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From barcodes to genomes: a
new era of molecular exploration
in bryophyte research
Anshul Dhyani, Shruti Kasana* and Prem Lal Uniyal

Department of Botany, University of Delhi, Delhi, India
Bryophytes represent a diverse and species-rich group of plants, characterized

by a remarkable array of morphological variations. Due to their significant

ecological and economic roles worldwide, accurate identification of bryophyte

taxa is crucial. However, the variability in morphological traits often complicates

their proper identification and subsequent commercial utilization. DNA

barcoding has emerged as a valuable tool for the precise identification of

bryophyte taxa, facilitating comparisons at both interspecific and intraspecific

levels. Recent research involving plastomes, mitogenomes, and transcriptomes

of various bryophyte species has provided insights into molecular changes and

gene expression in response to environmental stressors. Advances in molecular

phylogenetics have shed light on the origin and evolutionary history of

bryophytes, thereby clarifying their phylogenetic relationships. Despite these

advancements, a comprehensive understanding of the systematic relationships

within bryophytes is still lacking. This review synthesizes current molecular

studies that have been instrumental in unraveling the complexity of bryophyte

taxonomy and systematics. By highlighting key findings from recent genetic and

genomic research, we underscore the importance of integrating molecular data

with traditional morphological approaches. Such integration is essential for

refining the classification systems of bryophytes and for understanding their

adaptive strategies in various ecological niches. Future research should focus on

expanding the molecular datasets across underrepresented bryophyte lineages

and exploring the functional significance of genetic variations under different

environmental conditions. This will not only enhance our knowledge of

bryophyte evolution, but also inform conservation strategies and potential

applications in biotechnology.
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1 Introduction

Bryophytes are non-vascular, shade-loving plants characterized

by a dominant gametophytic phase (Cox et al., 2014; Liu et al.,

2014b; Wickett et al., 2014; Morris et al., 2018; Patiño and

Vanderpoorten, 2018). This group includes mosses, hornworts,

and liverworts, comprising approximately 20,000 species

worldwide (Patiño and Vanderpoorten, 2018). Bryophytes

represent the second most diverse group of land plants, surpassed

only by flowering plants, and they thrive in a variety of habitats,

such as moist, shady, and damp locations, including forest floors,

rocks, streams, lakes, and tree trunks (Shaw et al., 2011). Their

gametophyte phase exhibits remarkable diversity and structural

complexity, which is unparalleled among tracheophytes (Mishler

and De Luna, 1991). Bryophytes are distinguished by their unique

growth forms, ranging from upright to procumbent, and from

thalloid to leafy forms (Mishler and De Luna, 1991).

Interestingly, many bryophytes inhabiting well-illuminated

environments function effectively as shade plants, characterized

by low chlorophyll a/b ratios and reaching photosynthetic

saturation even under low light conditions (Proctor, 1990).

Bryophytes also engage in diverse ecological interactions,

including obligate symbiosis and occasional epiphytism with a

variety of animals and insects (During and Tooren, 1990).

The phylogenetic position of bryophytes remains a topic of

debate. Some studies, such as those by Capesius and Bopp (1997),

suggest that bryophytes are paraphyletic, while others, like

Nishiyama et al. (2004), argue for their monophyly. These

conflicting conclusions highlight the need for more detailed

investigations to accurately determine the phylogenetic

relationships and evolutionary origins of bryophytes. The

phylogenetic tree of bryophytes reveals that liverworts, hornworts,

and mosses each occupy distinct evolutionary positions.

Charophyte green algae are the most basal group, indicating that

land plants evolved from a common ancestor shared with these

algae. Hornworts are positioned as an early-diverging lineage

among bryophytes, sharing a more recent common ancestor with

liverworts and mosses than with green algae. Liverworts and mosses

form a clade, suggesting they share a closer evolutionary

relationship with each other than with hornworts (Figure 1).

Continued research utilizing advanced molecular techniques will

be essential to resolve these phylogenetic ambiguities and provide a

clearer understanding of bryophyte evolution and systematics.

Bryophytes perform a variety of ecological functions and

provide essential ecosystem services, including nitrogen and

carbon fixation, prevention of soil erosion, water retention, and

the maintenance of ecological communities (Ogwu, 2019).

Additionally, they have practical applications, such as being used

as materials for packaging, plugging, and decoration (Chandra et al.,

2017). The chemical compounds found in some bryophyte species

exhibit antimicrobial, insecticidal, and antitumor properties,

highlighting their potential medicinal value for human health

(Üçüncü et al., 2010; Ogwu, 2019). These diverse functional roles

underscore the ecological and economic importance of bryophytes

and the potential benefits they offer across various sectors.
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The classification and grouping of bryophyte taxa based on

morphological characteristics face certain limitations due to the

high phenotypic plasticity exhibited under varying environmental

conditions (Buryová and Shaw, 2005). Environmental factors

directly influence morphological traits, leading to significant

plasticity, particularly in aquatic mosses (Vanderpoorten and

Jacquemart, 2004). This plasticity in stress-tolerant bryophytes is

not only morphological but also physiological, with reversible and

rapid changes (Grime et al., 1990). From an ecological perspective,

morphological plasticity is a key adaptive trait that enhances the

fitness of bryophytes by optimizing resource acquisition in variable

environments (Rincon and Grime, 1989). However, bryophytes

inhabiting unproductive habitats often express plasticity through

physiological adjustments rather than morphological changes,

focusing on a more conservative strategy of resource capture

rather than acquisition (Rincon and Grime, 1989). The

relationship between environmental stress and bryophyte

genomes has also been explored, revealing that phenotypic

plasticity, particularly in response to metal stress, is associated

with the presence of highly repetitive DNA sequences (Bassi

et al., 2006). These findings underscore the complex interplay

between environmental conditions and the genetic mechanisms

that underpin the adaptive strategies of bryophytes. Understanding

these dynamics is crucial for refining bryophyte classification and

for appreciating their ecological roles and adaptive capacities.

Research on the ecology and diversity of bryophytes is often

hindered by challenges in species identification and the

circumscription of taxa based on traditional taxonomic characters

(Stech et al., 2013). Incorrect identification of bryophytes can lead to

ambiguous and misleading information in ecological studies,

biodiversity assessments, and conservation programs, causing

confusion among the scientific community and readers. To

address these issues, an integrative approach that combines

classical taxonomy with modern molecular techniques is

necessary for accurate species identification and delineation. The

application of molecular tools, such as DNA barcoding, has proven

invaluable for the precise identification of bryophyte species

(Dantas et al., 2018). The growing availability of DNA sequences

allows for the testing of morphology-based taxonomic concepts by
FIGURE 1

Systematic position of bryophytes in the evolutionary history of
land plants.
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revealing the underlying genotypes of species (Heinrichs et al.,

2009). Molecular studies not only facilitate accurate species

identification, but also enable detailed exploration of species

interactions, both intra- and interspecific. This, in turn, can

unravel ecological and evolutionary mechanisms that warrant

advanced and in-depth investigation.

Despite high bryophyte diversity, studies on molecular biology of

bryophytes from India are meagre. Therefore, in this review, wemade

an attempt to include some of the barcodes used on Indian

bryophytes. We also provide a comprehensive overview of the

molecular studies conducted on bryophytes to date, with a

particular focus on recent advancements. By highlighting these

ecologically significant non-vascular plants, we aim to underscore

the importance of molecular approaches in enhancing our

understanding of bryophyte diversity, evolution, and ecological roles.
2 DNA extraction

Bryophyte samples are typically collected in appropriately sized

sampling bags and air-dried to prevent fungal contamination.

Careful separation of samples under a dissecting microscope is

essential to avoid mixing different taxa. After collection, samples are

washed to remove soil and other contaminants that may interfere

with subsequent DNA extraction and are then dried. The most

commonly used method for extracting genomic DNA from

bryophytes is the Cetyl Trimethylammonium Bromide (CTAB)

method, as described by Doyle and Doyle (1987). This method

has been effectively applied to bryophytes, yielding sufficient DNA

for downstream applications such as Polymerase Chain Reaction

(PCR). However, bryophytes contain substantial amounts of

polysaccharides, polyphenols, and RNA, which can interfere with

DNA extraction and PCR amplification (Pandey et al., 2019).

While the CTAB method is widely used, it is both time-

consuming and costly (Rogers and Bendich, 1985; Couch and

Fritz, 1990; Jobes et al., 1995). Residual CTAB in the DNA

solution can also obscure absorbance readings at 260 nm,

complicating DNA quantification (Jobes et al., 1995). PCR

efficiency may be reduced when extracting genomic DNA from

limited plant tissue. Modifications to the CTAB protocol, including

optimization with 3% CTAB, 2% Polyvinylpolypyrrolidone (PVP),

and 1% b-mercaptoethanol, have improved DNA purity and yield,

achieving concentrations of 900–1582 µg per 0.5 g leaf sample in

eight bryophyte species (Pandey et al., 2019). Other methods such

as the Sodium Dodecyl Sulphate (SDS) (Edwards et al., 1991) and

the alkaline isolation of DNA method by Rogers and Parkes (1999)

that produced effective DNA concentrations, could be a viable

alternative to the CTAB method. These methods, however, also

require significant quantities of chemicals. To address these issues,

the NaOH extraction and direct amplification method were

developed (Werner et al., 2002). These rapid DNA extraction

methods are particularly beneficial when processing large

numbers of plant samples for studies such as DNA barcoding and

molecular phylogenetics. Pederson et al. (2006). employed a rapid

DNA extraction method on several bryophytes and successfully

obtained sequences from nine moss species and one liverwort
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species using direct amplification from dwarf male gametophytes.

This suggests that rapid extraction methods may serve as suitable

alternatives to conventional CTAB protocols. However,

comparative studies are needed to evaluate the effectiveness of

these methods.

Commercial DNA extraction kits, such as the DNeasy Plant

Mini Kit (Qiagen) and the Invisorb Spin Plant Mini Kit (Invitek),

have also been used for bryophyte DNA extraction. Among these,

the Invisorb Spin Plant Mini Kit was found to yield superior results

for AFLP analysis compared to the CTAB method and the DNeasy

Plant Mini Kit (Mikulásǩová et al., 2012). In summary, numerous

protocols for bryophyte DNA extraction exist, and these continue to

be refined to enhance DNA yield and purity. The choice of method

may depend on specific study requirements, such as the desired

DNA quality, quantity, and time constraints.
3 DNA barcoding

DNA barcoding has become a crucial tool in biodiversity

assessment, life history studies, and forensic analysis (Kress et al.,

2005). Among the various genetic markers available for the

identification and differentiation of land plant species, the internal

transcribed spacer 2 (ITS2) region (nuclear) has shown the greatest

potential (Chen et al., 2010). In addition to ITS2, chloroplast

markers have also been widely employed for DNA barcoding of

land plants. However, despite the high species diversity of

bryophytes worldwide, DNA barcoding studies in this group have

been relatively neglected. This neglect may be attributed to a lack of

specialized expertise in bryophyte studies, as well as the small size

and less visually appealing nature of bryophytes compared to more

conspicuous groups like flowering plants and ferns, which are often

larger, brightly colored, and ornamental.

Studies utilizing DNA barcoding in bryophytes with chloroplast

and nuclear markers (ITS) have identified several potential

candidate regions for species identification, including rbcL

(plastid), trnH-psbA (plastid), rps4 (plastid), rpoC1 (plastid), and

trnL-F (plastid) (Liu et al., 2010). However, some plastid markers

have demonstrated low resolution and poor discriminatory power

in mosses, indicating a need for further investigation (Stech and

Frey, 2008; Liu et al., 2010; Hassel et al., 2013). For example, matK

and rbcL show low discriminatory power in some land plants

including bryophyta (Stech and Frey, 2008). In contrast, an

evaluation of four chloroplast regions (rbcL-a, trnH-psbA, rps4,

and trnL intron) in four genera of the Grimmiaceae suggested that

trnH-psbA can serve as a promising DNA barcode marker for this

group (Liu et al., 2011). Further analysis of a nuclear marker (ITS1-

5.8S-ITS2) and three plastid markers (rbcL, trnH-psbA, and matK)

in the liverwort genus Herbertus (Marchantiopsida, Herbertaceae)

revealed that ITS has the highest potential for species

discrimination, followed by matK (Bell et al., 2012). Another

study utilizing three plastid markers (rbcL, trnH-psbA, and atpF-

H) and one nuclear marker (ITS2) across five moss species and a

liverwort species indicated that the most promising barcode

markers for bryophytes are ITS2, rbcL, and atpF-H (Hassel et al.,

2013). These findings highlight the necessity of choosing suitable
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molecular markers for successful DNA barcoding of bryophytes.

The continued refinement and advancement of these molecular

techniques will be crucial for deepening our understanding of

bryophyte diversity and enhancing species identification,

especially in ecology and conservation.

The moss Racomitrium canescens exhibits considerable

morphological variation, leading to differing views regarding its

intraspecific taxa and the number of species it comprises. DNA

barcoding data indicated that this moss complex cannot be

separated into distinct sub-sections or sections. Among the four

markers tested (rps4-trnT, trnT-L, ITS1, ITS2), the nuclear marker,

ITS1 was identified as the most promising marker due to its

superior discriminatory power (Stech et al., 2013). In the genus

Dicranum, six barcode markers (rps4-trnTUGU, trnLUAA-trnFGAA,

trnHGUG-psbA, rps19-rpl2, rpoB, and ITS1-5.8S-ITS2) were

evaluated for their ability to discriminate between species, with

ITS1 emerging as the most effective marker for mosses, particularly

for closely related species (Lang et al., 2014). DNA barcoding

studies on the family Sematophyllaceae identified four barcode

markers (trnL-F, nad4/5, rps4, and nad5) as highly effective for

taxonomic differentiation (Carvalho-Silva et al., 2014). In the genus

Schistidium, four DNA barcode markers were assessed, with ITS2

proving to be the most promising due to its high variability and its

ability to produce the most resolved phylogenetic tree, followed by

matK (Hofbauer et al., 2016).

DNA barcoding studies on sixteen species of epiphyllous

liverworts using six DNA markers (trnL-F, matK, rbcL, psbA,

ITS1, and ITS2) revealed that amplification success ranged from

70% to 90% for all markers except matK. The barcoding gap was

found to be highest with ITS2, suggesting it as a promising marker

for epiphyllous liverworts (Yodphaka et al., 2018). A recent study

on Calypogeia tested the plastid genome as a super-barcode for

species delimitation and found it to be 95.45% effective. However,

complete plastome sequences identified species-specific regions
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such as ndhB, ndhH, and the trnT-trnL spacer, which achieved

100% success in species discrimination across all studied samples

(Ślipiko et al., 2020). Despite these advancements, the search for a

novel DNA barcode marker that can efficiently differentiate among

bryophyte species continues. In India, barcodes are currently

available for only 41 species of bryophytes (Figure 2) (See also

Supplementary Table S1).
4 RNA editing

RNA editing is a prevalent mechanism observed in some

angiosperms and ferns, playing a critical role in correcting genetic

information in mitochondrial and chloroplast transcripts. This

process involves site-specific conversion of pyrimidine nucleotides,

changing C-to-U or U-to-C (Chateigner-Boutin and Small, 2010).

While RNA editing occurs in most land plants, the editing pattern of

a specific transcript does not necessarily correlate with the species’

phylogenetic position (Freyer et al., 1997). The frequency of RNA

editing across land plants is influenced more by lineage than by

individual genes (Rüdinger et al., 2009). However, research on RNA

editing in bryophytes remains limited. There are numerous potential

RNA editing sites identified in the organelle transcriptomes of

hornworts, ferns, and seed plants (Kugita et al., 2003; Wolf et al.,

2004; Rüdinger et al., 2009; Sloan et al., 2010; Rüdinger et al., 2011).

RNA editing is generally observed in most land plant clades,

with notable exceptions among thalloid liverworts (Freyer et al.,

1997; Rüdinger et al., 2009). In Lejeunea cavifolia, RNA editing is

minimal, whereas up to 20% of RNA editing is observed in

Haplomitrium mnioides (Rüdinger et al., 2012). Among

liverworts, Haplomitriales exhibit the highest RNA editing

frequency (% RNA editing sites), followed by Pellidae and

Metzgeriidae. Rüdinger et al. (2012). analyzed RNA editing

patterns in mitochondrial nad2, nad4, and nad5 genes across
FIGURE 2

Figure showing the most promising barcodes (ITS1, ITS2, and rbcL) available for Indian bryophyte taxa. The first and second columns show the family
name and taxa names, and the third column shows the best amplified gene region.
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liverworts and mosses, revealing extensive variability in RNA

editing frequencies within both groups. Among leafy liverworts,

the order Porellales has the fewest editing sites. The findings

indicate that elevated levels of RNA editing may be an ancestral

trait in land plants. This high level of RNA editing can be positively

correlated with the GC content and diversity of Pentatricopeptide

Repeat (PPR) proteins (Takenaka et al., 2008; Takenaka et al., 2013;

Dong et al., 2019; Dong and Liu, 2021). However, the intricate

patterns and genetic factors involved suggest a complex

evolutionary path, with the loss of RNA editing events being

more prevalent than their gain. The study also highlights the

conserved role of DYW domains in RNA editing, though their

exact functions remain elusive. The initial report on RNA editing in

the model moss Physcomitrium patens indicated a relatively low

level of RNA editing, with approximately 20% of rps4 sites edited

(Miyata and Sugita, 2004). Detailed studies have focused on C-to-U

RNA editing in P. patens, which converts ACG to AUG in the

chloroplast rps4 transcript—a feature unique to this moss and

absent in other species (Barkan and Small, 2014; Ichinose et al.,

2014; Gerke et al., 2020). In P. patens, RNA editing is stage- and

tissue-specific (Miyata and Sugita, 2004). These C-to-U or U-to-C

conversions can alter coding sequences of organellar transcripts,

sometimes correcting premature stop codons or creating start sites

like AUG, thus impacting mRNA translation (Small et al., 2020).

Despite identifying eleven potential RNA editing sites in P. patens,

only two sites were partially edited in mitochondrial transcripts,

highlighting the overall low RNA editing level in this moss

(Rüdinger et al., 2009). This low level of RNA editing is

potentially correlated with its ten PPR-DYW genes in contrast to

angiosperms where ca. 100 PPR-DYW genes are present (Tasaki

and Sugita, 2010). In contrast, the moss Funaria hygrometrica lacks

three mitochondrial RNA-editing sites present in P. patens. F.

hygrometrica has nine DYW proteins, compared to ten in P.

patens, with the absence of the 10th DYW protein explaining the

lack of two mitochondrial editing sites (Rüdinger et al., 2011).

Experimental analysis in Takakia lepidozioides revealed that

anticodon editing of tRNA occurs before RNA splicing in

plastids, suggesting that RNA editing is a prerequisite for the

splicing of pre-tRNALeu (Miyata et al., 2008). Comprehensive

analysis of the plastid transcriptome in T. lepidozioides showed a

high frequency of RNA editing, which is positively correlated with

the monoplastidy of vegetative tissue. This may be due to the small

population size of plastids in vegetative cells, leading to frequent

mutation fixation and compensation for deleterious mutations

through RNA editing (Sadamitsu et al., 2021).

The studies on RNA editing in hornworts revealed contrasting

results. For instance, several authors (Malek et al., 1996; Freyer

et al., 1997; Steinhauser et al., 1998; Rüdinger et al., 2009) observed

C-to-U editing in all land plants, including liverworts and mosses,

but no evidence of U-to-C editing was found in the hornworts and

tracheophytes. Contrary to this, other studies (Yoshinaga et al.,

1996; Kugita et al., 2003) suggested that reverse RNA editing from U

to C is commonly found in the rbcL transcript of hornwort

chloroplasts. Likewise, RNA editing was found to be extensive in

both organelles of Anthoceros agrestis, with over 1,100 C-to-U and

1,300 U-to-C sites (Gerke et al., 2020). Similarly, the complete
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nucleotide sequence of the chloroplast genome of A. formosae

identified 509 C-to-U and 433 U-to-C conversions (Kugita et al.,

2003). Moreover, cDNA analysis of seven taxonomically diverse

hornworts rbcL sequences identified a total of 72 edited sites,

comprising 43 C-to-U and 28 U-to-C conversions, with one site

showing editing in both directions. All tested samples exhibited

extensive RNA editing, except for Leiosporoceros, which lacked

editing sites. The absence of edited sites in Leiosporoceros might

be due to the absence or low level of editing in the common ancestor

of hornworts (Duff and Moore, 2005). In Leiosporoceros, the total

number of edited sites was 109 in the plastome and 108 in the

mitogenome, corresponding to 0.06% and 0.05%, respectively,

further supporting Duff and Moore’s findings (Villarreal et al.,

2018). Thus, unlike in mosses and liverworts, RNA editing is highly

variable in hornworts, with early-branching lineages tending to

have lower RNA editing frequencies (Small et al., 2020). Hence,

further research on RNA editing in bryophytes is crucial to unravel

the mechanisms underlying its variability across taxa. The findings

highlight contrasting patterns, with hornworts exhibiting both C-

to-U and U-to-C editing, unlike the tracheophytes, which lacks U-

to-C editing. Extensive RNA editing in organelles of species like A.

agrestis contrasts with the absence of editing in Leiosporoceros,

suggesting ancestral differences, emphasizing the need for more

studies to understand these evolutionary trends.
5 Transcriptome analysis

Transcriptome analysis enables a detailed study of the

expression profiles of thousands of genes, and numerous

molecular studies on bryophytes have employed this approach.

Most transcriptome studies in bryophytes focus on the stress

adaptation mechanisms present in these plants. Analyzing mRNA

levels in a cell provides more valuable insights into molecular

changes than measuring the amount of protein encoded by genes

(Woll et al., 2005). Above all, transcriptomics is comparatively

easier than proteomic studies. Transcriptome analysis is crucial for

understanding gene expression profiles under various conditions

and detecting molecular changes within the cell.

The first de novo transcriptome analysis of male and female

gametophyte assemblies in Marchantia polymorpha generated 80

million sequence reads and identified several new transcription

factors (TFs) families such as GRAS, LEAFY, NOZZLE, LUG, etc.

that play important role in sexual reproduction (Sharma et al.,

2013). Transcriptomic studies on P. patens revealed the

accumulation of several late-embryogenesis-abundant (LEA)

transcripts in response to enhanced freezing tolerance under both

light and dark conditions (Minami et al., 2005).

Transcriptome sequencing of Dumortiera hirsuta resulted in

85,240 unigenes and 447 TFs from 41 different families. These

unigenes showed homology across different taxa from algae to

flowering plants which could be seen as a potential connecting link

between aquatic and terrestrial plants (Singh et al., 2015). Expression

profile studies on Marchantia inflexa under water stress revealed

changes in transcripts related to metabolism. These studies suggest

that variations in the timing of transcript adjustments contribute to
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differences among genotypes, impacting stress tolerance in both

meristematic and differentiated cells (Marks et al., 2021). In Mylia

taylorii, transcriptome analysis identified that the enzyme

sesquiterpene synthase (STS) plays a role in sesquiterpene

biosynthesis and diversity (Yan et al., 2021). The liverwort

transcriptome contained 255,669 unigenes with an average length

of 963 base pairs, with 48 unigenes potentially involved in

sesquiterpene biosynthesis. Functional characterization in yeast

indicated that MtSTSs exhibit a noncanonical metal ion binding

motif, highlighting their contribution to sesquiterpene biosynthesis

and the biological roles of these compounds in M. taylorii.

Bryum argenteum, a desiccation-tolerant moss, is increasingly

being used as a model to study the ecological and molecular aspects

of desiccation tolerance in plants (Stark et al., 2010; Li et al., 2014;

Gao et al., 2015). Transcriptome analysis of B. argenteum using

Illumina high-throughput RNA sequencing technology generated

more than 488.46 million reads (Gao et al., 2017). Annotation of

TFs revealed that 978 TFs belong to 62 families, with 404 TFs from

40 families showing differential expression upon dehydration

followed by rehydration (Gao et al., 2017). In this moss, mRNA

transcripts accumulate in messenger ribonucleoprotein particles

(mRNPs) in response to desiccation. Upon rehydration, these

transcripts are selectively translated through the activation of

repair-based mechanisms (Gao et al., 2017). In Tortula ruralis,

another desiccation-tolerant moss, the pattern of protein formation

during rehydration differs from that of hydrated controls, as novel

transcripts are not synthesized due to desiccation (Oliver et al.,

2004). This indicates that desiccation tolerance mechanisms can

vary significantly even among different moss species, highlighting

the importance of comparative studies.

Transcriptome studies have also been conducted on the

Antarctic moss Pohlia nutans to understand its response to salt

stress. A common strategy under high salt stress involves the

activation and regulation of downstream proteins required for cell

repair and adaptation, including those related to ion homeostasis,

osmoregulation, and reactive oxygen species (ROS) scavenging (Hu

et al., 2018; Zhang et al., 2019). In response to salt stress, P. nutans

exhibited upregulation of 1,340 genes and downregulation of 831

genes. Additionally, this moss activated various phytohormone

signaling pathways that stimulate antioxidant enzymes and

flavonoids to protect cells and scavenge ROS (Zhang et al., 2019).

In the hornwort Folioceros fuciformis, transcriptome sequencing has

revealed the presence of homologs of Dicer-Like (DCL), Argonaute

(AGO), and various other genes involved in small RNA pathways

(You et al., 2017). However, the literature on transcriptome studies

in hornworts is limited, indicating a need for further research to

better understand the molecular changes and gene expression

dynamics in this group of bryophytes.
6 Plastome analysis

The basic structure of the plastome in bryophytes consists of a

large single-copy (LSC) region and a small single-copy (SSC)

region, flanked by a set of large, inverted repeats. The distribution

of plastome sizes (in base pairs) across different bryophyte groups is
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represented in Figure 3. The first complete plastome study in M.

polymorpha revealed that its chloroplast DNA (cpDNA) comprises

a total of 121,024 base pairs, with two large, inverted repeats

separating the LSC and SSC regions (Ohyama et al., 1986). This

plastome contains 128 genes, which include ribosomal RNAs, 32

species of transfer RNAs (tRNA), and 55 identified open reading

frames (ORFs) for proteins (Ohyama et al., 1986). Since then, the

plastome of many bryophytes has been sequenced (Supplementary

Table S2).

In Aneura mirabilis, a total of 20 pseudogenes were identified

based on complete chloroplast genome sequence, which include the

loss of five chlororespiration genes (ndh), six other ndh genes,

subunits of photosystem I and II, cytochrome b6f complex, and also

involves the pseudogenes of ccsA, cyst, cysA, and ycf3 (Wickett et al.,

2008; Wolf and Karol, 2012). In the hornwort Nothoceros

aenigmaticus, the plastid genome was reconstructed using a

shotgun sequencing approach of genomic DNA. The plastome of

Nothoceros was found to be collinear with the plastomes of other

bryophytes but differed from the Anthoceros plastome in many gene

regions. These differences are particularly evident within the

inverted repeat regions of Anthoceros (Villarreal et al., 2013). This

body of research underscores the diversity in plastome organization

among different bryophytes, providing insights into the

evolutionary adaptations of their chloroplast genomes. In the

plastome sequence of the moss P. patens, Sugiura et al. (2003)

identified 83 protein-coding genes, four ribosomal RNA genes, 31

tRNA genes, and a pseudogene. Notably, four genes— rpoA, cysA,

cysT, and ccsA— present in M. polymorpha and A. formosae were

absent in P. patens. Additionally, the overall structure of the cpDNA

in P. patens differs from that of M. polymorpha and A. formosae.

Specifically, a large inversion is unique to P. patens, while the loss of

the rpoA gene is a common feature observed across all studied

mosses (Sugiura et al., 2003).

In the moss Sanionia uncinata, the total plastome length is

124,374 bp with a total of 117 unique genes which comprises 82

protein-coding genes, 37 tRNA genes and four genes for rRNA

(Park et al., 2018). Plastome analysis in moss T. ruralis showed that

the chloroplast genome is ca. 123,500 bp, and it was different from

that of P. patens in the sense that Tortula does not have the ~71 kb

inversion found in the LSC region of the Physcomitrella genome

(Oliver et al., 2010). In Polytrichum commune, the plastome is

126,323 bp in length and comprises four regions: one LSC region of

88,070 bp, a SSC region of 16,717 bp, and two inverted repeats (IRs)

of 9,680 bp each (Jin and Zhu, 2021). It contains a total of 128 genes,

including 84 protein-coding genes, eight ribosomal RNA (rRNA)

genes, and 36 transfer RNA (tRNA) genes. Also, in P. commune

nine genes (four rRNA genes and five tRNA genes) are duplicated in

the IR regions (Jin and Zhu, 2021).

Significant differences in plastome structure have been observed

among liverworts. Yu et al. (2019) examined these variations,

focusing on genome size and GC content, and found that Aneura

and Haplomitrium exhibit higher GC content compared to other

liverworts, showing a 1.54-fold variation in GC content across the

studied liverworts. When comparing the plastomes of 2,386 land

plants, they noted structural conservatism in liverwort plastomes,

with a trend towards reduced plastome length from liverworts and
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mosses to land plants. Among mosses, Takakia and Sphagnum have

plastome sizes comparable to those of land plants. However, the

disparity in plastome structure among hornworts remains

unexplored, and a detailed study is needed to gain further

insights into their evolutionary trends.
7 Genetic diversity

The exploration of genetic diversity in bryophytes started to

develop in the early 2000s. Cronberg (2000) examined genetic

variation in Leucodon sciuroides by analyzing 15 putative isozyme

loci across twelve populations. This study found that Scandinavian

populations had lower genetic diversity compared to Greek

populations, with northern Greece acting as a transitional area

between genetically impoverished and diverse populations. This

pattern suggests that genetic variation diminished in populations

located at the northern limits of glacial refugia. Furthermore, the

study highlighted differences in reproductive strategies among

populations, suggesting that epiphytic species, which are limited

in space and time, are more vulnerable to genetic variation loss

(Cronberg, 2000).

In a separate study, Cronberg et al. (2005) investigated genetic

variation in Plagiomnium affine by examining 23 allozyme loci

across six populations. They identified sixteen haplotypes, with two

being widely distributed and twelve unique to specific populations.

The study revealed a significant correlation between allelic variation

and forest age, with dominant haplotypes found in younger forests
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and local haplotypes more prevalent in older forests. This indicates

that genetic variation tends to accumulate more in ageing forest

ecosystems. Using the random amplified polymorphic DNA

(RAPD) technique, Zhu et al. (2007) analyzed 60 individuals

from five Chinese populations of Brachythecium rivulare. They

identified a total of 122 bands, with 82 (67.2%) showing

polymorphism, indicating a substantial level of genetic variation.

However, no significant correlation was found between genetic

distance and elevational gradient among these populations. In

contrast, a genetic diversity study of Bryum argenteum collected

from elevations ranging from 100 m to 2870 m revealed that genetic

diversity peaked at 1900 m. This study found a significant

correlation between genetic variation and elevation, but no

correlation between genetic variation and geographic distance,

with no demographic shifts observed at any elevation (Pisa et al.,

2013). Among the four bryophytes examined (Exsertotheca

intermedia, Frullania polysticta, Isothecium prolixum, and Porella

canariensis), a correlation between species richness and genetic

diversity was observed in I. prolixum and E. intermedia, which

showed higher species cover and genetic diversity at higher

elevations (Sim-Sim et al., 2015).

Hock et al. (2008) examined the genetic diversity in two

populations of Mannia fragrans— one from the soil surface and

the other from the diaspore bank using three Inter-Simple Sequence

Repeats (ISSR) primers. They found that genetic diversity was

similar in both populations (0.067 for soil surface and 0.082 for

diaspore bank). However, specific haplotypes were unique to the

soil surface population, highlighting the significant role of the
FIGURE 3

Violin plot showing plastome size in base pair (bp) among three groups of Bryophytes: Mosses (blue), Liverworts (green), and Hornworts (peach). The
width of each violin represents the density of plastome size distribution within each group. The y-axis indicates plastome size in bp.
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bryophyte diaspore bank in preserving genetic variability across

generations. Lang et al. (2021) investigated the genetic structure and

variability of sexually reproducing populations of Dicranum

scoparium at different geographic levels, focusing on the relative

contributions of dwarf males (DMs), females, and normal-sized

males (NMs) to genetic diversity. Using 119 single nucleotide

polymorphism (SNP) markers from transcriptomes to genotype

403 samples, they observed that DMs, when present, significantly

outnumbered NMs and females at certain sites. Local-level genetic

differentiation was low, but significant differentiation was noted

between cushions for NMs and females and within cushions for

DMs. While genetic diversity was lower for NMs, it was comparable

between females and DMs. The study revealed that DMs and NMs

play distinct roles in reproduction, with inbreeding potential at the

cushion level but high gene flow preventing substantial genetic drift

(Lang et al., 2021). These findings underscore that genetic diversity

in bryophytes is influenced not only by genetic and genomic factors

but also by ecological and reproductive dynamics. An integrative

approach considering these aspects could further elucidate the

mechanisms underlying genetic diversity and its connections with

broader biological contexts.
8 Molecular phylogeny

Identifying and classifying bryophytes solely based on

morphology can be challenging due to their small size, diverse

growth conditions, and phenotypic plasticity. Therefore, an

integrative approach combining various methods is essential for

accurate classification. Molecular systematics, which relies on

phylogenetic reconstruction, is a widely used approach for

classifying bryophytes. Bryophytes are considered the original

colonizers of terrestrial habitats, and their status as some of the

oldest living land plants is rarely disputed (Mishler and Churchill,

1984). Molecular markers have long been employed in the

phylogenetic analysis of bryophytes and other land plants and

remain essential tool to understand phylogenetic relationships.

Commonly used markers include the nuclear 18S RNA and the

chloroplast rbcL gene (Beckert et al., 1999). Additionally, the

Internal Transcribed Spacer (ITS1-4) region from the nuclear

genome has been used to infer bryophyte phylogeny at the

molecular level (Samigullin et al., 1998). Results from molecular

phylogenetic studies of bryophytes have been controversial. Early

views suggested that bryophytes represented a grade consisting of

three monophyletic lineages with no clear branching order (Mishler

et al., 1994). Studies of nuclear-encoded rRNA genes proposed that

the hornwort-moss clade is sister to tracheophytes, with liverworts

positioned as basal to tracheophytes, although the moss-hornwort

clade was weakly supported (Waters et al., 1992). Concatenated

nucleotide data analyses suggest mosses as the sister group to all

other land plants, while corresponding amino acid sequences

position liverworts as the sister group to land plants (Liu et al.,

2014a). Ruhfel et al. (2014) demonstrated a strong relationship

between mosses and liverworts, forming a distinct clade. However,

this clade was found to be distantly related to hornworts and other

embryophytes, with no evidence supporting the monophyly of
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bryophytes. In contrast, Gitzendanner et al. (2018) provided

strong evidence for bryophyte monophyly, placing hornworts as

sister to a moss-liverwort clade. Additionally, phylogenomic studies

of the hornwort Anthoceros angustus also suggested the monophyly

of bryophytes, with hornworts considered sister to liverworts and

mosses (Zhang et al., 2020). Study on the mitochondrial phylogeny

corroborated the Setaphyta clade, reinforcing the concept of

bryophyte monophyly with robust support (Sousa et al., 2020).

Phylogenetic analysis based on nuclear proteins further supported

the monophyly of bryophytes (de Sousa et al., 2019). Also, study by

Su et al. (2021) based on large-scale phylogenomic analysis further

advocate the monophyly of bryophytes. Likewise, phylogenetic

analysis using translated amino acid sequences from chloroplast

genomes of twenty bryophyte species strongly supports the

monophyly of extant bryophytes as sister to vascular plants,

though the support for the monophyly of vascular plants was

weaker (Nishiyama et al., 2004). Contrary to this, analysis of the

nuclear 18S RNA gene sequence, using parsimony and maximum

likelihood methods, has placed hornworts as a basal group, with

mosses and liverworts forming sister taxa to each other and together

constituting a sister clade to the tracheophytes (Hedderson et al.,

1996). Mitochondrial nad5 gene sequences revealed the monophyly

of mosses, liverworts, and hornworts, with nad5-derived

phylogenetic trees supporting some taxonomic units in bryophyte

classification (Beckert et al., 1999). In contrast, Wickett et al (2014).

argued that bryophytes are paraphyletic, with liverworts and mosses

being sister to vascular plants, while hornworts are sister to all other

land plants. As aforementioned, phylogenomic analyses have

supported bryophytes as monophyletic, with hornworts being

sister to the Setaphyta clade, which includes both liverworts and

mosses (Wang et al., 2022).

A recent study focused on liverworts, specifically the order

Ptilidiales, using 84 protein-coding genes from the chloroplast

genome, supported the monophyly of liverworts, with Ptilidiales

identified as sister to Jungermanniales (Yu et al., 2020). In mosses, a

study on P. commune using 33 mitochondrial coding genes revealed

that its mitogenome is highly similar to other Polytrichopsida

members, with the least similarity to Buxbaumia aphylla and

Sphagnum palustre (Goryunov et al., 2021). The mitogenome of

studied bryophytes is also represented in Figure 4 (See also

Supplementary Table S3). In the family Funariaceae (Bryophyta),

the phylogenetic analysis did not support the classification based

solely on sporophyte morphology, suggesting that sporophyte

characteristics are homoplastic and that selective pressures have

led to diversification in sporophytic architecture (Liu et al., 2012).

Additionally, research on the evolution of stomata has supported

the monophyly of bryophytes (Harris et al., 2020). Conversely, a

study on haplolepidous moss families Aongstroemiaceae and

Dicranellaceae, using chloroplast and mitochondrial markers,

revealed that these morphologically similar families are actually

separate clades and polyphyletic (Bonfim Santos et al., 2021).

Continued research is needed to resolve the phylogenetic

relationships of the complex bryophyte families to achieve a more

precise classification.

In liverworts, Capesius and Bopp (1997) supported them as

paraphyletic, linking simple thalloid and leafy species to mosses
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while excluding complex thalloid liverworts. At family level, the family

Lejeuneaceae is the most species-rich, but its classification has been

challenging due to significant morphological homoplasy. This has led

to conflicting classifications and difficulties in dividing the family into

natural subunits (Wilson et al., 2007). Phylogenetic analyses using

plastid regions (rbcL, trnL-F, and psbA) and the nr5.8S-ITS2 region

identified four main lineages within Lejeuneaceae supporting this

division. The study further suggested separating Lejeuneaceae into

the subfamilies Ptychanthoideae and Lejeuneoideae (Hentschel et al.,

2009). The genus Frullania within the family Frullaniaceae of order

Porellales is also taxonomically complex. Morphologically, Frullania is

similar to Jubulaceae and Lejeuneaceae, leading some classifications to

group Frullania, Jubula, and Lejeuneawithin a single family, Jubulaceae

(Hentschel et al., 2009). However, Schuster (1994) and Crandall-Stotler

and Stotler (2009) proposed separating Frullania and Jubula from

Lejeuneaceae, placing them solely in Jubulaceae. Phylogenetic analysis

of Frullania has supported the monophyly of several subgenera and

their intercontinental ranges, which contrasts with the morphology-

based classification of subgenera (Schuster, 1994).

In the family Lepidoziaceae, which belongs to the order

Jungermanniales, there is significant gametophytic polymorphism,

leading to challenges in establishing stable taxonomic boundaries at

the subfamily, subgeneric, or generic levels (Crandall-Stotler and

Stotler, 2009). Despite extensive taxonomic studies, the

phylogenetic relationships within Lepidoziaceae remain unclear.

Cooper et al. (2011) conducted a comprehensive study using a large

dataset of 10 loci and 93 species from 20 genera, providing
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convincing evidence against the monophyly of the three

subfamilies—Lembidioideae, Lepidozioideae, and Zoopsidioideae.

Their analysis proposed a revised classification, including a

narrower circumscription for Lepidozioideae and reassignments

such as Megalembidium insulanum to Lembidioideae and

Neogrollea notabilis to Lepidoziaceae.

The intricate relationships between the moss families

Grimmiaceae and Ptychomitriaceae have been a long-standing

focus of research due to the challenges in classifying various taxa

within these families. Phylogenetic studies have produced differing

conclusions on whether these families should be merged or kept

separate. For instance, earlier studies such as Noguchi (1987),

Gradstein et al. (2001), Allen (2002), and Tsubota et al. (2001),

suggested merging both families into one. In contrast, other studies

such as Buck et al. (2000) and Smith et al (2004). advocated for

maintaining them as separate entities. A more recent study by

Hernández-Maqueda et al. (2008) provided new insights by placing

the genera Indusiella and Jaffueliobryum within Ptychomitriaceae

due to their close relationship with the genus Ptychomitrium. The

study also proposed that Campylostelium does not fit within either

Grimmiaceae or Ptychomitriaceae and should be classified in its

own family, Campylosteliaceae. Additionally, they identified

Racomitrium as a monophyletic group closely related to a clade

consisting of Grimmia, Schistidium, and Dryptodon. The study also

supported the synonymization of Coscinodon with Grimmia and

established Grimmia and Schistidium as a monophyletic group with

strong statistical support. In another lineage, Sphagnopsida, the
FIGURE 4

Heatmap illustrating mitogenome size (in bp) across various bryophyte taxa. The X-axis represents individual taxa, while the Y-axis categorizes them
into three bryophyte groups: Mosses, Liverworts, and Hornworts. The color gradient corresponds to mitogenome size, with darker shades indicating
larger mitogenomes and lighter shades representing smaller ones.
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genus Sphagnum , wi th around 350−500 species , and

Ambuchanania, represented by a single species, have been the

subject of phylogenetic analysis. Initially placed in a new section

of Sphagnum, Ambuchanania was later assigned to a separate family

and order (Crum and Seppelt, 1999; Shaw et al., 2010). Phylogenetic

analyses of Sphagnopsida have identified three primary lineages: 1)

S. sericeum, 2) S. inretortum plus A. leucobryoides, and 3) all other

Sphagnum species. This analysis also indicated that A. leucobryoides

is derived within Sphagnopsida rather than being plesiomorphic

(Crum and Seppelt, 1999; Shaw et al., 2010).

The phylogenetic relationships within the family Daltoniaceae

and the circumscription of this family still require further

investigation. Some genera, such as Calyptrochaeta, have yet to be

definitively placed within the family (Ho et al., 2012). Phylogenetic

analyses of Daltoniaceae using five markers from all three genomic

regions supported the reciprocal monophyly of Calyptrochaeta and

Achrophyllum. However, genera like Daltonia, Leskeodon, and

Distichophyllum were found to be polyphyletic, indicating the need

for extensive taxonomic revisions within this family (Ho et al., 2012).

The current state of hornwort taxonomy presents significant

challenges, making it difficult to pinpoint the exact number of

hornwort species globally. As of now, over 300 hornwort species

have been documented worldwide (Duff et al., 2007). Taxonomic

classification within hornworts has led to several conflicting

concepts of their interrelationships (Cargill et al., 2005; Duff et al.,

2007). Early phylogenetic studies on hornworts, such as those by

Duff et al. (2007) and Stech et al. (2003) laid the groundwork for

understanding their classification. These studies, based on rbcL

phylogeny, highlighted significant genetic divergence within

hornworts, including the distinct separation of Phaeoceros and

Anthoceros, the divergence of Leiosporoceros from other

hornworts, the polyphyly of Megaceros, and the existence of a

cryptic genus containing species formerly classified under

Phaeoceros (Stech et al., 2003; Duff et al., 2007). Newer

classifications proposed by Frey & Stech (2005) and Stotler &

Crandall-Stotler (2005) exhibit notable similarities but also differ

significantly from earlier frameworks. Despite these advances,

hornwort biology remains underdeveloped, partly due to the

scarcity of specialists in hornwort taxonomy and the challenges of

accessing hornwort populations in remote areas.
9 Application of molecular studies
in bryology

Morphological classification of bryophytes often struggles to

accurately group these diverse taxa, revealing just how complex

their taxonomy can be. With the advent of the molecular revolution,

advances in genetic studies have become essential for addressing

these challenges and accurately distinguishing species, particularly

within complex species groups (Beckert et al., 1999; Stech et al.,

2013; Lang et al., 2015; Duffy et al., 2020). By analyzing nucleotide

and amino acid sequences, molecular tools can classify species as

monophyletic, paraphyletic, or polyphyletic, complementing

traditional morphological approaches (Vanderpoorten and Shaw,

2014). Despite their transformative potential, molecular studies on
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bryophytes remain underutilized, demanding a prominent level of

expertise to tackle classification complexities and refine species

delineation. Yet, these detailed molecular analyses promise to

unravel intricate biological processes, including cell signaling

pathways, which are vital for ecological, molecular, and

biodiversity conservation studies. By advancing molecular

research, we can enhance overexpression studies and explore new

applications, transforming our approach to these remarkable plants.

Thus, an integrative approach, blending molecular and

morphological methods, is essential not only for resolving species

complexes but also for confirming and reclassifying misidentified or

enigmatic species.

While molecular research on bryophytes is rapidly gaining

momentum globally, India’s vast and diverse bryophyte flora

remains underexplored at the molecular level. Despite hosting

four biodiversity hotspots and approximately 2,562 bryophyte

taxa (ENVIS, India), there is a noticeable lack of molecular

studies within the country. This gap can largely be attributed to a

shortage of specialists in bryophyte taxonomy and a general lack of

awareness regarding the importance of bryophyte taxonomy,

ecology, and conservation. To address this issue, several strategic

approaches are essential. Government policies focused on

bryophyte conservation, along with the organization of targeted

training programs and workshops, can play a crucial role in

fostering expertise and awareness. Additionally, developing

bryophyte gardens would provide valuable resources for research

and education, further promoting the study and conservation of

these crucial but often overlooked plants. By prioritizing these

initiatives, India can enhance its contributions to the global

understanding of bryophytes and ensure that its rich bryophyte

diversity is effectively studied, conserved, and appreciated.
10 Conclusion

Molecular studies have emerged as transformative tools in

resolving the complex classification issues that often plague

bryophytes. In a field where overlapping morphological characters

frequently blur taxonomic boundaries, molecular techniques offer

precise methods for species discrimination and classification. An

integrative approach that combines molecular data with traditional

systematic botany is essential for achieving accurate and

comprehensive classifications of bryophytes. Recent advancements

in DNA extraction protocols for bryophytes have set new

benchmarks, encouraging researchers to explore innovative

techniques for extracting and isolating DNA from these delicate

plants. Genome-wide studies and transcriptome analyses are

shedding light on the intricate genetic frameworks of bryophytes,

with ongoing efforts in genome sequencing and assembly providing

deeper insights into their evolutionary histories. The field has also

benefitted from advances in molecular phylogeny and DNA

barcoding, which have proven invaluable for delineating species

within challenging groups like Grimmiaceae and Pottiaceae.

However, the quest for a universally efficient DNA barcode

marker remains a matter of comprehensive investigations.

Whether a single marker or a combination of markers will
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emerge as the definitive tool for bryophyte species identification is

still under investigation. Continued research is crucial to

establishing a standard DNA barcode marker that can aid

bryologists globally, paving the way for more accurate and

reliable studies of bryophyte diversity.
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Üçüncü, O., Cansu, T. B., Özdemir, T. U., Karaoğlu, Ş.A, and Yayli, N. (2010).
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