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BO-CNN-BiLSTM deep learning
model integrating multisource
remote sensing data for
improving winter wheat
yield estimation
Lei Zhang1, Changchun Li1*, Xifang Wu1, Hengmao Xiang2,
Yinghua Jiao2 and Huabin Chai1

1School of Surveying and Land Information Engineering, Henan Polytechnic University,
Jiaozuo, China, 2Shandong Provincial Land Survey and Planning Institute, Jinan, Shandong, China
Introduction: In the context of climate variability, rapid and accurate estimation

of winter wheat yield is essential for agricultural policymaking and food security.

With advancements in remote sensing technology and deep learning, methods

utilizing remotely sensed data are increasingly being employed for large-scale

crop growth monitoring and yield estimation.

Methods: Solar-induced chlorophyll fluorescence (SIF) is a new remote sensing

metric that is closely linked to crop photosynthesis and has been applied to crop

growth and drought monitoring. However, its effectiveness for yield estimation

under various data fusion conditions has not been thoroughly explored. This

study developed a deep learning model named BO-CNN-BiLSTM (BCBL),

combining the feature extraction capabilities of a convolutional neural network

(1DCNN) with the time-series memory advantages of a bidirectional long short-

term memory network (BiLSTM). The Bayesian Optimization (BOM) method was

employed to determine the optimal hyperparameters for model parameter

optimization. Traditional remote sensing variables (TS), such as the Enhanced

Vegetation Index (EVI) and Leaf Area Index (LAI), were fused with the SIF and

climate data to estimate the winter wheat yields in Henan Province, exploring the

SIF’s estimation capabilities using various datasets.

Results and Discussion: The results demonstrated that the BCBL model,

integrating TS, climate, and SIF data, outperformed other models (e.g., LSTM,

Transformer, RF, and XGBoost) in the estimation accuracy, with R²=0.81,

RMSE=616.99 kg/ha, and MRE=7.14%. Stepwise sensitivity analysis revealed

that the BCBL model reliably identified the critical stage of winter wheat yield

formation (early March to early May) and achieved high yield estimation accuracy

approximately 25 d before harvest. Furthermore, the BCBL model exhibited

strong stability and generalization across different climatic conditions.
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Conclusion: Thus, the BCBL model combined with SIF data can offer reliable

winter wheat yield estimates, hold significant potential for application, and

provide valuable insights for agricultural policymaking and field management.
KEYWORDS

bidirectional long short-termmemory (BiLSTM), 1D convolutional neural network (1DCNN),
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1 Introduction

Wheat is one of the most important staple crops worldwide, not

only serving as a primary food source for humans but also playing a

crucial role as livestock feed and an industrial raw material, making it

essential for global food security (Langridge et al., 2022). Winter

wheat holds a central position in agricultural production and food

reserves in many countries. However, abnormal climate conditions in

recent years, including reduced precipitation and abnormal

temperature increases, have led to frequent droughts, posing a

serious threat to wheat yields (Farooq et al., 2023; Rezaei et al.,

2023). Drought has become a primary factor limiting winter wheat

yield, directly impacting agricultural income and the stability of the

food supply chain (Yu et al., 2018). In this context, accurate crop yield

estimation is not only significant for national food security and policy

making but also serves as a critical decision-making tool in the futures

market. Accurate yield predictions can help governments and

agricultural practitioners formulate proactive responses to mitigate

risks of price volatility in the food market (Feng et al., 2020).

Therefore, accurately estimating wheat yields under variable

climatic conditions has become a significant challenge.

Traditional methods for field and regional yield estimation rely

heavily on manual field surveys, which are labor-intensive and

limited in scale. Alternatively, crop growth models such as DSSAT,

APSIM, WOFOST, and PCSE, which depend on extensive crop

growth data (Huang et al., 2019; Jin et al., 2018; Martre et al., 2015),

can accurately simulate crop growth and interactions between

climate and soil factors at the field scale. These models provide

valuable guidance for production management and risk

assessments. However, their application at larger scales is

constrained by the spatial heterogeneity of soil properties, climate

factors, crop parameters, and field management strategies, making

large-scale deployment challenging (Li et al., 2019). Recent

advancements in remote sensing technology have enabled large-

scale crop growth monitoring, rendering it the preferred method for

regional-scale yield estimation (Cao et al., 2021; Huang et al., 2015;

Li et al., 2020). Satellites capture various spectral bands, including

visible, near-infrared, thermal infrared, and microwave bands, to

assess crop growth conditions and estimate yields (Guan et al.,

2017). Combining these spectral bands allows for the calculation of

vegetation indices, such as the Normalized Difference Vegetation
02
Index (NDVI) and Enhanced Vegetation Index (EVI), as well as the

indicators related to crop yield and photosynthesis, including the

Fraction of Photosynthetically Active Radiation (FPAR) and Leaf

Area Index (LAI) (Huang et al., 2016; Xie et al., 2017). LAI, which is

closely related to crop growth and yield accumulation, represents

crop biomass and photosynthesis, whereas EVI, which minimizes

atmospheric and soil noise, is widely used to monitor vegetation

growth and coverage.

Owing to the complex nonlinear relationship between climate

change and crop yield formation, linear models often fail to capture

these dynamic processes. Machine learning algorithms, such as

Random Forest (RF) and Extreme Gradient Boosting (XGBoost),

are effective in handling nonlinear data and have demonstrated

stability and accuracy in land cover classification and yield

estimation (Chlingaryan et al., 2018; Fei et al., 2023). Deep

learning, which leverages multilayer structures for feature

extraction, can model intricate nonlinear relationships and has

been applied in areas such as image recognition and natural

language processing (Bhatt et al., 2021; Noda et al., 2015; Yang

et al., 2018). Remote sensing data-driven deep-learning methods

have markedly improved the monitoring of crop growth and yield

estimation, typically utilizing time-series data from the entire

growing season as the model input. Recurrent Neural Networks

(RNNs) are well suited for time-series data particularly the Long

Short-Term Memory (LSTM) model, effectively address vanishing

and exploding gradient issues (Tian et al., 2021). Cao et al. (2021)

utilized an LSTM model incorporating climate, satellite, soil, and

spatial information to predict county-level winter wheat yields in

China’s major wheat-producing regions (Cao et al., 2021). Wang

et al. (2020) developed a dual-branch CNN-LSTM model that

integrated climate, remote sensing, and soil data for estimating

wheat yields in the same regions, demonstrating superior

performance compared to standalone CNN or LSTM models and

highlighting the benefits of hybrid approaches (Wang et al., 2020).

Hybrid models generally provide more accurate results for complex

data than single models. Wang et al. (2023) introduced a multilayer

CNN-GRU yield estimation framework, which effectively estimated

the spatial and temporal distribution of yields on the Guanzhong

Plain. Given the complexity of deep learning model parameters,

relying only on past experience for setting these parameters can

impact accuracy (Wang et al., 2023). Consequently, further
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exploration of optimization algorithms in deep learning models is

essential to enhance their accuracy.

Compared with traditional vegetation indices such as NDVI,

EVI, and LAI, Solar-Induced Chlorophyll Fluorescence (SIF) is

more sensitive to photosynthesis (Dechant et al., 2022, 2020) and

demonstrates higher sensitivity under drought conditions (Wang

et al., 2022). Luo et al. (2024) used the high-resolution SIF

combined with traditional indices (LAI, EVI) to predict yields in

the US Corn Belt, indicating that the combination of SIF with

traditional indices yields better performance than using either index

alone (Luo et al., 2024). Other studies have highlighted the potential

of SIF for monitoring drought stress and estimating crop yields (He

et al., 2019). Furthermore, the model performance varies with

different combinations of remote sensing variables, indicating the

need for further exploration of the predictive performance of SIF in

various combinations.

The application of multimodal remote sensing data fusion

methods in crop growth monitoring and yield estimation has

developed rapidly, especially in predicting crop health and yield

under complex climate conditions. To address the effective fusion of

data from various remote sensing sources, several advanced deep

learning methods have recently been proposed, offering new insights

for agricultural remote sensing applications. First, the Vision

Transformer (ViT) has demonstrated superior feature-capturing

capabilities in multimodal data fusion due to its self-attention

mechanism. Recent studies, such as the Morphological Transformer

(morphFormer), have enhanced spectral-spatial representation of

images by incorporating spectral and spatial convolution operations,

showcasing stronger spectral and spatial information extraction

capabilities (Roy et al., 2023). This method’s success highlights that

combining attention mechanisms with convolution operations can

significantly improve the application of remote sensing data in

complex tasks. Moreover, multimodal frameworks like the Extended

Vision Transformer (ExViT) use parallel branch structures and cross-
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modal attention mechanisms to achieve feature fusion of multisource

data, effectively handling misaligned data in remote sensing (Yao et al.,

2023). This approach has broad potential in crop monitoring,

particularly when analyzing multisource information in crop growth

(such as SIF, EVI, LAI, and meteorological data), as it improves

classification and prediction performance by integrating modal

features. Additionally, unsupervised methods based on low-rank

diffusion models have shown advantages in remote sensing data

sharpening and spatial resolution enhancement (Rui et al., 2024). By

combining low-rank tensor decomposition with Bayesian

optimization techniques, this approach overcomes traditional deep

learning’s dependency on large-scale labeled data, achieving high-

accuracy feature extraction even in data-scarce scenarios and

supporting the broader adoption of multimodal data in agricultural

applications. These innovative multimodal data fusion techniques,

employing convolutional neural networks, attention mechanisms,

Bayesian optimization, and low-rank decomposition, enhance the

processing of complex spatiotemporal information from multisource

remote sensing data, providing new tools and directions for tasks like

winter wheat yield estimation. The advancement of these technologies

lays a solid foundation for improving crop yield estimation accuracy

and addressing the complex challenges posed by climate change.

In summary, this study developed a BO-CNN-BiLSTM (BCBL)

deep learning model that integrated SIF, EVI, LAI, and climate data,

combining the CNN’s spatial feature extraction with the BiLSTM’s

sequence data capture to predict the winter wheat yield in Henan

Province from 2011 to 2020. The performance of the BCBL model

was compared with those of the LSTM, RF, and XGBoost models.

The primary research objectives were (1) to evaluate the accuracy of

the BCBL model for county-level yield estimation and compare it

with other models, (2) to explore the predictive performance of SIF

under various datasets and its impact on early yield estimation

accuracy, and (3) to analyze the spatial-temporal distribution of

estimated yields from 2015 to 2020 using the BCBL model.
FIGURE 1

Location and topography of the study area.
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2 Materials and methods

2.1 Study area

The study area is located in Henan Province, China, with

geographical coordinates ranging from 110°21′E to 116°39′E and

31°23′N to 36°22′N (Figure 1). The terrain slopes from high

elevation in the west to low elevation in the east. Most of the area

is within a warm temperate zone, whereas the southern part extends

into the subtropical zone, characterized by a continental monsoon

climate transitioning from the northern subtropical to the warm

temperate zone. The region experienced four distinct seasons with

simultaneous rainfall and heat and had a complex and diverse

climate. The fertile soil makes the area highly suitable for

agriculture. Henan Province is a major grain-producing region in

China, contributing more than 20% of the national wheat yield and

consistently ranking first. Winter wheat was sown in early October

and harvested in early June of the following year. The entire

growing period of winter wheat was selected for modeling and

analysis in this study. Among the major natural disasters in Henan

Province, droughts and floods have the most serious impact on

agriculture, often causing significant losses to winter wheat crops.
2.2 Dataset and preprocessing

2.2.1 SIF
Solar-Induced Chlorophyll Fluorescence (SIF) has emerged as a

promising remote sensing index in recent years owing to its close

coupling with photosynthesis, demonstrating its superior performance

in agricultural monitoring and environmental assessment (Zhang

et al., 2018). Compared with traditional vegetation indices such as

the Normalized Difference Vegetation Index (NDVI) and Enhanced

Vegetation Index (EVI), SIF offers more direct information about

photosynthesis, making it advantageous for crop yield estimation and

drought monitoring (Sun et al., 2015; Mohammed et al., 2019; Qiu

et al., 2022). This study utilized a global SIF dataset from the National

Tibetan Plateau Data Center (https://data.tpdc.ac.cn/) provided by

Yao (Yao, 2021), which covers SIF observations on a global scale

(4d, 0.05°×0.05°). In this study, the raw data were resampled using

bilinear interpolation with a spatial resolution of 500 metres and the

coordinate system was converted to WGS-84 to improve accuracy

and applicability. To ensure the image time alignment problem.

Images with the same or similar dates as the start of winter wheat

sowing in EVI and LAI were selected, and the maximum value

compositing (MVC) method was used to generate an 8-day time

series image of winter wheat during the growing period, and cloud

cover and atmospheric disturbances were effectively reduced by

selecting the maximum SIF value. County-level wheat SIF values

were then averaged to obtain the mean SIF for each region during
Frontiers in Plant Science 04
the growth period, providing a more accurate assessment of

photosynthesis and solid foundation for subsequent yield

estimation and drought monitoring.

2.2.2 LAI and EVI
Two other satellite data products commonly used in crop yield

estimation, including the Leaf Area Index (LAI) and Enhanced

Vegetation Index (EVI), were selected. Research has indicated that

LAI, representing the total leaf area per unit of land area, can be

closely related to crop growth and yield accumulation, making it a

key indicator of vegetation coverage. An EVI optimized to minimize

atmospheric and soil noise can be widely adopted for monitoring

vegetation growth and coverage. However, the original MODIS LAI

(MOD15A2H, 8d, 500m) and MODIS EVI (MOD13A1-16d,500m

and MOD13A1-16d,500m combined as 8d, 500m) products often

contain discontinuities and noise owing to cloud and precipitation

interference (https://lpdaac.usgs.gov/). To address this issue, a

Savitzky-Golay (Window Size=9, Polynomial Order=2) filter

(Chen et al., 2004) was applied to smooth the raw data pixel-by-

pixel, effectively reducing noise while preserving primary trends.

Subsequently, county-level LAI and EVI values were averaged over

an 8-day time series with a spatial resolution of 500m using the

winter wheat planting period as the first day to improve the

accuracy and reliability of the data.

2.2.3 Climate data
The interaction between climate change and wheat yields is

complex. The climate data used in this study were derived from

ERA5(1d, 0.1°×0.1°), a fifth-generation atmospheric reanalysis

dataset produced by the European Center for Medium-Range

Weather Forecasts (ECMWF, https://www.ecmwf.int/). ERA5

combined the model outputs with global observations to provide

a comprehensive global dataset, including the 2-meter air

temperature (T2m), minimum and maximum air temperatures

(Tmn and Tmx), total precipitation (Pre), the 10-meter u-

component wind speed (U10m), and the 10-meter v-component

wind speed (V10m). For climatic data with shorter time intervals (1

day), they were converted to 8-day temporal resolution by data

aggregation (8-day aggregated averaging) based on the start dates of

other datasets, and the coordinate system was converted to WGS-84

to ensure consistency with other datasets. Secondly, winter wheat

meteorological data were obtained by masking method using winter

wheat distribution information, and finally aggregated to county-

level wheat meteorological data by averaging method. The 2-meter

air temperature and temperature range were crucial for

understanding crop growth, as they could affect photosynthesis

and growth rates. The total precipitation affected the soil moisture

and water availability for wheat, and the wind components could

provide insights into evaporation rates and potential extreme

climate events. Analyzing these variables is essential for
TABLE 1 SPEI classification criteria.

Value range SPEI > -0.5 -0.5≥SPEI>-1 -1≥SPEI>-1.5 -1.5≥SPEI>-2 SPEI≤-2

Drought level Non-drought (ND) Moderate drought (MD1) Middle drought (MD2) Severe Drought (SD) Extreme Drought (ED)
frontiersin.org

https://data.tpdc.ac.cn/
https://lpdaac.usgs.gov/
https://www.ecmwf.int/
https://doi.org/10.3389/fpls.2024.1500499
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1500499
understanding the impact of climate change on wheat yield.

Additionally , we used the Standardized Precipitat ion

Evapotranspiration Index (SPEI) to represent drought conditions

across different time zones in the study area. The SPEI data (https://

spei.csic.es/index.html) provides global long-term drought

information with a spatial resolution of 0.5 degrees and a

monthly temporal resolution. This dataset features multi-scale

properties, offering SPEI time scales from 1 month to 48 months.

We utilized the SPEIbase v2.9 version, with data spanning from

January 1901 to December 2022. For our study area, we obtained

monthly SPEI data from 2010 to 2020 at a spatial resolution of

0.5°×0.5°. Drought classification according to SPEI is provided

in Table 1.

2.2.4 Yield data and area
Reliable winter wheat yield data are essential for enhancing the

accuracy of model yield estimates. This study used county-level winter

wheat yield data from the National Bureau of Statistics of China

(https://www.stats.gov.cn/), focusing on 10 consecutive years and

selecting counties with yield levels above 3,000 kg/ha for analysis.

After screening, 93 counties were included in each year. Statistical

yearbook data indicated that the annual variation in the winter

wheat planting area was less than 1%, with winter wheat being the

primary crop from October to early June. The cropland data from

the land use classification were applied as a mask for winter wheat,

with the MODIS land classification product (MCD12Q1) providing

yearly images and selecting land cover types based on the IGBP

global vegetation classification scheme. These data were processed

using the Google Earth Engine (GEE), and annual winter wheat

planting distribution maps for each county were generated in

combination with county administrative boundary vector files.
Frontiers in Plant Science 05
2.3 Methods

2.3.1 Experimental technical approach
The experimental approach in this study was divided into three

stages (Figure 2): data collection and processing, model

construction comparison, and yield prediction. Initially,

multisource remote sensing data (including MOD15A2H,

MOD12A1, MYD12A2, and MCD12Q1), climate data (EAR-5),

and the novel remote sensing index SIF for Henan Province from

2011 to 2020 were collected. During data preprocessing, all data

were resampled to an 8-day interval with a 500 m resolution, and

the Savitzky-Golay filter was adopted to smooth the time series data

(EVI, LAI). The mean of each feature was then calculated, the target

area wheat data were extracted through mask processing, and all

features were normalized to a range of [0, 1] to prepare them for the

model input.

In the model construction and yield prediction stage, various

models, including traditional algorithms such as RF and XGBoost,

as well as certain deep learning models such as BO-CNN-BiLSTM

(BCBL) and baseline LSTM、Transformer, were trained using the

preprocessed data. Bayesian Optimization was employed to fine-

tune the hyperparameters of the models and enhance their

estimation accuracy. The study then performed a spatiotemporal

analysis of winter wheat yield from 2015 to 2020 and assessed the

predictive ability of the models, with a focus on the accuracy of

predictions made 25 d prior to harvest. The prediction accuracy of

each model was compared using performance metrics, such as R²,

RMSE, andMRE. Additionally, the role of SIF data in enhancing the

accuracy of traditional remote sensing data was analyzed, with a

particular emphasis on its performance under extreme

climate conditions.
FIGURE 2

Flowchart of research techniques.
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2.3.2 BiLSTM network
Bidirectional Long Short-Term Memory (BiLSTM) is an

advanced version of the Long Short-Term Memory (LSTM)

network designed to effectively handle time-series data while

preserving memory. Based on LSTM’s solution to the vanishing

and exploding gradient problems inherent in Recurrent Neural

Networks (RNNs), BiLSTM can enhance time-series modeling by

running two LSTM networks simultaneously. One network can

process the data forward in time, and the other processes it

backward, enabling the consideration of both past and

future information.

The key components of LSTM include cell states and several

gating mechanisms: forget, input, and output gates. These

mechanisms can regulate the flow of information between

different gates using a sigmoid function.

For a given time step t and input Xt , each LSTM unit is defined

as follows (Figure 3):

(1) Forget gate:

ft = s (Wf � ½ht−1, xt � + bf ) (1)

(2) Input gate:

it = s (WI ½ht−1, xt � + bi) (2)

(3) Updating unit status:

~Ct = tan h(WC½ht−1, xt �) + bC (3)

(4) Unit state:

Ct = ft*Ct−1 + it*~Ct (4)

(5) Output gate:

ot = s (Wo½ht−1, xt � + bo) (5)

(6) Hide status updates:

ht = ot* tan h(Ct) (6)
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In this context, s represents the sigmoid function.

BiLSTM computes the bidirectional hidden states by running

LSTM layers in both the forward and backward directions along the

time axis. The forward LSTM processed the sequence from the first

to the last element, whereas the backward LSTM processed it in

reverse order. The resulting hidden states from both directions were

concatenated to form the final bidirectional hidden state.

2.3.3 Bayesian optimization
Bayesian optimization is an effective global optimization

method that is particularly suited for costly black-box objective

functions. Hyperparameter optimization for machine learning

models guides each iteration by incrementally constructing a

probabilistic model, typically a Gaussian process, of the objective

function, thereby efficiently identifying the optimal solution.

The key steps involved training an agent model f (x) using existing

data points and applying Gaussian process regression to estimate the

distribution of the objective function. Subsequently, the next sample

point xn+1 was selected for evaluation using an Acquisition Function

that balances exploration (discovering new regions) and exploitation

(leveraging known good regions). The acquisition function we use is

Expected Improvement (EI). The Bayesian optimiser estimates the

mean and uncertainty of the objective function based on the agent

model (Gaussian process) and then selects the location where the

Expected Improvement is the largest to be sampled, with the goal of

finding the point that maximises the predictive uncertainty of the

agent model, usually expressed as:

xn+1 = arg max 
x

a(xjDn) (7)

where a(xjDn) represents the acquisition function of the

current dataset Dn. By incorporating new data points in each

iteration, Bayesian optimization gradually converges to the global

optimal solution. Its advantage is the effective optimization of

complex functions with a limited number of evaluations, making

it particularly suitable for tasks such as hyperparameter tuning.
FIGURE 3

Schematic of the Internal Structure of an LSTM Network.
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The convergence criteria for Bayesian optimization primarily

rely on two aspects: optimization iterations and improvement

threshold. Optimization iterations involve setting a maximum

iteration count, n_iter, at which point the optimization process

will terminate once the specified count is reached. In our case, we

chose n_iter = 50, indicating 50 optimization iterations.

Improvement threshold entails selecting the next sampling point

based on the expected improvement criterion from the surrogate

model. After a certain number of iterations, if the expected

improvement becomes minimal, indicating limited room for
Frontiers in Plant Science 07
further enhancement in the current region, it is considered as

convergence, and the optimization process gradually ceases.

The steps for Bayesian optimization in selecting hyperparameters

can be described as follows (Figure 4):

Step 1: Initialization: In the initial phase, a certain number of

hyperparameter combinations are randomly selected for evaluation

(we set init_points = 10, choosing 10 points at random

for evaluation).

Step 2: Modeling: A Gaussian process or other surrogate model

is used to model the objective function, predicting its shape based

on existing evaluation results.

Step 3: Sampling Point Selection: The next sampling point is

chosen based on the surrogate model’s predictions and the expected

improvement criterion.

Step 4: Evaluation and Update: The selected hyperparameter

combination is used to evaluate the objective function (in this

context, training and validating the model), and the surrogate

model is updated based on the evaluation results.

Step 5: Iteration: Steps 2, 3, and 4 are repeated until the stopping

criteria aremet (such asmaximum iterations or convergence standards).

Compared to traditional grid and random search, Bayesian

optimization is more computationally efficient and converges faster.

First, it reduces the number of evaluations by using the surrogate

model to efficiently explore the parameter space, avoiding

redundant calculations in previously evaluated regions. This

typically allows it to find optimal hyperparameters with fewer

evaluations. Second, it does not rely on exhaustive evaluations, as

traditional methods like grid search do, which require evaluations

across the entire parameter space. Instead, Bayesian optimization

leverages an efficient sampling strategy for global optimization with

minimal computational cost. In summary, Bayesian optimization

excels at optimizing complex functions within limited evaluations,

making it suitable for tasks like hyperparameter tuning. The
frontiersin.o
FIGURE 4

Flowchart of Bayesian optimisation algorithm.
FIGURE 5

Structure of BCBL model for winter wheat yield estimation and its BiLSTM network structure.
rg

https://doi.org/10.3389/fpls.2024.1500499
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1500499
hyperparameter optimization range for the model in this study can

be found in Appendix S1 in Supplementary Data Sheet S1.

2.3.4 Improved BiLSTM network framework for
yield estimation

In this study, a BO-CNN-BiLSTM (BCBL) deep learning model

was developed for feature extraction from remote sensing, climate,

and yield time-series data. The model consisted of an input layer, a

convolutional layer (1DCNN), a pooling layer, a reshaping layer, a

bidirectional LSTM layer, two fully connected layers, and an output

layer and was implemented using the TensorFlow framework, as

shown in Figure 5. The input features included EVI+LAI (TS), SIF,

and climate data, with new features generated through various

combinations of these inputs. The target vector was the county-level

yield data from 2012 to 2020. Initially, the feature combinations

were normalized, and the dataset was randomly split into 80%

training and 20% testing sets. Given the significant impact of

hyperparameters on model performance, Bayesian global

optimization was employed to optimize the hyperparameters,

such as the number of units in the convolutional layer, LSTM

layer, fully connected layer, and learning rate. Model testing was

then conducted using optimal hyperparameter configurations.

2.3.5 Model evaluation and baseline models
Twomachine learning models were compared, and deep learning

model (LSTM、Transformer) was selected as the baseline to evaluate

the accuracy of the models. Random Forest (RF) generates final

predictions by constructing multiple independent decision trees and

averaging their results, demonstrating strong nonlinear modeling

capabilities and being widely used in bagging methods. XGBoost, as a

gradient boosting-based algorithm, progressively optimized the

model by iteratively constructing decision trees that fit the residuals

of previous trees, achieving notable performance in regression and

classification tasks. As a baseline, an LSTM model with one LSTM
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layer and two dense layers was chosen, while a Transformer model

with MultiHeadAttention, residual connections, layer normalization,

fully connected layers, and dropout was also selected. All models

underwent hyperparameter tuning using Bayesian optimization, with

the RF and XGBoost results averaged to determine the optimal model

after five cross-validations.

To evaluate the estimation performance of the models, three

metrics were adopted: coefficient of determination (R²), root mean

square error (RMSE), and mean relative error (MRE). The formulas

for these metrics are as follows.

R2 = 1 −o
n
i=1(xi − yi)

2

on
i=1(xi − yi)

2 (8)

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mo

n
i=1(xi − yi)

2

r
(9)

MRE =  
1
no

n
i=1

xi − yi
xi

100% (10)

where xi is the statistical yield of wheat; yi is the estimated yield

of winter wheat; �yi is the mean statistical yield of wheat; and n is the

number of samples in the test set.
3 Results and analysis

3.1 Model performance using different
satellite variables

3.1.1 Effect of single-feature and multi-feature
combinations on model performance for crop
yield estimation

According to the model and dataset combinations outlined in

Methods (2.3), SIF outperformed all other models in the single-
FIGURE 6

Histograms of yield estimation performance for six models with different combinations of variables, including (Left) R² and (Right) RMSE for four
models (RF, XGBoost, LSTM, Transformer and BCBL).
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feature datasets (including TS, climate, and SIF), surpassing both

TS and climate. This superior performance was due to the close

association of SIF with plant photosynthesis and its rich yield

information, which is crucial for accurate crop yield estimation. In

contrast, using TS and weather data alone produced similar results

but with lower accuracy, likely because of their coarser resolution

and mixed image elements. Additionally, comparing the climate

data with the TS+climate data revealed only minimal

improvements in accuracy, with both the machine learning and

deep learning models demonstrating low final accuracies. This

indicated that the optimization effect of climate data on TS

information was limited, with the contribution of climate data

being gradually absorbed by TS data as crop fertility progressed,

resulting in minimal improvement. Among all the data

combinations, the TS+climate+SIF combination yielded the best

performance in the deep learning models, achieving a coefficient

of determination (R²) of 0.81 for the BCBL model. Conversely, the

TS+SIF combination delivered the best results in the machine

learning models, with a coefficient of 0.73 for the XGBoost

model (Figure 6).
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Deep learning can generally excel with large data samples owing

to its multilevel architecture, which can learn the deep connections

between features, unlike machine learning performing less

effectively in this regard. In terms of model accuracy, XGBoost

and RF demonstrated superior performance with the TS+SIF

dataset. However, adding climate data slightly reduced the

accuracy of these models. This decrease may be attributed to two

factors: first, the climate data did not significantly enhance the TS

dataset in machine learning; second, the vast amount of data and its

complex interrelationships limited the ability of machine learning

to conduct deep data mining, resulting in poorer performance with

the TS+climate+SIF combination.

3.1.2 Enhancement of crop yield estimation
model performance by remote sensing
indicator SIF

Throughout the study, the accuracy of all four models, whether

machine learning or deep learning, was improved to varying extents

by incorporating SIF into the TS and TS+climate data combinations

(Figure 7). Specifically, in the TS+climate+SIF combination, SIF
FIGURE 7

Comparison of the performance improvement (R² and RMSE) of different models using the combination of TS+SIF vs. TS+Climate+SIF data with or
without the addition of SIF during the entire study period.
FIGURE 8

Comparison between BCBL model (A) and LSTM model (B) in terms of official yield records and test set yield estimation results.
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enhanced the R² values of the BCBL, Transformer, LSTM, XGBoost,

and RF algorithms by 0.23,0.16, 0.21, 0.23, and 0.23, respectively,

while reducing the RMSE by 305.13,227.29, 246.41, 258.40, and

230.70 kg/ha. In the TS+SIF combination, SIF increased the R²

values of BCBL, Transformer, LSTM, XGBoost, and RF by

0.23,0.41, 0.27, 0.37, and 0.35, respectively, and reduced the

RMSE by 270.11,449.15,304.31, 398.37, and 368.40 kg/ha. These

results indicated that SIF significantly complemented the yield

estimation as a remote sensing index and enhanced model

performance across different datasets. Consequently, BCBL and

LSTM exhibiting superior performance were selected for

further study.

3.1.3 Comparison of BO- CNN-BiLSTM and LSTM
model performance

Figure 8 presents a scatterplot comparing the estimated yields

versus the official statistical yields for the BCBL and baseline LSTM

models using the same dataset throughout the study period. In the

TS+Climate+SIF dataset, the single LSTM model achieved an R² of

0.75, an RMSE of 715.86 kg/ha, and an MRE of 8.26% (Figure 8B).

In contrast, the BCBL model benefiting from CNN feature

extraction and bidirectional LSTM two-way temporal learning

achieved an R² of 0.81, an RMSE of 616.99 kg/ha, and an MRE of

7.14% (Figure 8A). The BCBL model thus improved R² by 0.06, and

reduced RMSE and MRE by 98.87 kg/ha and 1.11%, respectively,

compared to the LSTM model. These improvements indicate that

the BCBL model significantly enhances yield prediction accuracy

and robustness under different data conditions.

The scatterplot shows that the yield estimates of both models

are evenly distributed around the 1:1 line, displaying a clear linear

relationship, which demonstrates the model’s ability to capture the

trend between yield and prediction effectively in most cases.

Compared with the single-layer LSTM model, the BCBL model’s
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scatter points are more concentrated around the 1:1 line, indicating

that its predictions are closer to the actual values. Particularly in

low- and high-yield areas, the BCBL model significantly reduces

overestimation in low-yield regions and underestimation in high-

yield regions, resulting in more accurate and stable predictions. By

integrating CNN spatial feature extraction with bidirectional LSTM

two-way temporal learning, the BCBL model more comprehensively

captures the spatiotemporal features of the crop growth process,

effectively reducing prediction errors. Further analysis of residuals

shows that the absolute values of most residuals are within 750 kg/ha,

with only a few counties exceeding this range, indicating the BCBL

model’s high accuracy in yield estimation across most areas.

However, for counties where residuals exceed 750 kg/ha, data

quality issues or model underfitting may be contributing factors.

Specifically, high residuals in these counties may result from

insufficient inclusion of local meteorological, soil, or other

environmental factors in the model, or the model’s weaker

generalization ability in specific areas. These outliers indicate that

although the overall performance of the BCBL model is better than

that of LSTM, there is still room for further optimization in the future

to better handle the regional variability problem.

In summary, the BCBL model demonstrates a clear advantage

over the LSTM model in yield prediction, with smaller errors, and

most of the estimated value points are near the 1:1 line, thus reflecting

the trend of yield more reliably, and having an improved effect on the

underestimation of high yield and overestimation of low yield.
3.2 Early stage estimation capability of
the model

By progressively inputting the features to analyze the timeliness

and accuracy of yield estimation, it is possible to evaluate the
FIGURE 9

Analysis of the change in accuracy of the BCBL model at different growth stages evaluated based on R² and RMSE metrics.
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model’s early stage yield prediction capabilities and assess the

significance of the data for each period in the winter wheat

growth cycle. The BCBL model exhibiting the highest accuracy

was used to analyze its performance from 2010 to 2020 using the TS

+Climate+SIF data combination. Overall, the estimation error of

the model decreased and stabilized as more data input was

incorporated. Figure 9 illustrates the improved estimation

performance of the BCBL model with data accumulation. The

model initially performed poorly until January owing to the slow

growth of winter wheat and insufficient time-series inputs during

the early seeding and emergence stages, leading to lower estimation

accuracy during this period. From winter to mid-March of the

following year, the model’s accuracy improved, with R² stabilizing

at approximately 0.65. This stabilization was attributed to the nearly

halted growth of winter wheat during the overwintering period,

which weakened the correlation between remote sensing variables

and yield. Despite the stability of the model, its accuracy remained

insufficient for a precise yield estimation. However, from mid-

March to mid-May, as temperatures rose and winter wheat

progressed to the nodulation and spiking stages, model

performance significantly improved with the accumulation of

variables. During this period, R² increased from 0.67 to 0.77, and

RMSE decreased from 820.44 to 703.79 kg/ha. The most significant

changes in R² and RMSE during this stage indicate that the

information provided by remote sensing variables is crucial for

yield estimation. This period, characterized by rapid wheat growth,

increased chlorophyll content, enhanced photosynthesis, and high

nutrient and water demands, is critical for yield accumulation.

Overall, the model achieved an R² of 0.77 and an RMSE of

703.79 kg/ha in early May, providing accurate yield estimates

approximately 25 d before the winter wheat harvest.
3.3 Spatial and temporal distribution
of wheat yield estimation

The spatial distribution of end-of-season wheat production in

HenanProvince from2015 to2020, estimatedusing theTS+Climate+

SIF data combination and BCBL model (Figure 10), aligned closely

with the official statistics. Wheat yields were generally lower in the

western region and higher in the eastern and northern regions,

reflecting the impact of topographic relief. The higher elevations in

the west and the central and northern plains were more suitable for

wheat cultivation, whereas the limited cultivation in the southern

Xinyang region resulted in lower yields owing to topographical and

climatic factors. The yield fluctuations were more pronounced in

medium- and high-yielding regions, whereas the overall trend

demonstrated stability and growth. In 2018, the yields declined in

some areas due to late frost and downy mildew, whereas favorable

climatic conditions in 2019–2020 led to abundant wheat harvests.

Overall, the spatial and temporal distribution of winter wheat

production in Henan Province from 2015 to 2020 based on the

BCBL model was consistent with the official statistical results.
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3.4 Predictive capability of the BCBL model
under drought conditions

Based on the adopted classification criteria for the SPEI dataset

(Table 1), we compared the monthly mean SPEI values for Henan

Province over the study period, considering past drought conditions

in the region. The results (Figure 11) indicate that during the 2010–

2011 winter wheat growing season, Henan Province experienced

moderate drought (October to January) followed by severe drought

(March to May). Using the drought conditions of 2010–2011 as a

case study, we evaluated the robustness of the model’s yield

predictions under drought stress.

Usingyear-by-year cross-validation,we selected2011 as the test set

and 2012-2020 as the training set. The results showed that the model

performedpoorly in 2011 under drought conditionswhen onlyTS and

meteorological datawereused,withanR²of 0.46 andRMSEof 1115.27

kg/ha, which was lower than the model performance across the entire

study period (R² range: 0.55-0.79; RMSE range: 653.18-960.82 kg/ha).

This indicates that the model’s overall predictive performance

deteriorates under drought conditions. However, when SIF was

included as supplementary data, the model’s overall performance

improved significantly. The combination of TS, meteorological data,

and SIF in the BCBL model led to an increase in R² by 0.19 and a

reduction in RMSE by 210.76 kg/ha. Although the model’s precision

remained lower than the average accuracy for the entire study period,

the inclusion of SIF notably enhanced performance.

These results highlight the unique advantage of SIF in drought

monitoring, especially when integrated with the BCBL model. SIF

directly reflects changes in plant photosynthesis, capturing the

physiological state of plants under water stress, with a signal closely

associated with plant growth. This coupling is particularly crucial in

drought environments, as drought inhibits plant photosynthesis and

affects SIF values. By integrating SIF with TS and meteorological data,

the model’s robustness in drought conditions was strengthened,

allowing for a more accurate capture of plant physiological

responses and improved yield prediction accuracy. This finding not

only underscores the importance of SIF in crop yield prediction but

also emphasizes its potential application in drought detection, further

validating the suitability of the SIF-based BCBL model under

complex climate conditions.
4 Discussion

4.1 Impact of BCBL model on wheat
yield estimation

In addition to leveraging multisource data fusion to enhance the

estimation accuracy, advancements in computer science have

introduced new methods for estimating crop parameters. Deep-

learning techniques can automatically extract useful features from

raw data and construct complex models that capture intricate

patterns. In this study, the BCBL, Transformer and LSTM deep
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learning models demonstrated superior performance compared with

traditional machine learning models, such as RF and XGBoost.

Previous studies have demonstrated that LSTM models can achieve

higher accuracy in winter wheat yield estimation than RF and

XGBoost models (Cao et al., 2021, 2022; Gong et al., 2023). As a

variant of the recurrent neural network (RNN), LSTM excels with

time-series data. In contrast, the Transformer model processes global

dependencies between each element in the sequence using its self-

attention mechanism, often demonstrating significant advantages in
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many traditional time series tasks. Meanwhile, machine learning

models often struggle due to their inability to effectively recognize

complex nonlinear relationships in large datasets, leading to reduced

accuracy. In this study, the multilevel mixed model (BCBL)

demonstrated the superior estimation and high generalizability,

achieving the optimal performance with an R² of 0.81, RMSE of

616.99 kg/ha, and MRE of 7.14% for different growth stages of winter

wheat. The BCBL model can benefit from the information processing

advantages of CNN and BiLSTM. The 1DCNN can efficiently extract
FIGURE 10

Temporal and spatial patterns of winter wheat production estimates for 2015–2020: (A) 2015, (B) 2016, (C) 2017, (D) 2018, (E) 2019, and (F) 2020.
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local features from the sequence data, whereas BiLSTM captures

bidirectional contextual information, allowing for richer feature

representations. Unlike unidirectional LSTM, BiLSTM considers

both forward and backward sequence information, thereby

enhancing its ability to capture long-term dependencies with

greater accuracy. In addition, Bayesian optimization can identify

the best hyperparameters for varying sample sizes, thereby improving

the model’s applicability and resilience to interference. Consequently,

in this study, the BCBL model outperformed other models (LSTM,

RF, and XGBoost) in terms of yield estimation accuracy across

different data combinations and performed well even under

abnormal environmental conditions.

Additionally, to analyze the model’s performance across different

regions and climate conditions and demonstrate its robustness and

applicability, we conducted cross-regional validation experiments.

Specifically, we applied the model to data from various geographic
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regions and climate zones to further verify its generalizability and

adaptability, ensuring its suitability in different environments. The

details are as follows: following the dataset preparation and

preprocessing steps in Section 2.2, we selected three counties in

Shandong Province from south to north—Juye County, Pingyin

County, and Guangrao County—as test areas for model

generalization. Using the BCBL model, we estimated yields from

2011 to 2020 based on relevant data, keeping the model structure and

parameters unchanged. The predictive accuracy of the model over

this ten-year period is shown in Table 2.

Based on the estimation results, we found that the accuracy of the

model’s extrapolation declined to varying degrees, which is consistent

with most empirical models. Yield prediction results for the period

from 2011 to 2020 indicate that the model has good adaptability

across different regions and years, achieving an average accuracy of

90.95%, with a maximum annual prediction error of 17.07%.
TABLE 2 Estimated yields of winter wheat, 2011-2020 (Juye County, Pingyin County, Guangrao County).

Year
Juye Country Pingyin Country Guangrao County

OY EY AC OY EY AC OY EY AC

2011 5982.00 5515.33 92.20% 5289.32 4858.18 93.74% – – –

2012 5595.50 5581.36 93.09% 5379.58 5233.53 97.29% 7022.00 6043.81 86.07%

2013 6220.55 5806.00 93.34% 5065.79 5129.78 101.26% 6862.00 5880.17 85.69%

2014 6298.56 5256.34 83.45% 5076.48 5176.06 101.96% 6908.00 5895.60 85.34%

2015 6519.32 5518.70 84.65% 5231.59 5308.63 101.47% 6702.00 5667.40 84.56%

2016 6594.21 5468.75 82.93% 5186.58 5358.89 103.32% 6325.00 5497.64 86.92%

2017 6672.25 5633.01 84.42% 5075.33 5403.32 87.74% 6363.00 5434.58 85.41%

2018 5842.56 5144.94 88.06% 4825.31 5247.12 108.74% 5965.00 5322.84 89.23%

2019 6183.53 5420.34 87.66% – – – 5292.00 5533.20 104.56

2020 6382.81 5455.10 85.31% – – – 6506.00 5396.51 82.95%
OY, Official Yield(kg/ha); EY, Estimated Yield (kg/ha); AC, Accuracy (%); “-”: Nodata.
FIGURE 11

SPEI Trend from October 2010 to May 2011(SPEI in 2010–2011: Mean value for the study area in that year, SPEI Mean: 10-year mean value for the
study area).
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However, there were instances of yield overestimation or

underestimation in certain years, which may reflect significant

differences in the feature distributions of training data from Henan

and Shandong. Specifically, climate conditions, soil types, and crop

management practices vary widely between these two regions,

potentially causing the model to favor the feature patterns of one

region when learning feature relationships. When the model performs

well on training data from one region, applying it to another region

with differing feature distributions can result in inconsistent

prediction outcomes, evidenced by decreased accuracy when

applied outside the region it was trained on. This phenomenon

suggests that differences in feature distributions can pose a major

challenge to prediction accuracy when applying the model across

regions and highlights the need to consider data distribution

consistency in multi-regional or cross-crop applications. Overall, the

BCBL model can adapt to inter-annual fluctuations in climate change

and agricultural management practices, maintaining high predictive

accuracy under varying data conditions and providing foundational

support for future applications in other regions or different crops.
4.2 Advantages of multi-source remote
sensing data fusion in yield estimation

The results indicated that the multisource remote sensing data

fusion (TS + Climate) consistently provided better yield estimation

throughout the wheat growth stages than the single remote sensing

data (TS or Climate) alone (Figure 6). The model effectively identified

yield accumulation under varying growth conditions, with different

types of remote sensing data reflecting various aspects related to yield.

During the early growth stages, soil moisture, nutrient indices, and

climate data, such as rainfall and temperature, are critical for assessing

pre-emergence growth. During the middle and late growth stages,

parameters such as EVI and LAI derived from different spectral bands

are crucial for evaluating wheat growth and development. In the late

growth stage, as the leaf development becomes more abundant, the

temperature and water stress may affect the growth, with the climate

data providing essential contextual support to explain the changes in

crop health due to weather anomalies. As climate data, such as

temperature, precipitation, and wind speed, were progressively

integrated with remotely sensed data, the model could leverage the

synergistic effects between these data sources to capture the real-time

state of the crop, particularly in areas with lush vegetation, where

spectral saturation could lead to issues with saturated EVI.

Furthermore, previous studies have demonstrated that SIF is closely

related to crop photosynthesis (Xu et al., 2023) and is more sensitive to

drought conditions, thus offering unique and complementary remote

sensing data for assessing photosynthetic information. In this study, we

quantified the effect of SIF on the yield estimation across various data

combinations, indicating that SIF increased the R² by 0.21 to 0.37 and

decreased RMSE by 246.41 to 398.37 kg/ha in different models, thereby

improving the estimation accuracy. The estimated yields were generally

consistent with official statistics. This enhancement was attributed to

the ability of SIF to accurately reflect plant photosynthetic activities.

When combined with other remote sensing data (TS, Climate) in

multisource data fusion, SIF provides more comprehensive
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information on crop growth and yield prediction. This data fusion

enhanced the capacity of the model to identify the factors influencing

yield formation during critical, climate-sensitive periods, thereby

improving the overall accuracy of yield estimates.
4.3 Computational cost and speed of
inference for BCBL models

In practice, the extensive application of the BCBL deep learning

model is also influenced by computational costs and inference speed,

especially in large-scale applications. This model combines

Convolutional Neural Networks (CNN) and Bidirectional Long

Short-Term Memory networks (BiLSTM), which, despite its

excellent predictive accuracy, presents challenges in terms of

computational cost and inference speed. In the BCBL, Bayesian

Optimization (BO) is used during training to tune hyperparameters,

which can improve model performance; however, the optimization

process itself is computationally intensive, particularly with large

datasets. Each optimization cycle requires multiple model training

iterations, significantly increasing training time and computational

load. Furthermore, as model complexity (such as the addition of more

CNN and BiLSTM layers) increases, so does the computational cost.

During inference, while the BCBL model has an advantage in

accuracy, its inference speed is affected by model structure and

computational resources. The computational complexity of the

bidirectional LSTM layer is high and the inference process may take

longer. In addition, the real-time application of the model faces

hardware resource limitations, especially in scenarios requiring real-

time prediction, where the inference speed may become a bottleneck.

Nevertheless, with advances in computational power and

hardware acceleration technologies, the issues of computational

cost and inference speed in the BCBL are expected to improve. For

example, utilizing GPU or TPU acceleration for training, as well as

applying techniques like quantization and pruning to optimize

inference efficiency, can significantly reduce computational resource

demands and improve inference speed. These developments may

lower the application barrier for this technology, promoting wider

adoption of the BCBL in large-scale applications.
4.4 Future research

The results of this study demonstrated that the multisource

remote sensing fusion method effectively integrated complementary

information from various data types, thereby enhancing yield

estimation accuracy (Figures 6, 7). This study primarily examined

the cumulative effect of county-level yields using remotely sensed

time-series data. Previous research has indicated that incorporating

soil properties and spatial information, such as elevation and latitude,

can potentially improve the model accuracy (Wang et al., 2020, 2023;

Tian et al., 2021). Future research should explore how the spatial and

temporal heterogeneity of remotely sensed data, including factors

such as topography and the location of neighboring counties, affects

yield data. Additionally, enriching feature dimensions could help

explain variations in yield across different ecosystems and further

improve yield estimation accuracy. A deeper understanding of the
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mechanisms underlying SIF can enhance the information available

for crop yield estimation. Liu et al. (2022) demonstrated that the

machine learning models incorporating SIF data achieved the highest

R² values than other remotely sensed variables like NDVI, EVI, and

NIRv (Liu et al., 2022). The SIF data used in this study were sourced

from the global daylight-induced chlorophyll fluorescence dataset

(0.05°, 1d) provided by Yao (2021). Future research can explore the

application of different SIF products, such as SIF-GPP, SIF-NPP, and

SIFyields, which are gaining attention for their potential to improve

crop productivity and yield estimates based on crop light-use

efficiency. Current satellite fluorescence detection platforms include

GOSAT (TANSO FTS), Sentinel-5P (TROPOMI), US OCO-2,

Japan’s GOSAT-2, and China’s TanSat. These platforms have

generated extensive fluorescence data, advancing research and

applications related to SIF. However, the coarse resolution of the

SIF data products used in this study limited field-scale research. In the

future, higher-resolution products (e.g., 300m FLEX) can be more

appropriate for regional crop growthmonitoring and yield prediction

at the farm level, offering stronger support for precision agriculture.
5 Conclusion

In this study, a BO-CNN-BiLSTM (BCBL) model was

developed to estimate the winter wheat yield in Henan Province

by combining remote sensing data (EVI, LAI, and SIF) with climate

data. The BCBL model outperformed the traditional RF, XGBoost,

and single LSTM models, achieving the highest yield estimation

accuracy with an R² of 0.81 and an RMSE of 616.99 kg/ha when

using the combination of TS+SIF+climate data. The BCBL model

demonstrated a strong generalization ability and stability in the

spatiotemporal distribution of yield estimation across different

years, with SIF data performing exceptionally well as a

supplement to traditional remote sensing data in various feature

combinations. The model successfully identified the critical fertility

period of winter wheat from mid-March to mid-May, achieving

stable yield estimation approximately 25 d before harvest. This deep

learning model based on multisource data fusion exhibited excellent

spatiotemporal accuracy in county-level yield estimation. In the

future, the BCBL model can be extended and validated in other

regions and for different crop types to explore its applicability and

limitations. Additionally, more remote sensing data sources, such as

soil moisture and surface temperature, can be incorporated to

enrich input features. To achieve true real-time application, this

model should be integrated with real-time remote sensing

monitoring systems, enabling dynamic monitoring of crop growth

processes and early warning capabilities, thereby providing more

timely support for agricultural production and decision-making.
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