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In the past, the use of remote sensing for winter wheat growthmonitoring mainly

relied on the relative growth assessment of a single vegetation index, such as

normalized Vegetation index (NDVI). This study advanced the methodology by

integrating field-measured data with Sentinel-2 data. In addition to NDVI, it

innovatively incorporated two parameters, aboveground biomass (AGB) and leaf

area index (LAI), for a more comprehensive relative growth assessment.

Furthermore, the study employed the agricultural production systems

simulator (APSIM) model to use LAI and AGB for absolute growth monitoring.

The results showed that the simulated LAI and AGB closely match the field-

measured values throughout the entire growth period of winter wheat under

various conditions (R2 > 0.9). For relative growth monitoring, NDVI showed

significant linear positive correlations (r > 0.74 and P< 0.05) with both LAI and

AGB simulated by the APSIM model. Overall, this research shows that LAI and

AGB obtained from the APSIM model provide a more detailed and accurate

approach to monitoring of winter wheat growth. This improved monitoring

capability can support effective land management arable and provide technical

guidance to advance precision agriculture practices.
KEYWORDS

winter wheat, vegetation index, remote sensing, growth monitoring, cultivated
land management
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1 Introduction

In recent years, global climate change and dramatic shifts in

land cover have posed significant challenges to the sustainable

agricultural development. The increasing risk of food shortages

has intensified global concerns about food security (Godfray et al.,

2010; Atzberger, 2013; Battude et al., 2016). Wheat, one of the three

staple grains, is cultivated worldwide. Its production, marketing,

processing and consumption are closely integrated into daily life

(Jiang et al., 2021). Providing over 20% of the energy needs for

nearly half of the world’s population, wheat is a critical food source

(Shiferaw et al., 2013). It is cultivated on approximately 30.7% of the

global cereal acreage, making it the most widely grown cereals,

surpassing corn, rice, and soybeans in cultivation area (Zhao et al.,

2018). Timely and accurate assessment of winter wheat growth

conditions and yield prediction are essential for shaping agricultural

policies, informing market strategies, and ensuring national food

security (Jin et al., 2018). As a result, crop growth monitoring is a

significant research area, with remote sensing and crop growth

simulation being particularly promising fields experiencing for

practical application.

Crop growth monitoring encompasses both relative and

absolute assessments, providing a scientific basis for monitoring

crop growth conditions and forecasting yield by examining various

growth parameters and their interrelationships (Wu et al., 2004; Xie

et al., 2019). Relative growth monitoring involves comparing the

current year’s growth with the same period from the previous year,

offering insights into how winter wheat growth compares over time

(Wu and Yan, 2002; Wu et al., 2004; Shi et al., 2015; Rao et al.,

2021). For example, Yin et al. employed multi-source data to

compare key growth stages across two years (Yin et al., 2021),

highlighting growth trends. Sun et al. leveraged the NDVI difference

model to analyze winter wheat growth patterns (Sun et al., 2020).

While remote sensing technology allows for broad, macro-level

monitoring of crop growth across years, it often lacks the detail

needed for within-crop changes (Huang et al., 2019; Lan et al., 2019;

Zhang et al., 2021). In contrast, absolute growth monitoring

provides a direct assessment of winter wheat’s growth status and

yield potential by measuring key growth indicators, such as LAI and

AGB (A and Xu, 2021; Chang et al., 2023; Wang et al., 2023d). This

method is well-suited for in-depth investigations of specific areas or

crop types. Although absolute growth monitoring can be highly

precise under experimental conditions, it requires substantial labor

and financial resources for extensive field data collection, rendering

it less feasible for large-scale monitoring efforts (Wang et al., 2022;

Ma et al., 2023). Most studies focus on relative growth monitoring

(Wu et al., 2017; Wang et al., 2023a; Zhu et al., 2023b), with fewer

integrating both relative and absolute growth methods to monitor

winter wheat growth.

Crop growth monitoring methods can be primarily categorized

into two types: remote sensing data-based methods and growth

model simulation-based methods. Remote sensing offers the ability

to periodically acquire extensive surface crop data, providing

quantitative assessments of crop growth on a regional scale
Frontiers in Plant Science 02
through appropriate inversion methods (Wang et al., 2023b;

Hong et al., 2024; Wang et al., 2024). In recent years, remote

sensing has been increasingly used for crop classification, nutrient

diagnosis, growth assessment, and disease monitoring, offering

valuable insights for agricultural management and market

decision-making. Compared to traditional information-gathering

methods, remote sensing offers distinct advantages in monitoring

and characterizing the physiological and biochemical parameters of

crops (Chen et al., 2016). Since the 1970s, remote sensing

techniques have been employed to monitor crop growth, and

today, the technology and methodologies for wheat growth

monitoring using satellite remote sensing data have become

increasingly advanced. Most wheat growth monitoring via remote

sensing primarily relies on the relationship between vegetation

indices and agricultural parameters to develop regression models.

However, this approach heavily depends on vegetation indices, with

limited uses of other growth monitoring parameters, such as LAI

and AGB (Luo et al., 2005; Yu et al., 2012; Su et al., 2019; Lu et al.,

2020). In contrast, crop growth models use mathematical models

to describe the growth and development of crops based on

weather, soil, crop variety characteristics, and crop management

practices. These models are grounded in principles of material

balance and energy conservation, leveraging computer technology

to systematically simulate key physiological processes such as

photosynthesis, respiration, and transpiration. By establishing

mathematical models to simulate crop growth at fixed time

intervals, these models offer a robust framework for space-time

analysis and continuity. Crop growth modeling can simulate the

dynamics of crop growth at a specific point scale and provide

mechanistic explanations for variations in crop growth and yield.

Currently, over 200 crop models are available globally, with some of

the most commonly used being the DSSAT, APSIM, and WOFOST

models. The DSSAT model is capable of simulating the growth

cycle, maturity process and yield formation of various crops (Yang

et al., 2012; Liu et al., 2013; Wang et al., 2023d). The WOFOST

(Zhuo et al., 2022a, b, 2023) model is recognized for its focus on soil

and climate conditions and its ability to operate under multiple

constraints. The APSIM (Briak and Kebede, 2021; He, 2022; Winn

et al., 2023) model is extensively utilized and validated, taking into

account factors such as soil quality, crop ecological processes, and

atmospheric conditions (Wang et al., 2007). Its comprehensive

approach makes it particularly suitable for assessing crop growth

under various management practices.

Given the limitations of relying solely on relative growth

monitoring—such as inadequate capture of detailed crop changes—

as well as the current reliance on vegetation indices in most winter

wheat monitoring studies, this research integrates the APSIM crop

model with Sentinel-2 data. By incorporating AGB and LAI alongside

NDVI, this study aims to provide a more comprehensive analysis

through relative and absolute growth monitoring. The goal is to

enable more detailed and accurate monitoring of winter wheat

growth, ensure timely detection of abnormal conditions, optimize

management and decision-making processes, ultimately enhancing

both ecological and economic outcomes.
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2 Materials and methods

2.1 Study areas

As shown in Figure 1, field experiments in our study were

conducted from 2021 to 2023 at the Precision Agriculture

Demonstration Base of the National Research Center for

Agricultural Information Technology, located in Xiaotangshan

Township, Changping District, Beijing, China. The region

experiences an average annual temperature ranging between 10

and 13 degrees Celsius, with average daily sunshine hours spanning

from 6 to 9 hours. Precipitation in the area is distributed unevenly

throughout the seasons. The experimental crop was winter wheat,

with a growth cycle commencing in late October and concluding

with the harvest in mid-June of the following year. The soil type

belongs to the widely distributed tidal soil in North China.
2.2 Field experiment design

The experiment was conducted out from 2021 to 2023 at the

experimental base in Xiaotangshan, Beijing, with an experimental field

area of 240 m×75 m. The experiment was set up in 12 plots, and the
Frontiers in Plant Science 03
specific plot distribution is shown in Figure 1. The test crop in the

2021-2022 test field is winter wheat (Jingdong 18), with a sowing depth

of 3 cm and a sowing row spacing of 16.7 cm. The sowing time is

October 11, 2021, and the harvest time is June 18, 2022. The seeding

rate was set to three treatments: normal sowing D1 (375kg/ha), 50%

seeding rate D2 (187.5kg/ha) and 75% seeding rate D3 (281.25kg/ha).

Two treatments of normal fertilization (N2) and normal fertilization

halved (N1) were used for fertilization. The normal fertilization (N2)

was based on the application of the base fertilizer phosphate fertilizer

diamine 450 kg/ha (containing N and P2O5 accounted for 18% and

46%, respectively) at the time of sowing, and the urea 240 kg/ha

(containing N accounted for 46%) was applied when the winter wheat

returned to green in the next year as a topdressing. The normal

fertilization amount was halved (N1) according to the application of

base fertilizer 225kg/ha phosphate diamine (including N and P2O5

accounted for 18% and 46%, respectively) at sowing, and urea 120 kg/

ha (including N accounted for 46%) was applied as topdressing when

winter wheat turned green in the next year. Five tillage methods were

adopted: no tillage (T0), subsoiling tillage (T1), plow tillage (T2),

rotation (T3) (plow tillage from 2021 to 2022, rotary tillage from

2022 to 2023) and rotary tillage (T4). Other field management

conditions were the same in each plot. The measured data

acquisition time for 2021-2022 is shown in Table 1.
TABLE 1 The collection time of measured data and image data from 2021 to 2023.

Data type Acquisition time Data type Acquisition time
Time interval between measured data

and Sentinel-2 image data(day)

2022/4/08 2022/4/04 4

2022/4/29 2022/5/02 3

Field measured data 2022/5/20 Sentinel-2 2022/5/22 2

2023/3/21 2023/3/18 3

2023/4/08 2023/4/07 1

2023/5/08 2023/5/07 1
FIGURE 1

Overview of the study area and field trial design in Beijing.
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The test crop was winter wheat (Jingdong 18) in the test field

from 2022 to 2023, with a sowing depth of 3 cm and a sowing row

spacing of 16.7 cm. The sowing time is October 10,2021, and the

harvest time is June 15,2022. The sowing amount and fertilization

design are the same as those in 2021-2022. In addition to rotation,

the same tillage methods as in 2021-2022 are adopted: no-tillage

(T0), subsoiling (T1), plow tillage (T2), rotation (T3) (plow tillage

in 2021-2022, rotary tillage in 2022-2023) and rotary tillage (T4).

The other field management conditions are the same in each plot.

The measured data collection time in 2022-2023 is shown

in Table 1.
2.3 Data acquisition

2.3.1 Field measured data
The precision of soil parameters directly influences the

predictive accuracy of crop growth models, as these parameters

are crucial determinants of crop growth and development. In this

study, five soil profile parameters were measured across depths of 0

to 20 cm, 20 to 40 cm, 40 to 60 cm, 60 to 80 cm, and 80 to 100 cm,

with initial soil water and nutrient values presented in Table 2. Soil

parameters and other relevant data for the study area were obtained

from the Xiaotangshan Experimental Base and related literature,

included measurements of saturated water content, wilting

coefficient, and field water holding capacity at various depths. The

saturated water content was determined by collecting soil samples

from different layers, placing them in containers, and gradually

adding water until the soil reached a fully saturated state—indicated

by the formation of a layer of free-flowing water on the soil surface.

At this point, the soil moisture content was recorded. The wilting

coefficient was obtained by place the soil samples in a greenhouse or

controlled climate chamber, allowing the soil to dry fully to the

permanent wilting point of the plant. The moisture content at this

stage represents the wilting coefficient for that specific depth. Field

capacity was determined by generating the soil moisture

characteristic curve using a measuring instrument and reading

the water content corresponding to the field water holding state

from the curve. Specific soil parameters are shown in Table 2.

In this study, two methods were employed to calculate and

collect LAI: the specific leaf weight method and LAI-2200. The

specific leaf weight method is particularly suitable for basic

scenarios and standard measurement conditions, while the LAI-

2200 is ideal for research and applications requiring higher accuracy
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and faster measurements. Both methods have their own advantages

in different application scenarios. LAI data were obtained by

measuring at five different locations within a 100 m2 plot using

the LAI-2200 device, with the average of these measurements

calculated to represent the LAI value for the plot. The leaf weight

method collects the winter wheat in an area of 0.5m×0.5m and takes

the sample of a certain area to randomly select a number of leaf

blades and then takes the leaf blades in the width of the narrower

more consistent place to cut the length of the small section of 2 or

3 cm. After that, get the width of the blade. Then the area can be

calculated. The leaves are dried and weighed. The specific

calculations are performed according to the following formula:

LAI =
W1 +W2

A ∗W1
∗ S ∗m (1)

where A is the total sample area, m is the number of plants or

tillers, S is the selected small part of the sample area, W1 is the

quality of the selected small part of the sample after drying, andW2

is the quality of the remaining green leaves after drying.

The collection step of aboveground biomass is to select 20

winter wheat plants with uniform growth in the measurement

range, separate different plants according to organs (stems, leaves,

ears), kill them at 105°C for 30 min, and dry them at 85°C to

constant weight. The organs are weighed separately, and the sum is

the dry matter weight of the plant, which is recorded as the dry

weight of the aboveground part of the plant, and the dry biomass

per unit land area is calculated according to the density.

2.3.2 Meteorological data
As shown in Figure 2, APSIM models rely on meteorological

data as the basic input for their operation, which include daily

average temperature and daily radiation. The climate data of the

Xiaotangshan area are derived from the meteorological products

provided by the European Centre for Medium-Range Weather

Forecasts (https://cds.climate.copernicus.eu/). The spatial

resolution is 0.25°×0.25°, and the time resolution is hourly. The

daily precipitation (mm), daily radiation (MJ/m2), daily maximum

temperature (°C), daily minimum temperature (°C), and daily

potential evaporation (mm) are input into the weather model.

2.3.3 Remote sensing data
This study uses Sentinel-2 data from the GEE cloud platform.

The Google Earth Engine (GEE) platform offers Sentinel-2 satellite

images in two product types, determined by the level of preprocessing
TABLE 2 Soil parameters.

Depth(cm)
Volume weight of soil

(g·cm-3)
Saturation capacity

(cm3·cm-3)
Wilting coefficient

(cm3·cm-3)
Field capacity
(cm3·cm-3)

0-20 1.32 0.48 0.10 0.34

20-40 1.43 0.46 0.12 0.33

40-60 1.43 0.46 0.13 0.32

60-80 2.04 0.47 0.15 0.31

80-100 1.93 0.47 0.14 0.31
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applied. Compared with TOA data, SR data have better data

consistency and stability in time series. Given the revisit cycle,

images were chosen to align as closely as possible with the timing

of the field-measured data collection. The acquisition times for both

the field measured data and the image data are presented in Table 1.
2.4 APSIM model and calibration

APSIM is a mechanism model that uses a general growth process

to simulate the development and growth of crops (Huang et al., 2018;

Zhu et al., 2023a). The model integrates various sub-modules—

including crop, soil, management, and meteorology—into a

modular framework, with meteorological data, crop data, soil data,

and field management practices input into their respective sub-

modules. Meteorological data, including precipitation, radiation,

maximum and minimum temperatures, and potential evaporation,

are used to drive the model, and assess crop responses and

adaptations to climate change. Crop growth data encompass the

phenological development of crops, such as growth stage scales,

accumulated temperature calculations, and photosynthesis

algorithms, and help the model simulate the entire crop life cycle

from sowing to harvest. Soil data, which include the physical and

chemical properties of the soil, are crucial for simulating root growth

as well as water and nutrient uptake. Field management data, such as

sowing time, sowing density, and fertilizer application, this allows the

model to analyze the potential impacts of various management

strategies on crop growth and yield.

The model must go through a series of debugging and

calibration before application (Liu et al., 2023). Therefore, this

study selected the data from 2021-2022 to calibrate the model,
Frontiers in Plant Science 05
and verified the model through the data from 2022-2023. In the

model calibration, this study went through the following steps. First,

basic data such as meteorology, soil, and field management were

input to run the model. Secondly, the LAI and AGB and other

simulation results of the model operation were compared with the

measured data, and the trial and error method, which is currently

more common in model calibration, was used to gradually adjust

the sensitive parameters until the measured data of different test

schemes matched the simulation results (Liang et al., 2016; Chen

et al., 2019; Jin et al., 2021; Wang et al., 2023c). Finally, the

parameter values were determined to complete the model

calibration. Regarding the selection of sensitive parameters,

because the sensitive parameters of models in different climate

regions are different, this study selected literature with the same or

similar distance to the experimental area, and selected parameters

that have a greater impact on the model results from the literature.

Based on this standard, sensitive parameters were selected, and

finally 5 crop parameters that are more sensitive to leaf area index

and aboveground biomass were selected (Liu et al., 2011; He and

Zhao, 2015; Xing et al., 2017b; Zhang et al., 2023). As shown

in Table 3.
2.5 Method

2.5.1 Absolute growth monitoring of winter
wheat based on APSIM model

The accuracy of LAI and AGB of winter wheat simulated by the

APSIM model was assessed through comparing the simulated values

against the measured values. The determination coefficient (R2), root

mean square error (RMSE) and normalized root mean square error
FIGURE 2

Technical route.
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(NRMSE) were used as the evaluation criteria for the growth results,

calculated using Equations 2-4. The absolute growth range of LAI and

AGB was compared across four key growth periods. In this paper, the

specific growth periods of winter wheat, as determined by both

domestic and international literature and experience, are presented in

Table 4. The key growth stages selected for the relative growth study

include regreening, heading, flowering, and filling. The technical route

of this study is shown in Figure 2.

R2 =
o
n

i=1
(Xi − X

−
)2(Yi − Y

−
)2

no
n

i=1
(Xi − X

−
)2o

n

i=1
(Yi − Y

−
)2

(2)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(Yi − Xi)

2

n

vuuut
(3)

NRMSE =
RMSE

X
− � 100% (4)

where n denotes the number of samples, Xi, X
−
, Yi, Y

−
represent

the actual observation data, the actual observation data mean, the

model’s prediction data, and the model prediction data

mean, respectively.

2.5.2 Relative growth monitoring of winter wheat
based on APSIM model combined with remote
sensing data

To study the relative growth of crops, vegetation indices provide

crucial information for monitoring crop growth dynamics.

Common vegetation indices include RVI (Gonenc et al., 2019),

NDVI (Huang et al., 2021), DVI (Gunathilaka, 2021), and EVI

(Shammi and Meng, 2021), etc. Of these, NDVI is the most widely

used index for assessing vegetation conditions, as it is particularly

sensitive to the growth status of vegetation and can directly reflect
Frontiers in Plant Science 06
its health. The NDVI calculation formula is as follows:

NDVI =
NIR − R
NIR + R

(5)

where NIR corresponds to the B8 band of the Sentinel-2 data,

and R corresponds to the B4 band of the Sentinel-2 data.

In this paper, Sentinel-2 data is used to monitor the relative

growth of winter wheat by using NDVI and APSIM models. We

analyzed the correlation between NDVI, LAI, and AGB using

Pearson’s correlation coefficient. NDVI data for six periods from

2021 to 2023 were obtained from the study area. For each of the

three periods in 2022, the corresponding NDVI data from 2023

were subtracted and then divided by the 2022 NDVI data to

calculate nine sets of NDVI percentage differences. In addition,

the same method was used to calculate the difference percentage

data between LAI and AGB output by APSIM model respectively

The calculation method is shown in Formula 6. Pearson correlation

analysis was then performed using the NDVI percentage difference

data along with the percentage difference data for LAI and AGB.

Through the Pearson correlation coefficient and P-value, the trends

in relative growth in the study area were analyzed. Pearson’s

correlation coefficient was calculated as shown in Equation 7.

Xpercentage data = 1 −
2023Xb

2022Xa
(6)

Where X represents NDVI, LAI, or AGB, a represents the three

measured data dates in 2022, and b represents the three measured

data dates in 2023.

r =
o
n

i=1
(Xi − X

−
)(Yi − Y

−
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
n

i=1
(Xi − X

−
)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(Yi − Y

−
)2

s (7)

where Xi represents the value of remote sensing NDVI of the ith

sample, X
−
is the average value of remote sensing NDVI sample, Yi is
TABLE 4 Key growth period of winter wheat.

Item
Phenological phase

Emergence Tillering Wintering Regreening Jointing Booting Heading Flowering Filling Maturity

2022/2023 10/16 11/2 1/4 3/18 4/13 4/25 5/5 5/15 5/26 6/10
fron
TABLE 3 Parameters after calibration.

Crop Parameter Lower bound Upper bound Initial Settings
Parameters after

calibration

vern_sens 0 5 1.5 3.1

photop_sens 0 5 3.0 3.5

Wheat Startgf_to_mat(°C/d) 200 900 580 550

Potential_grain_filling_rate(mg/d) 0.001 0.005 0.0027 0.0029

grains_per_gram_stem(grain/d) 10 40 27.6 29.5

max_grain_size(g) 0.02 0.06 0.048 0.046
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the model simulation value of LAI or AGB of sample i, Y
−
is the

average value of LAI or AGB model simulation, n is the number

of samples.

After calculating the correlation coefficient r, it needs to be

tested whether it is statistically significant, i.e., whether it is

significant or not, and its formula is shown in (8). Consult the t

distribution to determine the corresponding P value.

t =
r

ffiffiffiffiffiffiffiffiffiffi
n − 2

pffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p (8)
3 Results

3.1 Absolute growth monitoring of winter
wheat based on LAI and AGB model
simulation data

3.1.1 Absolute growth monitoring of winter
wheat based on LAI model simulation data

Figure 3 shows the dynamic change changes in LAI as the

growth index under varying fertilization, sowing, and tillage

treatments during in 2021-2022 and 2022-2023 growing seasons.

In this study, experimental data from the 2021 to 2022 winter wheat

season were used to calibrate the model parameters, while data from

the 2022 to 2023 season were employed for model validation. The

analysis focused on the LAI growth of winter wheat in

Xiaotangshan from 2021 to 2023. As the winter wheat growth

period progressed, the LAI remained relatively stable during the

overwintering phase. After regreening (about 170 d), winter wheat

entered a phase of rapid growth, with LAI peaking towards the end

of the growth period (210 d). Following the filling stage, LAI began

to decline, approaching zero by the end of the filling period (about

250 d). Although the LAI values in different periods are different

under different fertilization rates, seeding rates, and tillage methods,

they all have a common growth trend, from regreening to maturity,

LAI showed a parabolic trend. From the results of absolute growth

monitoring in 2021-2023: (1) Other conditions are consistent,

under different fertilization conditions. N2 (normal fertilizer rate)

had relatively higher LAI and better growth, and halving the

fertilizer rate resulted in relatively smaller leaf area of winter

wheat plants, with a reduction of 0.12 to 1.08 in the peak LAI of

the model simulation. (2) Other conditions are the same, under

different seeding rates. From 2021 to 2022, D1 (normal seeding rate)

grew better than D2 (50% seeding rate), and LAI was higher.

However, when the fertilizer was halved, from 2021 to 2022, D3

(75% seeding rate) grew better than D1 (normal seeding rate) and

D2 (50% seeding rate), and from 2022 to 2023, D3 (75% seeding

rate) and D1 (normal seeding rate) grew similarly. The reason may

be that the appropriate reduction of seeding rate leads to the

improvement of light and nutrient utilization efficiency and thus

promotes growth. (3) Other conditions are the same, under

different tillage methods, the LAI of winter wheat in 2021-2022

shows T1 > T4 > T2 > T3, and the LAI of winter wheat in 2022-2023
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shows T1 > T3 > T4 > T2. Subsoiling tillage showed better growth

results than other tillage methods. From 2021 to 2022, the

determination coefficient R2 for growth results using LAI as the

growth index under different tillage, fertilization, and sowing

treatments ranged from 0.85 to 0.98, with RMSE values between

0.02 and 0.51, and NRMSE values ranging from 1.1% to 18.3%.

From 2022 to 2023, the R2 values ranged from 0.92 to 0.98, RMSE

from 0.03 to 0.22, and NRMSE from 1.4% to 15%. The meaning of

the field number is shown in Table 5.

As shown in Figure 4, the accuracy results of absolute growth

monitoring with LAI as the growth index were given under different

fertilization rates, seeding rates, and tillage methods in 2021-2023.

The R2 of simulated LAI in 2021-2023 was 0.943, and the simulated

LAI was in good agreement with the measured LAI. The RMSE was

0.291, and the NRMSE was 12.9%.

3.1.2 Absolute growth monitoring of winter
wheat based on AGB model simulation data

As shown in Figure 5, the dynamic change results of AGB under

different fertilization, seeding amount and tillage methods in 2021-

2022 and 2022-2023. Throughout the winter wheat growth period,

the APSIMmodel simulated a general upward trend in AGB, with the

growth rate significantly accelerating after the regreening period

(about 175 d). The growth rate peaked near the end of the growth

period (about 210d), after which it gradually slowed, with biomass

accumulation ceasing by the end of the filling stage (about 250 d).

2021-2023, from the results of absolute growth monitoring: (1) Other

conditions are consistent, under different fertilization conditions.

From 2021 to 2022, the AGB of N2 (normal fertilization) was

relatively high and the growth was better. The reason may be that

the halving of fertilization amount makes the imbalance of nutrient

supply and demand of winter wheat plants and the chlorophyll

content of leaves decrease, and the photosynthesis ability decreases,

thereby reducing the accumulation of AGB. (2) Other conditions are

the same, under different seeding rates. From 2021 to 2022, D1

(normal seeding rate) grew better than D2 (50% seeding rate), but

from 2021 to 2023, D3 (75% seeding rate) grew better than D1

(normal seeding rate). (3) Other conditions are the same, under

different tillage methods. The AGB of winter wheat in 2021-2022

showed T1 > T4 > T2 > T3, and the AGB of winter wheat in 2022-

2023 showed T1 > T3 > T2 > T4. Subsoiling tillage showed better

growth results than other tillage methods. From 2021 to 2022, the

determination coefficient R2 for growth results using AGB as the

growth index under different tillage, fertilization, and sowing

treatments ranged from 0.85 to 0.95, with RMSE values between

0.18 t/ha to 1.75 t/ha, and NRMSE values ranging from 1% to 35.6%.

From 2022 to 2023, the R2 values ranged from 0.9 to 0.97, RMSE

from 0.15 t/ha to 0.75 t/ha, and NRMSE from 3% to 9%.

As shown in Figure 6, the absolute growth monitoring accuracy

results using AGB as growth index under different fertilization,

seeding and tillage methods from 2021 to 2023 were presented. The

R2 of the simulated AGB in 2021-2023 is 0.907, and the simulated

AGB is in good agreement with the measured AGB. The RMSE is

0.872 t/ha, and the NRMSE is 20.9%.
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3.1.3 Comparison of the absolute growth results
of LAI and AGB in the key growth period of
winter wheat simulated by the model

As shown in Figure 7, this study compared the variation in LAI

and AGB across four key growth stages of winter wheat—

regreening, heading, flowering, and filling—over two years and 12

different treatments, using simulations from the APSIM model. The

results showed that the changes of LAI and AGB parameters

simulated by APSIM model were roughly the same under

different treatments in the key growth period of winter wheat.

Except for T2D1N2 (normal sowing, plow tillage, and normal

fertilization) at the winter wheat regreening stage in 2021-2022

and T0D3N2 (no-tillage, normal sowing, and normal fertilization)
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at the tasseling, flowering, and irrigating stages of winter wheat in

2022-2023, which did not have the same trend as the neighboring

treatments, other treatments showed the results of the same trend of

change. The reason for the inconsistent trend of the former may be

that winter wheat adjusts its growth to adapt to the environment.

Under sufficient fertilization conditions, winter wheat may

prioritize root development over leaf growth to adjust to potential

nutrient changes. The reason for the inconsistent trend of the latter

may be that subsoiling tillage improves soil physical and chemical

properties. In contrast, no-tillage may cause soil compaction,

hindering root growth and leaf expansion of winter wheat.

During key growth stages like heading, flowering, and filling,

winter wheat is more sensitive to environmental conditions,
FIGURE 3

(A) Absolute growth monitoring of winter wheat LAI simulated by APSIM model under different tillage methods, fertilization and sowing treatments
from 2021 to 2022; (B) Absolute growth monitoring of winter wheat LAI simulated by APSIM model under different tillage methods, fertilization and
sowing treatments from 2022 to 2023. The curve represents the simulated value, and the point represents the measured value.
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making the differences more pronounced. From the perspective of

different key growth periods, the regreening stage is characterized

by relatively slow growth and recovery due to low temperatures and

other limiting factors, resulting in minimal accumulation of LAI

and AGB. Consequently, the changes during the regreening period

are less noticeable compared to other key growth stages, making it

less suitable for distinguishing the effects of different treatments on

winter wheat growth.
3.2 Relative growth monitoring of winter
wheat based on the combination of model
simulation parameters and remote sensing
inversion parameters

3.2.1 Trend consistency analysis of LAI and NDVI
winter wheat relative growth monitoring by
remote sensing

As shown in Figure 8, Sentinel-2 data were selected to calculate

the NDVI percentage data and LAI percentage data from 2021-2023

in the research area through GEE platform. These two sets of data

were then fitted according to different fertilization rates, seeding

rates, and tillage methods to monitor and analyze relative growth.

The remote sensing NDVI data from 2021 to 2023 and the

simulated LAI data were used as growth indicators for data

fitting, and the Pearson correlation analysis was performed. The

correlation coefficient r value ranged from 0.759 to 0.948. In the

case of T4D1N2, the correlation between LAI percentage data and

NDVI percentage data was the best, showing a strong correlation of

0.949 (p< 0.001), and T2D1N2 was the worst, showing a strong

correlation of 0.759 (p< 0.05). Meanwhile, in terms of significance,

except for T2D1N2 and T0D3N1, which showed significance (p<

0.05), all other cases showed highly significant (p< 0.01). Overall,

the linear correlation between the two variables was significant,

except for T2D1N2 and T0D3N1 which showed a strong

correlation, all other cases showed a very strong correlation, all of

them had strong linear positive correlation, indicating that it can

well reflect the link between LAI and NDVI, and that the fitted
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correlation between the data in the different cases was better and all

of them were significantly positively correlated (p< 0.05).

As shown in Figure 9, the correlation coefficient r value of the

model simulated LAI percentage data and NDVI percentage data in

2021-2023 was 0.818 (p< 0.001), and the simulated LAI percentage

data showed a highly significant positive correlation with the NDVI

percentage data. In addition, the percentages of NDVI and LAI

data, both greater than 0, accounted for about 82%, which suggests

that winter wheat growth conditions in 2022 are better than those

in 2023.

3.2.2 Trend consistency analysis of AGB and
NDVI remote sensing monitoring of relative
growth of winter wheat

Using the Sentinel-2 data of GEE platform, NDVI percentage

data and AGB percentage data from 2021-2023 in the study area

were calculated. These two sets of data were then fitted according to

different fertilizer application rates, seeding rates, and tillage
FIGURE 4

Evaluation of LAI growth accuracy from 2021 to 2023.
TABLE 5 The specific meaning of field number.

The
plot number

Processing mode
The

plot number
Processing mode

T0D1N2
No-tillage, normal sowing rate, normal

fertilization rate T1D1N1
Subsoiling tillage, normal sowing rate, half of the amount

of fertilizer

T0D2N2
No-tillage, 50% seeding rate, normal fertilizer rate

T1D1N2
Subsoiling tillage, normal sowing rate, normal

fertilization rate

T0D3N2 No-tillage, 75% seeding rate, normal fertilizer rate T2D1N1 Plow tillage, normal seeding rate, half the amount of fertilizer

T0D1N1
No-tillage, normal sowing rate, half of the amount

of fertilizer T2D1N2
Plow tillage, normal sowing amount, normal

fertilization amount

T0D2N1
No-tillage, 50% seeding rate, half of the amount

of fertilizer T3D1N2
Rotation tillage, normal sowing rate, normal fertilization rate

T0D3N1
No-tillage, 75% seeding rate, half of the amount

of fertilizer T4D1N2
Rotary tillage, normal sowing rate, normal fertilization rate
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practices to perform relative growth monitoring. As shown in

Figure 10. The NDVI data based on the remote sensing and

model simulated AGB data from 2021-2023 were fitted to the

data as a growth indicator, and Pearson correlation analysis was

performed, and the r values ranged from 0.741 to 0.927, and the

correlation between the data in different cases was good and all of

them showed a positive correlation. The best correlation between

the AGB percentage data and the NDVI percentage data was found

in the case of T4D1N2, which showed a very strong correlation of

0.927 (p< 0.001), and the worst in the case of T2D1N1, which

showed a strong correlation of 0.741 (p< 0.05). Meanwhile, in terms
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of significance, all cases showed highly significant differences (p<

0.01) except for T2D1N1 and T0D3N1, which showed significant

differences (p< 0.05).

As shown in Figure 11, the correlation coefficient r value was

0.808 (P< 0.001) for the simulated AGB difference percentage data

and NDVI difference percentage data in 2021-2023, and these data

showed highly significant positive correlation. Moreover, the

percentage data for which the difference between NDVI and AGB

is greater than 0 accounts for about 80%, the AGB results also

indicate that the growth conditions for winter wheat in 2022 are

better than those in 2023.
FIGURE 5

(A) Absolute growth monitoring of winter wheat AGB simulated by APSIM model under different tillage methods, fertilization and sowing treatments
from 2021 to 2022; (B) Absolute growth monitoring of winter wheat AGB simulated by APSIM model under different tillage methods, fertilization and
sowing treatments from 2022 to 2023. The curve represents the simulated value, and the point represents the measured value.
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4 Discussion

4.1 The role of APSIM model in monitoring
the growth of winter wheat under different
treatments and optimizing
field management

Crop model can dynamically monitor the growth process of

crops (Ren et al., 2011; Xing et al., 2017a). This study shows that the

APSIM model shows significant application prospects for

monitoring the growth dynamics of winter wheat. In this study,

the growth curves of LAI and AGB of winter wheat were obtained.

From the LAI growth curve, we can observe that after the wintering

period, as the temperature increases, the plants start to grow

rapidly, necessitating a significant amount of nutrients and water.

Providing appropriate nutrients from the regreening stage to the

jointing stage will greatly benefit the growth of winter wheat. Zhao

et al. found that the change in NDVI during these two periods was
FIGURE 6

Evaluation of AGB growth accuracy from 2021 to 2023.
FIGURE 7

APSIM model simulates the changes in LAI and AGB of winter wheat in four key growth periods of 2021-2022 (A–D) and 2022-2023 (E–H) under
different treatments.
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relatively large when extracting winter wheat area by NDVI, so they

also put forward this view (Zhao et al., 2011). As LAI started to

decline, while AGB continued to increase, it was observed that the

growth rate slowed down. This suggests that the leaves of winter

wheat are approaching saturation, more energy is being directed

towards grain formation, and the photosynthetic efficiency is

relatively reduced.
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In the analysis of different tillage practices, fertilization, and

sowing treatments by using the APSIM model, when two gradients

of fertilizer application were applied in this study, we found that

other conditions were consistent while different fertilizer

application rates were applied, the different treatments showed

better growth at the normal fertilizer application rate than at the

halved fertilizer application rate, which indicated that the reduction

of fertilizer application rate in certain cases had a negative impact

on the growth and development of the crop, and that the

subsequent study could increase the fertilizer application gradient

to determine the optimum fertilizer application rate. Among the

treatments with the same other conditions but different sowing

rates, 75% of the sowing rate in some treatments of LAI and AGB

showed better growth than the other sowing rates, indicating that

appropriate reduction in sowing rate can promote wheat growth.

When studying the effect of sowing density on the growth and yield

of wheat, Xiao et al. found that reducing the sowing rate could

stimulate wheat plants to produce more tillers and secondary roots,

and promote an increase in plant height, suggesting that

appropriate growth density can utilize the available resources,

such as sunlight, water, and nutrients, in a more efficient manner

(Xiao et al., 2021). Among the treatments with the same other

conditions but different tillage methods, the growth of winter wheat

was relatively better under deep loosening tillage treatment, and the

related research of Feng et al. showed that compared with different

tillage methods, subsoiling tillage could significantly increase the

organic carbon content in the topsoil and enhance the water
FIGURE 9

Relative growth analysis of NDVI and LAI from 2021 to 2023. Where
“**” indicates the significance test result.
FIGURE 8

Analysis of NDVI and LAI growth in the study area under different tillage methods, fertilization and sowing treatments from 2021 to 2023. Among
them, * indicates significance and ** indicates extremely high significance.
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holding capacity of the soil, which might be the reason for

promoting the growth of winter wheat (Feng et al., 2018). The

growth curves of LAI and AGB in different years and under

different treatments showed that the growth curves of LAI and

AGB in subsoiling tillage, normal sowing, and normal fertilization
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were better than those in other treatments, and the growth trends of

LAI and AGB were significantly greater than those in other

treatments, indicating that this treatment may provide more

optimized growth conditions, including soil looseness and

nutrient supply, etc. these treatments improved the growth

environment of plants. Therefore, the most suitable field

management methods for winter wheat in these 12 cases are

subsoiling tillage, normal sowing, and normal fertilization.
4.2 Analysis of correlation results between
model simulation parameters and remote
sensing inversion parameters

Compared with previous growth monitoring, relative growth

remote sensing monitoring relies largely on vegetation indices such

as NDVI (Su et al., 2019; Lu et al., 2020) and rarely incorporates

other variables. In this study, in addition to NDVI, LAI and AGB

are closely related to the growth of winter wheat and are added for

trend consistency analysis and are used to comprehensively evaluate

the crop’s growth status and changes in the growth status from

different perspectives (Zheng et al., 2017; Qin et al., 2022). The

comparison between NDVI extracted by Sentinel-2 data with 10m

spatial resolution and LAI and AGB data simulated by the model

showed that the correlation coefficient r value exceeded 0.74,

indicating a positive correlation between LAI and AGB data
FIGURE 11

Relative growth analysis of NDVI and AGB from 2021 to 2023.
Where “**” indicates the significance test result.
FIGURE 10

Analysis of NDVI and AGB growth in the study area under different tillage methods, fertilization and sowing treatments from 2021 to 2023. Where “*”
and “**” represent significant and extremely significant difference results respectively.
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simulated by NDVI and APSIM models. This is consistent with the

obvious positive correlation between NDVI and LAI in different

growth periods of winter wheat proposed by Liang et al. (2013) in

the inversion of LAI, and the obvious correlation between above-

ground biomass and NDVI in the main growth period of winter

wheat proposed by Hansen and Schjoerring (2003) in the relevant

study. It means that with the increase or decrease of NDVI, LAI and

AGB will also increase or decrease to a certain extent.

From the growth consistency results of LAI and AGB and NDVI

respectively, the three cases of T1D1N2, T3D1N2, and T4D1N2

showed extremely strong correlation (r > 0.9) in LAI and NDVI and

AGB and NDVI, and the worst correlation was also the same both for

T2D1N1, which also showed strong correlation. In terms of

significance, except for T2D1N2 and T0D3N1, which showed

significance (p< 0.05), all other cases showed highly significant (p<

0.01), and the results showed significant correlation, which indicated

that correlations due to random factors could be excluded, such as

climatic conditions, human activities, and equipment. And it was found

that NDVI, AGB and LAI difference percentage data were all greater

than 0 accounted for more than 80%, indicating that winter wheat in

2022 under different scenarios grew better than them in 2023. In terms

of LAI and AGB structural characteristics, LAI directly reflects the

degree of leaf cover and leaf area, leaf density and leaf arrangement of

winter wheat plants (Lu et al., 2005), while AGB reflects winter wheat

biomass accumulation and plant height, stem thickness, branching

status and spike size (Guo et al., 2023). From the results and the

structural characteristics of LAI and AGB, the LAI and AGB simulated

by the APSIM model can better reflect the growth condition of winter

wheat, which is more reliable than relying on NDVI only for relative

growth monitoring.
4.3 Limitations of APSIM model in winter
wheat growth monitoring

From the results of absolute growth of LAI simulated by the

APSIMmodel, the growth simulated during the regreening period was

more accurate, but the results of the simulation in the later part of the

growth period were on the high side, which may be due to the

inaccurate estimation of the model for the process of the decay of

the leaf area in the later part of the growth period, or the possible

existence of errors and uncertainties in the measured data, for example,

due to errors caused by the measurement method, equipment, or

sampling errors (Wang and Wang, 2015). In the later research,

parameter sensitivity analysis should be combined to determine

which parameters have the greatest impact on the accuracy of

simulation results. From the absolute growth results of AGB

simulated by APSIM model, it can be seen that at the end of the

growth period (about 210 d), some of the simulated values are low.

Whichmay be due to the failure of themodel to accurately simulate the

changes in soil moisture and nutrients and their effects on plant

growth, and the simulated biomass may be low, especially in the

final stages of crop growth, the supply of water and nutrients has an

important impact on plant biomass accumulation (Guo et al., 2016). In

later studies, a more precise division of the growth stages in the model

is needed, and the model parameters are adjusted according to the
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characteristics and needs of each stage in order to better capture the

sensitivity to water and nutrients at the end of growth. Precision

agriculture and smart agriculture are the main development direction

of current and future agriculture (Zhao et al., 2021). In the next step,

based on the evaluation of the simulation results and the analysis of the

shortcomings, we can further improve the APSIM growth model,

especially in simulating the leaf area decaying process in the late growth

stage and the effects of soil moisture and nutrients on plant growth, or

extend the study to other crops or different environmental conditions

to verify the generalizability of the study results. This could help

agricultural producers and policy makers to understand the growth

requirements and optimal management strategies for different crops.
5 Conclusions

In this study, the APSIM model and Sentinel-2 data were used

to monitor both the relative and absolute growth of winter wheat

under various tillage methods, fertilization rates, and sowing

treatments. In terms of relative growth monitoring, absolute

growth was further validated using remote sensing data, and there

was a significant linear positive correlation between NDVI based on

the Sentinel-2 data and both LAI and AGB data derived from the

APSIM model (r>0.74, p<0.05). It was found that the best

correlation with NDVI data (r>0.9, p<0.001) was obtained in the

case of normal sowing, normal fertilizer application and rotary

tillage. In terms of absolute growth monitoring, the growth of

winter wheat was relatively poor in the area where the amount of

fertilizer was halved compared to the area with a standard amount

of fertilizer. Properly reducing the sowing rate can help to improve

the growth of winter wheat. In the case of only different tillage

methods, subsoiling tillage shows better growth than other tillage

methods. In this paper, compared with other treatments, the most

suitable management methods for winter wheat are subsoiling

tillage, normal sowing, and normal fertilization. The results

showed that the LAI and AGB indicators simulated by the

APSIM model could better reflect the growth condition of winter

wheat, and were more reliable than relying only on vegetation

indices such as NDVI for relative growth monitoring.
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