combine it with the OTA

(Optimal Transport for Label Assignment) (Li et al., 2024b)

strategy. The NWD loss improves the regression precision
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of the bounding box by calculating the normalized

Wasserstein distance between the prediction box and the

ground truth box in terms of width, height, and center

position, which improves the model detection performance

and accelerates the convergence speed when dealing with

small and dense targets like insects.

• Replacing the detection head of the model with a DyHead

(Dai et al., 2021) structure, which can adaptively adjust the

feature extraction strategy by combining the dynamic

convolution and the three attention mechanisms,

effectively enhances the target feature representation in

low-light environments and enables the model to

distinguish better the color difference between the target

and the background, and more accurately detects the

target’s variable morphology and location.
2 Related work

With the rapid development of computer vision technology,

object detection (Hui-lan, 2020), as one of the core tasks in

computer vision, has made significant progress and wide

application. In recent years, the emergence of deep learning

algorithms, especially CNN (Convolutional Neural Network) (Li

et al., 2022b), has strongly supported the development of the object

detection field.For instance, the work on (Jiang et al., 2018)

demonstrates how the incorporation of decoupled attention

mechanisms within CNNs can significantly improve feature

extraction, particularly in weakly supervised scenarios, by better

focusing on relevant regions of the image. Two-stage object

detection algorithms, such as R-CNN (Region CNN), Fast R-

CNN, and Faster R-CNN (Bharati and Pramanik, 2020), have

greatly improved the object detection performance of computer

vision by introducing the RPN (Region Proposal Network), which

significantly improves the detection precision and speed.On this

basis, methods like (Jiang W. et al., 2021), based on Faster R-CNN,

enhance detection under weak supervision by using dynamic

sampling strategies to refine region proposals. In addition, the

proposal of one-stage detection models such as YOLO series and

SSD (Single Shot MultiBox Detector), (Liu et al., 2016) further

simplifies the detection process and becomes a mainstream method

in object detection. Nowadays, more and more research has been

conducted to improve and optimize the baseline. For example, by

introducing feature pyramid structures such as FPN (Feature

Pyramid Networks) (Luo et al., 2022), PANet (Path Aggregation

Network) (Piao et al., 2023), and attention mechanisms such as

Biformer (Vision Transformer with Bi-Level Routing Attention)

(Liang and Yuanjun, 2024), CPCA (Channel Prior Convolutional

Attention) (Luo and Tian, 2024) to achieve more precision object

detection in complex backgrounds and dynamic environments. The

continuously improved object detection algorithms have been

widely used in the fields of autonomous driving (Qian et al.,

2023), facial recognition (Wang et al., 2024b), medicine (Ragab

et al., 2024), etc., which have promoted technological progress and

practical applications in related industries.
tiers in Plant Science 03
Although the above methods perform well on high-quality

datasets with normal light levels, the performance of the

generalized object detection model degrades significantly in low-

light environments. The low-light environments significantly

reduce the contrast and brightness of the image, making it

difficult for the target features to be effectively captured and

significantly increasing the model’s false and missed detection

rates. In addition, the noise in the low-quality image also blurs

the target object edges and texture details, seriously affecting the

detection model’s feature extraction capability. Therefore, the

limitations of generalized models highlight the necessity of low-

light object detection.Similar challenges are encountered in other

adverse conditions, as shown in (Ni et al., 2023), which improves

detection accuracy under adverse weather conditions by

dynamically adjusting feature extraction mechanisms based on

the environment.This research highlight the importance of

developing adaptive models that can handle varying conditions.

Several studies have been conducted in the field of low-light

object detection. (Irtiza et al., 2022) evaluated the performance of

several existing deep learning models [YOLOv7 (Wang et al.,

2023a), DETR (Zhu et al., 2020), RetinaNet (Lin et al., 2017), and

EfficientNet (Tan and Le, 2019)] on customized low-light pest

datasets. Although the results showed that YOLOv7 performs best

in low-light environments, the detection performance and

robustness of these models need to be further enhanced. In recent

years, some new research in low-light object detection has focused

on improving the network structure of object detection models. A

study (Xiao et al., 2020) proposed a night vision detector based on

RFB (Receptive Field Block) (Liu et al., 2017) to address issues such

as the effectiveness of object detection in low-light environments. It

combined a specifically designed feature pyramid network and

context fusion network to improve the precision of low-light

object detection. (Li et al., 2019) proposed an improved FDN

model specifically designed to solve the problem of poor coal

mine underground environment with an improved Faster RCNN

algorithm for pedestrian detection problems. The method uses a

deep convolutional neural network to extract features from images

automatically, and by introducing the RPN structure and feature

fusion techniques, it is effective in low-light pedestrian detection

and handling blur. Although these methods have some effectiveness

in low-light environments, if the lighting conditions are highly dim

and the exposure is severely insufficient, simply relying on

improving the network structure to enhance the feature

extraction capability, like the above methods, can only partially

solve the problem. In order to further improve the detection

performance, it is necessary to improve the quality of the low-

quality image to provide a more precise and more accurate input

image for the object detection algorithm.

Low-light image enhancement aims to improve the quality of

images captured under low-light environments to make them more

suitable for human eye observation and subsequent computer

vision tasks. Significant progress has been made in the field of

low-light image enhancement. Some researchers have combined

Retinex theory and deep learning algorithms to propose RetinexNet

(Wei et al., 2018), which utilizes an end-to-end network for low-

light enhancement and better maintains the natural colors and
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details of the image. EnlightenGAN (Jiang Y. et al., 2021) enhances

the brightness, contrast, and details of low-quality images through

adversarial training of the generator and the discriminator. (Tian

et al., 2023) provided a comprehensive review of deep learning-

based low-light image enhancement algorithms, pointing out that

low-light image enhancement not only improves the visual effect of

images but also significantly improves the performance of

downstream computer vision tasks, including object detection.

Therefore, some studies have attempted to combine low-light

image enhancement algorithms with object detection models.

(Wang et al., 2023b) optimized the structure of the YOLOv5

object detection network by combining low-light enhancement

algorithms to improve the performance of object detection within

a specific scene of a low-light mine. IDOD-YOLOV7 (Qiu et al.,

2023) improved the performance of low-light object detection

within a specific scene of a low-light mine by combining the

dynamic de-fogging enhancement module and image

enhancement algorithms with the YOLOv7 network for joint

optimization, thus achieving higher detection precision and

robustness in low-light and hazy environments.

Although practical, most methods combining low-light image

enhancement and object detection models will also inevitably enhance

the noise when enhancing the brightness and contrast of low-quality

images, affecting the detection effect. Therefore, a denoising algorithm

can be introduced to remove image noise before low-light

enhancement processing combined with the improved object

detection model to extract further and fuse compelling features.

Jointly optimizing these steps can achieve higher detection

performance and robustness in low-light environments.
3 Methodology

3.1 Overall network structure

YOLOv7 is an essential version in the YOLO object detection

series of models, which has made some optimizations based on the

previous versions, introduced more efficient feature extraction and

multi-scale feature fusion techniques, and significantly improved

the model’s performance. Although the detection precision is

slightly lower compared with the subsequent series, such as

YOLOv8 (Varghese and M., 2024) and YOLOv9 (Wang et al.,

2024a), it shows unique advantages in terms of computational

resource requirements, real-time performance, and network

structure complexity, etc., and YOLOv7 is still a very competitive

model for some resource-constrained applications that require high

stability and real-time performance.

YOLOv7x (Wang et al., 2023a) is an enhanced and stabilized

version of YOLOv7. YOLOv7x can provide better detection precision

and more robust feature representation when dealing with more

complex detection tasks. Compared to YOLOv7, YOLOv7x employs

a deeper and more complex network structure to improve the feature

extraction capability and diversity of detail expression.

Although YOLOv7x already performs well on most object

detection tasks, the performance of YOLOv7x in low-light

environments is poor, especially when dealing with data such as
Frontiers in Plant Science 04
insect images, which are small targets. In order to mitigate the

effects of low-light environments on the object detection task and

optimize the model’s effectiveness in detecting small targets for

specific applications, there is a strong need to improve the network

architecture of YOLOv7x. The improved network is called DCP-

YOLOv7x, and its overall network framework is shown in Figure 1.

In the DCP-YOLOv7x network, the denoising and

enhancement parts are added. In this paper, FFDNet (Zhang

et al. , 2017) is used as the denoising algorithm, and

EnlighenGAN (Jiang Y. et al., 2021) is used as the low-light

enhancement algorithm, which combines the two algorithms to

process the low-quality images and to minimize the impact of low-

light environments on the object detection task. In the Neck

network of the model, the improved DA-SPPCSPC module is

used to replace the original SPPCSPC module. Through the

introduction of the DAttention mechanism, the weights of the

features are dynamically adjusted at different levels and scales so

that the network pays more attention to the detailed features in the

complex lighting environment and better preserves and enhances

the spatial information of the insect to reduce the image distortion

and information loss effectively. In addition, the detection head of

the model is replaced with DyHead, which is more suitable for this

task. DyHead combines dynamic convolution and three attention

mechanisms, which can dynamically adjust the structure and

parameters of the detection head according to the different sizes,

shapes, and numbers of insects, more accurately adjusting the

position and size of the detection box and easily distinguishing

the color difference between the target and the background,

improving the detection precision and generalization ability.

Finally, the model’s loss function is optimized by replacing the

CIOU loss function originally used in YOLOv7 with the NWD loss

function, which has an excellent ability to adapt to scale changes. By

introducing normalized weight distances, it pays more attention to

the scale differences of target detection boxes and the weight

allocation of overlapping areas and performs better for small and

dense target detection tasks.
3.2 Low quality image enhancement

In this study, we first apply FFDNet for denoising to remove

noise from low-quality images, ensuring that extraneous noise,

which could negatively impact feature extraction, is minimized.

After denoising, we employ EnlightenGAN for low-light image

enhancement, improving both the brightness and contrast of the

images. The integration of these two techniques is executed in a

sequential manner: denoising provides cleaner images, which

creates a more stable foundation for the enhancement process to

operate effectively. This approach is critical in preventing noise

amplification, a common issue when applying enhancement

algorithms directly to noisy images.By combining these

techniques, we improve overall image quality, which in turn

facilitates better performance of the subsequent detection model

in low-light environments.

In the denoising part, this paper adopts FFDNet as the

denoising network.FFDNet is a flexible and funny image-
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FIGURE 2

FFDNet network structure (example of Dk-CottonInsect datasets).
FIGURE 1

DCP-YOLOv7x overall network structure.
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denoising convolutional neural network, which enhances the

network’s ability to adapt to various noise situations by

introducing a noise level map and combining different noise level

information with the input image. The network structure of

FFDNet is shown in Figure 2, which consists of multiple

convolutional and deconvolutional layers, utilizing layer-by-layer

feature extraction and reconstruction mechanism to achieve

efficient image denoising, and its efficient computational

characteristics make it very suitable for real-time image

denoising applications.

The image-denoising effect of FFDNet is shown in Figure 3. By

zooming in on the details, it can be seen that the noise of the insect

part of the main target of the image is basically removed. The edge

information of the insect is presented more clearly, and the contrast

between the tiny antennae, the foot, and the downy hairs and the

background part is more prominent and more accessible

to distinguish.

In the enhancement part, the EnlightenGAN low-light image

enhancement algorithm based on GANs(Generative Adversarial

Networks) is chosen in this paper. The network structure of

EnlightenGAN is shown in Figure 4.

Its core architecture includes two parts: a generator and a

discriminator. The generator adopts the U-Net structure, which

enhances the brightness and contrast of the image through multi-

layer convolution and jump connections. The discriminators are
Frontiers in Plant Science 06
divided into two parts: the global discriminator is responsible for

evaluating the whole image to ensure that the generated image looks

realistic and natural as a whole. The local discriminator randomly

crops local areas of the image to ensure that the details and textures

of the image can be sharper. In addition, EnlightenGAN introduces

a self-supervised learning mechanism that uses a specific loss

function to enhance the brightness of the image while

maintaining the consistency of the color and details, which can

achieve better low-light image enhancement without paired training

data and also improve the quality of the image in the case of uneasy

to captured normal-light images corresponding to low-light images.

Figure 5 compares the EnlightenGAN-enhanced low-light

image and the original low-quality image. It can be seen that

whether it is the image as a whole or each region, the brightness

and contrast of the image are balanced, and the colors and details

are real and clear, which produces a better visual effect. It is easier to

capture the target features, and the difference between the target and

background features is more prominent.
3.3 DA-SPPCSPC module

The YOLOv7x network uses the SPPCSPC module to enhance

multiscale feature extraction and fusion. However, in low-light

environments, the image quality is poorer and more noisy,
A B

FIGURE 3

Schematic of denoising effect. (A) Before denoising. (B) After denoising.
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resulting in the traditional CNN being prone to loss of detail

information during feature extraction. Although the SPPCSPC

module combines multiscale pooling and partial connectivity, the

extracted feature information is still insufficient. Moreover, insect’s

edge and texture information under low-light environments is more

complex, and the key features are weak; the SPPCSPC module may

not be able to effectively capture and extract these details when

dealing with them, thus affecting the detection precision.
Frontiers in Plant Science 07
In this paper, the DA-SPPCSPCmodule is proposed to solve the

above problems, which separates the features, part of which

undergoes convolution operation. The other part undergoes

spatial pyramid pooling, which performs multiple maximum

pooling operations at different scales on the feature map to

capture the information of different receptive fields, then splices

the features together and adds the DAttention mechanism in the

last layer of the module to improve the feature extraction capability
FIGURE 5

Schematic of low-light enhancement effect. (A) Before low-light enhancement. (B) After low-light enhancement.
FIGURE 4

EnlightenGAN network structure (Dk-CottonInsect datasets example).
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A

B

FIGURE 7

DAttention overall network structure. (A) Structure of the DAttention model. (B) Offset network structure.
FIGURE 6

Structure of DA-SPPCSPC module.
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of the model’s ability of the model. The structure of the DA-

SPPCSPC module is shown in Figure 6.

The standard self-attention mechanism processes all the pixels

in the image, increasing the computation. DAttention, on the

other hand, focuses on only a small number of critical regions in

the image. DAttention significantly reduces the amount of

computation while maintaining good performance. The

DAttention mechanism dynamically selects the sampling points

instead of processing the whole image fixedly. This dynamic

selection mechanism allows the model to focus more on those

regions that are most important to the task at hand and better

search for detailed features that are not easily distinguishable.

Figure 7A illustrates the information flow of DAttention. A set of

reference points is first placed on the feature map, and the offsets

of these points are learned through an offset generation network.

Then, the deformed keys and values are projected from the

sampled features based on the deformed points. Relative

positional deviations are also computed from the deformed

points, enhancing the multi-head attention of the output

transformed features. Figure 7B shows the detailed structure of

the offset generation network. Firstly, the input feature map with

size H × W × C is deeply convoluted to obtain the feature map

with size H/r × W/r × C. Then, the convoluted feature map is

activated nonlinearly by the GELU (Hendrycks and Gimpel, 2016)

activation function to enhance the feature expression ability.

Then, the number of channels of the feature map is compressed

to 2 through the 1 × 1 convolutional layer, and the offset qoffset of
each position of the size H/r × W/r × 2 is generated, which is used

to dynamically adjust the position of the subsequent convolution

operation so that the convolution kernel can flexibly adapt to the

geometric changes and detailed information in the input

feature map.

The model can capture more complex relationships between

different parts of the input through this attentional mechanism,

thus better performing tasks requiring modeling long-distance

dependencies or capturing fine-grained details. DAttention

introduces additional learnable parameters learned during the

training process through back-propagation, allowing the model to

adjust the attentional pattern to better fit the input data. By

dynamically adjusting the sampling position, weak features in

low-light environments are captured more accurately, improving

feature extraction. Adaptive adjustment of weights makes the model

pay more attention to local details and improves the ability to

capture insect edges and textures.
3.4 NWD loss function

YOLOv7x network does not have a detection strategy for tiny

targets. Moreover, the YOLOv7x network in the bounding box loss

part of the CIOU loss function is used, IOU (Intersection over

Union) (Zhou et al., 2019) is mainly used to measure the degree of

intersection of the prediction box and the ground truth box, belongs

to an index to judge the performance of the model. However, IOU is

more sensitive to the positional deviation of low-pixel targets, and a

slight positional deviation of low-pixel targets will lead to a
Frontiers in Plant Science 09
significant decrease in IOU, indicating that the target scale of

IOU metrics for discrete positional deviations will change, thus

giving an impact on the detection task (Li et al., 2024c). Therefore,

the CIOU function performs poorly on small object detection.

Moreover, there is a problem that it is difficult to converge during

training. The size of each image in the training datasets used in this

paper is 2000 × 1500 pixels, and the size of some of the insects is

below 70 × 70 pixels. Therefore, it is difficult to narrow down the

loss value of tiny targets in the bounding box to a specific range

using the CIOU loss function, which will lead to a decrease in the

performance of the detection model. However, the NWD loss

function can better adapt to this scale variation, and the loss

value of positional deviation changes more gently. Moreover,

NWD can be easily integrated into any anchor-based detection

model, which is more capable of detecting small targets than CIOU.

Therefore, in this paper, the NWD loss function is used instead of

the original CIOU loss function.

The NWD loss function provides a more accurate target

localization metric by measuring the normalized Wasserstein

distance between the prediction and ground truth box. The

Wasserstein distance measures the minimum amount of “work”

required to transform one distribution into another. For two

distributions P and Q, the Wasserstein distance. W(P,Q). is

defined as:

W(P,Q) = inf g  ∈
Q 

(P,Q)E(x,y)∼g ½ x − yk k�, (1)

Where.
Q  (P,Q). is the set of all joint distributions g with

marginal distributions P and Q.

In the object detection task, the prediction box and the ground

truth box can be viewed as two distributions. The Wasserstein

distance can be used to measure the difference between these two

distributions. Assuming that there is a set bpredi

n o
of prediction

boxes and a set bgtj
n o

of ground truth boxes, the Wasserstein

distance between prediction boxes and ground truth boxes can be

defined as:

W Bpred , Bgt
� �

=
1
No

N

i=1
minj bpredi − bgtj

��� ���, (2)

Where bpredi − bgtj

��� ��� denotes the distance between the

prediction box bpredi and the ground truth box bgtj . The Euclidean

Distance metric is usually used.

In order to adapt the Wasserstein distance to the task of object

detection at different scales, a normalization process is introduced.

The normalizedWasserstein distance, which is also known as NWD

loss, can be defined as:

NWD Bpred ,Bgt
� �

=
1
No

N

i=1
minj

bpredi − bgtj

��� ���
size bgtj
� � , (3)

Where size (bgtj ) is the size of the ground truth box bgtj , which is

used to normalize the distance so that the loss function has a

consistent metric for targets of different sizes.

The NWD loss function was chosen for its superior

performance in handling small target detection, which is critical
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in this study. Compared to commonly used loss functions like

CIOU and GIOU (Rezatofighi et al., 2019), which focus primarily

on the overlap between predicted and ground truth bounding

boxes, NWD incorporates the Wasserstein distance, measuring

both the position and scale differences between boxes. This makes

NWD particularly well-suited for detecting small objects, as it

provides a smoother gradient when dealing with slight positional

deviations that can significantly affect IOU-based metrics.

Moreover, NWD normalizes the distance based on the size of

the ground truth box, which allows it to better capture the relative

differences in scale, a key factor when working with small and

densely packed targets such as cotton pests. In contrast, traditional

IOU-based loss functions are more sensitive to small scale

variations, which can lead to slower convergence and less

accurate predictions for small objects. This makes NWD a more

reliable choice for optimizing object detection models in scenarios

where small target accuracy is critical.

By introducing the NWD loss, the original CIOU loss is

replaced by NWD loss in the basic loss calculation module and

the optimal transmission distribution loss calculation module of

YOLOv7x, which improves the detection performance of the model

for small and dense targets like insects.
3.5 DyHead detection head

Since each predicted position of the detection head of

YOLOv7x is independent of the other, the level of feature fusion

is limited, and the color of some insects is similar to the

background color, it is difficult for the original detection head to

distinguish the subtle color differences. Secondly, different insect

species have different shapes and sizes, and the locations where the
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insects stay are randomly distributed. The original detection head

has few parameters and limited expression ability, making it

challenging to mine the spatial structure information in the

features. It lacks an attention mechanism and makes it difficult

to dynamically adjust the feature map to highlight targets with

different shapes, sizes, and locations, reducing the detection’s

precision and reliability. Therefore, in this paper, the detection

head of YOLOv7x is improved by introducing the DyHead

detection head.

The DyHead detection head consists of multiple DyHead

modules connected in series. The DyHead module combines

scale-aware attention, spatial-aware attention, and task-aware

attention and is a dynamic detection head framework whose

structure is shown in Figure 8.

Specifically, the feature pyramid obtained from the Backbone

network needs to be processed into a feature map containing a four-

dimensional tensor, which can be denoted as F ∈ R(L×H×W×C). L

represents the number of layers of the feature pyramid, H is the

height of the feature map, W is the width of the feature map, and C

is the number of channels of the feature map. Defining S = H × W,

the feature map contains three dimensions L, S and C, which

correspond to scale-awareness, spatial-awareness, and task-

awareness, respectively. Its formula can be expressed as:

W(F ) = pC(pS(pL(F ) · F ) · F ) · F , (4)

pL(F ) · F = s f
1
SCoS,C

F
 ! !

· F , (5)

pS(F ) · F =
1
Lo

L

l=1
o
K

k=1

wl,k · F l; pk + Dpk;Cð Þ · Dmk, (6)
FIGURE 8

DyHead Module Structure.
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pC(F )·F = max   a1(F ) · FC + b1(F ),a2(F ) · FC + b2(F )
� �

,

(7)

WhereF is the input three-dimensional tensor L × S × C. pC(·), pS
(·), and pL(·) represent the perceptual attention functions on C, S, and

L, respectively, applied to F. s(·) is the Hard-Sigmoid function, f(·)

represents a linear function such as a 1 × 1 convolutional layer, K

represents the number of sparsely sampled positions, pk+ Dpk
represents the position where the self-learned spatial offset Dpk
moves when a discriminant region is selected, FC is the feature slice

of the C channel, a, b are learnable parameters to control the

activation threshold.

The DyHead detection head improves the robustness of the model

by incorporating multiple attention mechanisms to enhance the

model’s detection ability in situations where it is not easy to

distinguish the color difference between the target and the

background and where the target has diverse morphology and location.
4 Experiments and analysis

4.1 Datasets setup

This study employs two publicly available datasets to validate the

effectiveness of the proposed model. Exdark (Exclusively Dark) (Loh

and Chan, 2018) is a standard datasets explicitly designed for object

detection in low-light environments. The datasets contains 12 classes

of images, including bicycles, buses, cars, cats, dogs, chairs, tables,

doors, flowers, vases, people, and road signs, totaling 7363 images. In

this paper, 5963 images are used as training sets, 663 images are used

as validation sets, and the remaining 737 images are used as test sets.

The Exdark datasets is used to verify the effectiveness and robustness

of this model in low-light environments.

Another datasets, CottonInsect, is from the China Science Data

Center. CottonInsect contains images of major insects in cotton
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fields in Xinjiang, China, under complex scenarios and is used to

identify and detect insects in natural environments. The

CottonInsect datasets covers a more comprehensive range of

insect species in cotton fields, and the datasets is images collected

under normal light. The datasets contains 13 common types of

cotton field insects, covering images of different growth periods of

insects, totaling 3225 images, and all the insect classifications in this

datasets are shown in Figure 9.

Since it is difficult to collect enough insect images in low-light

environments, in order to obtain the datasets needed for the

experiment, the image degradation method in MAET (Multi-

Attribute Enhancement Techniques) (Cui et al., 2022b) is used,

Specifically, using the ISP (Image Signal Processor) method, which

firstly the image is converted from RGB space to RAW space by

reverse ISP, where operations such as randomly reducing the overall

brightness and contrast of the image, adding Gaussian noise and

spot noise, and adjusting the color balance are performed. Then, the

RAW image is converted to a dark RGB image by the forward ISP.

This image degradation method can more comprehensively

simulate the characteristics of images captured in low-light

environments to obtain a more realistic low-quality image

datasets, and the effect of the degraded datasets is shown in

Figure 10. In addition to changing the image quality, the rest of

the data format, quantity, and classification have not been changed.

The experiment used 2611 images as the training set, 291 as the

validation set, and the remaining 323 images as the test set. We refer

to the degraded datasets as Dk-CottonInsect.
4.2 Evaluation metrics

In order to evaluate the model performance, the experiments

used Precision (P) (Li et al., 2024d), Recall (R) (Li et al., 2024d),

Mean Average Precision (mAP) (Li et al., 2024d), and Frames Per

Second(FPS) (Sha et al., 2024) as evaluation metrics. The precision
FIGURE 9

Examples of CottonInsect datasets types of insects.
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is the proportion of classes that are predicted to be positive that are

actually positive. The recall is the proportion of the actual positive

class the model correctly detects. Mean average precision is an

evaluation metric considering P and R together. In order to better

evaluate the detection effect of the model, the mean average

precision mAP@0.5 when the IOU threshold is 0.5, and the mean

average precision mAP@0.5: 0.95 when the IOU threshold is

averaged between 0.5 and 0.95 are obtained, respectively.

The precision is defined by the formula:

P =
TP

TP + FP
, (8)

Where TP (Li et al., 2024e) denotes the number of samples that

were predicted to be in the positive class and were actually also in

the positive class. FP (Li et al., 2021) denotes the number of samples

that were predicted to be in the positive class that were actually in

the negative class.

Recall is defined by the formula:

R =
TP

TP + FN
, (9)

Where FN (Li and Liu, 2023) denotes the number of samples in

which the positive class was incorrectly predicted to be negative.
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The mean average precision is defined by the formula:

AP =
Z 1

0
P(R)dR, (10)

mAP =
1
no

n

i=1
APi, (11)

Where P(R) (Li et al., 2022a) denotes the precision at different

recall rates and n denotes the number of classes.

Frames per second is defined by the formula:

FPS =
1000
time

, (12)

Where time denotes the time required by the model to process a

single image,measured in milliseconds.
4.3 Experimental environment and setup

This experiment uses an AMD Ryzen 7 5800X processor and a

single RTX 3060 graphics card with 12 GB for model training. Linux

system, CUDA 12.2, Python 3.8, and Pytorch 2.1.0 are used for

software configuration. The parameters of the training phase are set

as follows: the image size is, 640 × 640, the SGD optimizer is used,

the initial learning rate is 0.01, the momentum factor is 0.937, the

weight decay is 0.0005, and 200 rounds of training are conducted

with batch size 8.

In this study, the setting of hyperparameters has undergone

thorough experimental validation and optimization. The learning

rate is set to 0.01, utilizing a gradient warming and step decay

strategy to ensure the model’s rapid convergence and stable

performance while avoiding issues such as gradient explosion and

vanishing gradients. When dealing with high-noise data in complex

low-light environments, a smaller batch size allows for more

effective updates of model parameters, enhancing the adaptability
TABLE 1 Image quality evaluation after enhancement of the Dk-
CottonInsect datasets.

Methods PSNR↑ SSIM↑ LPIPS↓ NIQE↓

ZeroDCE(2020) 18.25 0.65 0.52 0.0614

SCI(2022) 18.24 0.60 0.62 0.0667

FFDNet
+EnlightenGAN(Ours)

18.63 0.69 0.43 0.0528
"↑" indicates that a higher indicator value corresponds to better image quality, while "↓"
indicates that a lower indicator value corresponds to better image quality.
FIGURE 10

Examples of Dk-CottonInsect datasets types of insects.
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to data distributions and generalization ability. By combining

existing research on the optimization of deep learning models

with observations of model performance during the experiments,

the batch size is ultimately set to 8, balancing computational

efficiency and model accuracy, especially in accurately detecting

objects in challenging low-light conditions. The momentum factor

is set to 0.937, and the weight decay coefficient is set to 0.0005. The

selection of these parameters is derived from grid search

optimization, aiming to enhance the model’s generalization ability

and effectively prevent overfitting. The choice of these

hyperparameters ensures the robustness and efficiency of the

model in complex environments.
4.4 Different image enhancement methods
performance comparison

To evaluate the effectiveness of the adopted image enhancement

methods, different image enhancement techniques were applied to the

Dk-CottonInsect and Exdark datasets, and corresponding indicators

were assessed. For the Dk-CottonInsect datasets with reference

images, Peak Signal-to-Noise Ratio (PSNR) (Zhang et al., 2020),

Structural Similarity Index (SSIM) (Zhang et al., 2020), Learned

Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2020) and

Naturalness Image Quality Evaluator(NIQE) (Demir and Kaplan,

2023) metrics were used to comprehensively quantify the quality of

enhanced images. Table 1 presents the specific performances of the

Dk-CottonInsect datasets under these quantitative evaluation metrics.

The experimental results indicate that, although ZeroDCE (Guo

et al., 2020) and SCI (Ma et al., 2022) perform well on certain low-

light image quality metrics, their performance on all indicators is

inferior to the FFDNet+EnlightenGAN image enhancement

method we employed. Particularly in terms of detail preservation

and image naturalness, our enhancement method demonstrates

superior performance, providing better support for subsequent

object detection tasks.

On the Exdark datasets, which lacks reference images, the

Naturalness Image Quality Evaluator (NIQE) (Demir and Kaplan,

2023), Perception-based Image Quality Evaluator (PIQE)

(Choudhary et al., 2023), and Blind/Referenceless Image Spatial

Quality Evaluator (BRISQUE) (Choudhary et al., 2023) were used

to evaluate the quality of enhanced images. These no-reference

image quality evaluators provided a comprehensive assessment,

reflecting various aspects such as naturalness, perceptual quality,

and spatial distortions in the enhanced images. Table 2 presents the
Frontiers in Plant Science 13
specific performances of the Exdark datasets under these

quantitative evaluation metrics.

From Table 2, the FFDNet + EnlightenGAN image

enhancement method demonstrated the best performance on the

Exdark datasets compared to the other two methods, achieving the

highest scores across all three quality metrics. This result indicates

that FFDNet+EnlightenGAN effectively enhances the naturalness,

perceptual quality, and spatial coherence of the images, which are

critical in low-light conditions.

Overall, the FFDNet+EnlightenGAN image enhancement

method we employed offers a more significant advantage in

overall quality improvement and detection performance support.
4.5 Experimental comparison of different
attention mechanisms

To select the most suitable attention mechanism for this task, we

systematically evaluated the impact of several different attention

mechanisms on model performance using the Dk-CottonInsect

datasets, including Attlepe (Attentive Pooling attention) (Santos

et al., 2016),DAttention (Xia et al., 2022),Biformer attention (Zhu

et al., 2023), and CPCA (Channel Prior Convolutional Attention)

(Huang et al., 2024). From Table 3, it can be observed that certain

attention mechanisms resulted in a decline in detection performance

due to increased complexity or inappropriate focus, indicating that not

all attention mechanisms are suitable for object detection in low-light

environments. In contrast, DAttention consistently demonstrated

significant performance improvements across various experimental

settings, showcasing its exceptional adaptability.

This enhancement can be attributed to the ability of DAttention

to dynamically adjust attention weights, allowing the model to

effectively prioritize critical features, such as edges and textures, that

are often obscured under low-light conditions. This selective

enhancement of features greatly improves the detection accuracy

of objects in complex environments. Therefore, DAttention was

chosen as the optimal attention mechanism for our low-light object

detection model, significantly addressing the challenges posed by

degraded image quality and laying a solid foundation for achieving

higher detection performance.
4.6 Comparison experiment on the
number of DyHead modules

Different numbers of DyHead modules can be set in the

DyHead detection head, and different numbers of modules will

affect the performance of the whole model. In order to pick the most

suitable number of DyHead modules to balance the performance

and computational cost of the model, DyHead module comparison

experiments were conducted. The experiments were conducted on

the Dk-CottonInsect datasets when the number of DyHead

modules was 1, 2, 4, and 6, respectively, and the results of the

experiments are shown in Table 4.

According to the experimental results, it can be found that the

number of DyHead modules is not the more the better. The model
TABLE 2 Image quality evaluation after enhancement of the
Exdark datasets.

Methods NIQE↓ PIQE↓ BRISQUE↓

ZeroDCE(2020) 0.048 15.248 20.572

SCI(2022) 0.037 18.327 24.387

FFDNet+EnlightenGAN(Ours) 0.029 11.620 17.343
"↑" indicates that a higher indicator value corresponds to better image quality, while "↓"
indicates that a lower indicator value corresponds to better image quality.
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performance is better when the number of DyHeads is 2 and 4. By

comparison, although mAP@0.5: 0.95-value is highest when 4

DyHeads, P-value, R-value, and mAP@0.5-value are higher when

the number of DyHeads is 2 than when it is 4. Moreover, Table 4

shows that as the number of DyHead modules increases, FPS

decreases significantly. When using 2 DyHeads, the model

achieves 79.1 FPS, which ensures both detection accuracy and

real-time processing capabilities. However, with 4 DyHeads, the

FPS drops to 50.4, and further to 18.1 with 6 DyHeads. Since FPS

represents the number of frames processed per second, a higher FPS

is generally better.Therefore, considering the computational cost

and the real-time detection demand of the task, the number of

DyHeads is finally chosen as 2 in this experiment.
4.7 Performance analysis of the
training process

In this study, the DCP-YOLOv7x model was trained on the Dk-

CottonInsect datasets for 200 epochs, and the metrics changes on

the training and validation sets during the training process are

shown in Figure 11.

The first three columns in Figure 11 are the bounding box

regression loss, Objectness prediction loss, and Classification loss,

respectively. The first row is the change in the loss function during

training, and the second is the change during validation, with the x-

axis denoting the epochs and the y-axis denoting the loss values.

From Figure 11, it can be seen that with the increase of epochs, the

loss (Box, Objectness, and Classification) of training and validation

decreases gradually and levels off, and it can be seen that the model

is not overfitted, which indicates that the fitting performance and

stability of this model is strong. The last two columns represent the

changes in the precision, recall, and mean average precision of the

model, respectively, with the x-axis representing epochs and the y-

axis representing the values of each index. The figure shows that the

precision and recall rate gradually increase with the increase of
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epochs and tend to be stable, indicating that the model’s

performance in accurately identifying and detecting targets

constantly improves and finally reaches a stable state. The mean

average precision also continues to improve with the increase of

epochs, i.e., the model’s overall detection performance is excellent

under different IOU thresholds, and it has a strong generalization

ability. Overall, this model is effective and stable in the

training process.

Figure 12 shows the trend of DCP-YOLOv7x and YOLOv7x

(Wang et al., 2023a) training mAP-values and total loss-values on

the Dk-CottonInsectt datasets. As seen from Figures 12A, B, the

mAP-value of DCP-YOLOv7x continued to increase during the

training process and remained stable at about 170 epochs. In

addition, the mAP-value of DCP-YOLOv7x is always higher than

that of YOLOv7x during the training process, which proves the

effectiveness of the proposed method. As seen from (Figure 12C),

the loss-values of both models are trending downward and have

converged around 200 for epochs. DCP-YOLOv7x converges faster

and has a lower loss-value than YOLOv7x. By comparing the mAP-

value and the total loss-value, it can be seen that the proposed DCP-

YOLOv7x model has good learning and optimization ability, and

the detection performance of the model has also reached a

high level.
4.8 Discussion and comparison of
experimental results on Exdark datasets

In order to verify that the DCP-YOLOv7x model proposed in

this paper has better detection performance in different low-light

environments, we compared DCP-YOLOv7x with IAT-YOLO (Cui

et al., 2022a), DLN-YOLO (Lim et al., 2022), DE-YOLO (Qin et al.,

2022),YOLOv7x (Wang et al., 2023a), DK YOLOv5 (Wang et al.,

2023b), NLE-YOLO (Peng et al., 2024) and various versions of the

current mainstream YOLOv7. We conducted experiments on the

Exdark datasets, and the Dk-CottonInsectt datasets, respectively,
TABLE 4 Performance comparison of different number of DyHead modules on Dk-CottonInsect datasets.

Amount P( % ) R( % ) mAP@0:5(% ) mAP@0:5 : 0:95(% ) FPS

1 85.2 75.7 79.2 55.5 109.8

2 90.2 83.5 89.8 71.6 79.1

4 89.9 81.3 87.2 73.8 50.4

6 87.3 78.6 85.0 68.7 18.1
TABLE 3 Comparison of different attention mechanisms with YOLOv7x on Dk-CottonInsect datasets.

Methods P(%) R(%) mAP@0.5(%) mAP@0.5: 0.95(%)

YOLOv7x 81.5 75.5 79.8 68.0

YOLOv7x+Attlepe(2016) 80.5 74.6 79.9 56.3

YOLOv7x+DAttention(2022) 94.0 85.9 91.5 69.4

YOLOv7x+Biformer(2023) 94.4 79.3 91.3 65.3

YOLOv7x+CPCA(2024) 93.7 71.1 84.4 57.1
The bold values represent the highest performance for each indicator, as well as the attention mechanism we ultimately selected.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1501043
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2024.1501043
and the detection results of various object detection models on the

Exdark datasets are shown in Table 5.

As can be seen from Table 5, the DCP-YOLOv7x model

proposed in this paper shows the best results in all the four

metrics of P, R, mAP@0.5, and mAP@0.5: 0.95, which illustrates

the superiority of the model. Among the other four algorithms, DK

YOLOv5 has the highest P and R- values of 78.2% and 64.5%,

respectively, and NLE-YOLO has the highest mAP@0.5 and mAP@

0.5: 0.95 values of 71.9% and 46.7%, respectively. The DCP-

YOLOv7x model in this paper has a P-value of 82.1%, an R-value

of 74.0%, amAP@0.5-value of 80.5%, and amAP@0.5: 0.95-value of

52.7%, which are 3.9% and 9.5% higher than that of DK YOLOv5,

and 8.6% and 6.0% higher than that of NLE-YOLO, respectively.

Compared with the baseline, the indexes were improved by 10.4%,

12%, 10.8%, and 11.2%, respectively. The comparison results with

other methods show that the present model has a strong feature

extraction ability in different low-light environments and has

excellent detection performance.
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Figure 13 are visual comparison charts of the detection results

from different models on the Exdark datasets, respectively. In

Figure 13, (A) is the original low-quality image, (B) is the image

after denoising and low-light enhancement, (C) is the detection

effect of YOLOv7, and (D) is the detection effect of the DCP-

YOLOv7x model.

Figure 13 demonstrates the superiority of DCP-YOLOv7x in

different low-light environments and different tasks. As can be seen

from the figure, the YOLOv7x has a relatively highmissed detection rate,

and there are many small targets near or far away that are not detected.
4.9 Discussion and comparison
of experimental results on
Dk-CottonInsect datasets

In order to verify that the present model is indeed effective and

reliable when facing the task of insect object detection in low-light
FIGURE 12

Training mAP and total loss. (A) Training mAP@0.5-values. (B) Training mAP@0.5:0.95-values. (C) Training total loss-values.
FIGURE 11

DCP-YOLOv7x performance metrics changes.
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environments, we conducted comparison experiments with

YOLOv7 (Wang et al., 2023a),YOLOv7-tiny (Wang et al., 2023a),

and YOLOv7x (Wang et al., 2023a) on the Dk-CottonInsect

datasets, and the experimental results are shown in Table 6.

As can be seen from Table 6, the DCP-YOLOv7x model in this

paper exhibits the highest detection performance compared to other

YOLO models. The P-value, R-value, mAP@0.5-value, and mAP@

0.5: 0.95-value of the DCP-YOLOv7x model are 95.9%, 91.2%,

95.4%, and 71.5%, respectively. The P-value, R-value, and mAP@

0.5: 0.95-value are improved by 14.4%, 15.7%, and 3.5% compared

to the secondhighest YOLOv7x, and the mAP@0.5-value is

improved by 15.3% over the second-highest YOLOv7. So the

present model can still extract the fine features of small and dense
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targets well even when facing poor lighting conditions, minimizing

the interference of low-quality images on the detection task.

Figure 14 are visual comparison charts of the detection results

from different models on the DkCottonInsect datasets, respectively.

In Figure 14, (A) is the original low-quality image, (B) is the image

after denoising and low-light enhancement, (C) shows the detection

effect of YOLOv7, (D) shows the detection effect of YOLOv7-tiny,

(E) shows the detection effect of YOLOv7x, and (F) shows the

detection effect of DCP-YOLOv7x.

As can be seen from Figure 14, the DCP-YOLOv7x model

proposed in this paper performs better in practical applications

than the other three models. In the first three rows of the image,

there are multiple targets of the same or different classes, and some
A B DC

FIGURE 13

Comparison of detection results on the Exdark datasets (Loh and Chan, 2018). (A) Original low-quality image. (B) Enhanced image. (C) YOLOv7x
detection results. (D) DCP-YOLOv7x detection results.
TABLE 5 Performance comparison of different models on Exdark datasets.

Methods P(%) R(%) mAP@0.5(%) mAP@0.5: 0.95(%)

IAT-YOLO(2022) 76.3 61.7 68.4 39.8

DLN-YOLO(2022) 77.9 62.1 69.8 41.2

DE-YOLO(2022) 70.3 43.9 51.0 25.6

YOLOv7x(2023) 71.7 62.0 69.7 41.5

DK_YOLOv5(2023) 78.2 64.5 71.3 43.4

NLE-YOLO(2024) 74.7 62.9 71.9 46.7

DCP-YOLOv7x(Ours) 82.1 74.0 80.5 52.7
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of them overlap each other. YOLOv7x and YOLOv7-tiny predict

two overlapping targets into one target, while DCP-YOLOv7x not

only correctly detects all classes and targets, but also distinguishes

overlapping targets, and the confidence level of prediction is higher
Frontiers in Plant Science 17
than that of YOLOv7. The fourth, fifth, and last three rows are

several forms of the two insects at different stages of growth,

respectively. As can be seen from the figure, none of the other

three models detected one of the lacewing morphologies, YOLOv7
A B D E FC

FIGURE 14

Comparison of detection results on the Dk-CottonInsect datasets. (A) Original low-quality image. (B) Enhanced image. (C) YOLOv7 detection results.
(D) YOLOv7-tiny detection results. (E) YOLOv7x detection results. (F) DCP-YOLOv7x detection results.
TABLE 6 Performance comparison of different models on Dk-CottonInsect datasets.

Methods P(%) R(%) mAP@0.5(%) mAP@0.5: 0.95(%)

YOLOv7(2023) 72.2 72.4 80.1 62.0

YOLOv7-tiny(2023) 81.2 72.6 79.4 59.7

YOLOv7x(2023) 81.5 75.5 79.8 68.0

DCP-YOLOv7x(Ours) 95.9 91.2 95.4 71.5
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and YOLOv7-tiny did not detect one or two morphologies of

bollworm, while DCP-YOLOv7x detected all morphologies of

both insects with high confidence. And the other three models

have a relatively high false detection rate. In the first, third, fourth,

seventh, and eighth lines of the image, the other three models

incorrectly detected a part of the background as a target. In

addition, YOLOv7-tiny also has a large degree of missed

detection, not detecting all or part of the target in many images.

Through intuitive comparison, the DCP-YOLOv7x model

effectively improves the accuracy of multiscale object detection

tasks in different low-light environments, and the model has good

generalization performance and can be applied to a variety of tasks.
4.10 Discussion and comparison of
experimental results on
CottonInsect datasets

To assess whether the model can detect insects with the same

high accuracy and efficiency under normal exposure, we also

conducted comparisons on the CottonInsect datasets with various

versions of the mainstream YOLOv7 model. The specific

experimental results are shown in Table 7.

From Table 7, it can be seen that, compared to other models, the

DCP-YOLOv7x model in this paper demonstrates the highest

detection performance. The P-value, R-value, mAP@0.5-value,

and mAP@0.5: 0.95-value of the DCP-YOLOv7x model are

95.6%, 95.1%, 96.5%, and 80.2% respectively. The R-value and

mAP@0.5: 0.95-value are 5.3% and 8.4% higher than those of the

second-highest YOLOv7-tiny, the P-value is 5.2% higher than that

of YOLOv7, and the mAP@0.5-value is 6.6% higher than that of

YOLOv7x. This indicates that under normal exposure conditions,

the DCP-YOLOv7x model, with its optimized feature extraction

network and detection structure, can more accurately capture insect

features, reducing both false positives and missed detections.

Figure 15 are visual comparison charts of the detection results

from different models on the CottonInsect datasets, respectively. In

Figure 15, (A) is the original low-quality image, (B) is the image

after denoising and low-light enhancement, (C) shows the detection

effect of YOLOv7, (D) shows the detection effect of YOLOv7-tiny,

(E) shows the detection effect of YOLOv7x, and (F) shows the

detection effect of DCP-YOLOv7x.

Figure 15 illustrates that under normal exposure conditions, DCP-

YOLOv7x still achieves excellent detection performance. While

YOLOv7, YOLOv7-tiny, and YOLOv7x can detect the approximate
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location and type of the target, they struggle with overlapping objects

and do not accurately define target boundaries. Detection boxes fail to

completely encompass all insect parts, such as antennae and wings,

and confidence scores are relatively low. In contrast, DCP-YOLOv7x

captures all parts of the insects while maintaining a high confidence

level, demonstrating its effectiveness and superiority in detecting

insects under normal exposure conditions.
4.11 Ablation experiments

We verify the effect of the improved module on the model

performance through ablation experiments, and the results of

the ablation experiments for each module on the ExDark and

Dk-CottonInsect datase ts are shown in Tables 8 , 9 ,

respectively. In Tables 8, 9, A denotes the denoising and low-

light image enhancement algorithms, B denotes the DA-

SPPCSPC module, C denotes the NWD loss, and D denotes

the DyHead detection head.

From the results in Table 8, it can be seen that when all the

modules are added, DCP-YOLOv7x performs the most excellent,

which shows that all the improvements carried out in this paper are

essential. Compared to the baseline, the P-value, R-value, mAP@

0.5-value, and mAP@0.5: 0.95-value increased by 3.2%, 5.3%, 4.1%,

and 2.7%, respectively, after combining the denoising and low-light

image enhancement algorithms, which proves that combining the

denoising and low-light enhancement algorithms can reduce the

impact of the luminance, contrast, and noise problems generated by

low-light environments on the task. After adding the DA-SPPCSPC

module, the four values increased by 1.5%, 2.1%, 1.3%, and 1.9%,

respectively, compared with the previous ones, indicating that the

DA-SPPCSPCmodule can effectively enhance the feature extraction

ability of the model in complex environments to obtain better

detection performance. After introducing the NWD loss to optimize

the loss function of the object detection network, the four values

increased by 1.7%, 3.1%, 3.0%, and 3.7%, respectively, which verifies

the multi-scale dynamic feature fusion ability of the NWD loss,

shows better performance when there are multiple targets of

different scales in the image, and improves the generalization of

the model. After the model detection head was finally replaced with

DyHead, the performance indexes of this paper’s model DCP-

YOLOv7x reached the highest, four values are 82.1%, 74.0%,

80.5%, and 52.7%, which are 4%, 1.5%, 2.4%, and 2.9% higher

than the previous ones, respectively, indicating that the three

attention mechanisms introduced by the DyHead are of great
TABLE 7 Performance comparison of different models on CottonInsect datasets.

Methods P(%) R(%) mAP@0.5(%) mAP@0.5: 0.95(%)

YOLOv7(2023) 90.4 80.5 89.5 69.6

YOLOv7-tiny(2023) 88.0 89.8 89.3 71.8

YOLOv7x(2023) 85.1 87.0 89.9 71.5

DCP-YOLOv7x(Ours) 95.6 95.1 96.5 80.2
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TABLE 8 Ablation results for Exdark datasets.

Methods P(%) R(%) mAP@0.5(%) mAP@0.5: 0.95(%)

YOLOv7x 71.7 62.0 69.7 41.5

YOLOv7x+A 74.9 67.3 73.8 44.2

YOLOv7x+A+B 76.4 69.4 75.1 46.1

YOLOv7x+A+B+C 78.1 72.5 78.1 49.8

YOLOv7x+A+B+C+D (DCP-YOLOv7x) 82.1 74.0 80.5 52.7
F
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FIGURE 15

Comparison of detection results on the CottonInsect datasets. (A) Original low-quality image. (B) Enhanced image. (C) YOLOv7 detection results. (D)
YOLOv7-tiny detection results. (E) YOLOv7x detection results. (F) DCP-YOLOv7x detection results.
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help to the situation of diverse target shapes and variable positions,

and the detection performance of the model is improved by fusing

different attention mechanisms.

The results in Table 9 further illustrate the effectiveness of the

improvement modules in dealing with the low-light pest detection

task. After adding all the improvement modules, the various indexes

of this model reach the optimum, and the P-value, R-value, mAP@

0.5-value, and mAP@0.5: 0.95-value are 95.9%, 91.2%, 95.4%, and

71.5%, which verifies that the DCP-YOLOv7x model proposed in

this paper can sufficiently cope with the situation of insufficient light

on the insect detection task. Each improvement module has a

relatively positive impact on the model.
5 Conclusion

In this paper, an object detection model DCP-YOLOv7x for

detecting cotton pests in low-light environments is proposed to

cope with the problems of degradation of image quality, features

not easy to extract, and low detection precision caused by low-light

environments. The DCP-YOLOv7x model uses the FFDNet method

for denoising the image to eliminate background noise and the

EnlightenGAN low-light image enhancement algorithm to enhance

the brightness and contrast of the image. The enhanced image is used

as an input to the improved object detection network to improve the

image quality while enhancing the feature extraction capability of the

model. We replace the SPPCSPC module in the model Neck network

with the DA-SPPCSPC module that carries the DAttention

mechanism, which enhances the model’s ability to extract the edge

and texture features that are not easily accessible. In addition, NWD is

introduced to optimize the loss function of the model and enhance the

model’s detection performance for small and dense targets. Finally, the

detection head of the model is modified to a DyHead detection head

that mixes three attention mechanisms to improve the model’s ability

to cope with targets with diverse morphology and variable locations.

In addition, since low-light pest datasets are challenging to collect, this

paper adopts an image degradation method to acquire the Dk-

CottonInsect low-light cotton pest datasets. The experimental results

proved that the DCP-YOLOv7x model proposed in this paper has

higher detection precision in different low-light environments and can

better fulfill the task of cotton pest detection in low-light

environments, which is of practical application value.
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The DCP-YOLOv7x model demonstrates considerable

performance improvements in detecting cotton pests under low-

light conditions; however, challenges remain in highly complex

environments, such as cases with significant occlusions that can

reduce detection accuracy. Additionally, the integration of denoising

and image enhancement techniques in the modified detection

network increases the model’s computational demands, presenting

deployment challenges in real-time, resource-constrained settings like

edge devices, drones, or low-power agricultural hardware.In practical

deployment for large-scale agricultural scenarios, it is also necessary to

consider enhancing the model’s scalability across different crop types,

environmental conditions, and pest species.To address these issues,

future work will focus on further optimizing the computational

efficiency of the model to facilitate its deployment in real-time,

resource-constrained environments, such as agricultural edge

devices. Additionally, expanding the DkCottonInsect datasets with

more diverse lighting conditions, pest species, and field scenarios will

be essential to improving the model’s robustness and generalization

capability. These efforts aim to ensure that the DCP-YOLOv7x model

can maintain high detection performance across a wider range of

practical agricultural applications.
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