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A lightweight MHDI-DETR model
for detecting grape leaf diseases
Zilong Fu †, Lifeng Yin*†, Can Cui and Yi Wang

College of Rail Intelligent Engineering, Dalian Jiaotong University, Dalian, China
Accurate diagnosis of grape leaf diseases is critical in agricultural production, yet

existing detection techniques face challenges in achieving model lightweighting

while ensuring high accuracy. In this study, a real-time, end-to-end, lightweight

grape leaf disease detection model, MHDI-DETR, based on an improved RT-DETR

architecture, is presented to address these challenges. The original residual

backbone network was improved using the MobileNetv4 network, significantly

reducing the model’s computational requirements and complexity. Additionally, a

lightSFPN feature fusion structure is presented, combining the Hierarchical Scale

Feature Pyramid Network with the Dilated Reparam Block structure design from

the UniRepLKNet network. This structure is designed to overcome the challenges

of capturing complex high-level and subtle low-level features, and it uses Efficient

Local Attention to focus more efficiently on regions of interest, thereby enhancing

the model’s ability to detect complex targets while improving accuracy and

inference speed. Finally, the integration of GIou and Focaler-IoU into Focaler-

GIoU enhances detection accuracy and convergence speed for small targets by

focusing more effectively on both simple and difficult samples. The findings from

the experiments suggest that The MHDI-DETR model results in a 56% decrease in

parameters and a 49% reduction in floating-point operations, respectively,

compared with the RT-DETR model, in terms of accuracy, the model achieved

precision rates of 96.9%, 92.6%, and 72.5% for accuracy, mAP50, and mAP50:95,

respectively. Compared with the RT-DETR model, these represent improvements

of 1.9%, 1.2%, and 1.2%. Overall, the MHDI-DETR model surpasses the RT-DETR

and other mainstream detectionmodels in both detection accuracy and degree of

lightness, achieving dual optimization in efficiency and accuracy, and providing an

efficient technical solution for automated agricultural disease management.
KEYWORDS
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1 Introduction

Grapes are extensively grown across the globe and serve not only as a key ingredient in

wine production but also in the production of foods such as sultanas and jams, while being

rich in medicinal value Taskesenlioglu et al. (2022). However, grape growth is often

threatened by various diseases, with leaf diseases being among the most prevalent and

severe issues. Black measles disease, a serious condition that can lead to the weakening or
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death of grapevines Raynaldo et al. (2024). It affects not only the

foliage but also the fruit and vines, leading to substantial economic

losses. Black rot, a highly destructive disease in grape production,

spreads rapidly in humid conditions, perforating leaves and causing

fruit rot, which severely impacts grape yield and quality Szabó et al.

(2023). Leaf blight causes extensive dieback of grape leaves, severely

disrupting photosynthesis, which reduces grape yield and the

nutritional value of the fruit. Prolonged leaf blight decreases plant

resistance, making the grapevines more susceptible to other diseases

Liu et al. (2020). These diseases not only hinder the growth,

development, and yield of grapes but also directly impact their

quality and economic returns, resulting in significant losses and

challenges for the grape-growing industry Shantkumari and Uma

(2023). Traditionally, leaf disease detection has been dependent on

manual visual inspection, whereby farmers or professionals visually

assess leaves for signs of disease, such as spotting or discoloration

Arsenovic et al. (2019). However, this approach tends to be time-

consuming, labor-intensive, and costly, while being strongly

affected by subjective judgment, professional expertise, and

environmental conditions, leading to inconsistent and unreliable

diagnostic outcomes Khakimov et al. (2022). In large vineyards, the

efficiency and accuracy of manual inspection frequently fail to meet

practical demands, leading to the oversight or delayed control of

diseases, which, in turn, hinders the stable development of the

grape industry.

To address the limitations of traditional detection methods,

recent progress in areas such as computer vision, image processing,

and machine learning has drawn increasing attention to deep

learning-based detection approaches Kotwal et al. (2023).

Convolutional Neural Networks (CNNs) are a class of deep

learning models specifically designed to process grid-like data, such

as images. Spatial features, including edges and textures, are extracted

via convolutional layers. Li et al. (2021b) identified the shortcomings

of traditional image processing methods, highlighting the significant

advantages of deep learning, particularly convolutional neural

networks, for improving detection accuracy and efficiency. Unlike

traditional detection, which requires labor-intensive manual

observation of each leaf, intelligent detection methods powered by

deep learning can rapidly scan large numbers of leaves, enhancing

efficiency. However, despite these advantages, challenges remain in

model generalization and dataset diversity. Shoaib et al. (2023)

acknowledged the potential of deep learning techniques in

enhancing accuracy and speed in plant disease detection,

emphasizing the importance of early detection. Intelligent detection

methods can identify subtle symptoms that might otherwise go

unnoticed by traditional approaches, which often rely on the naked

eye and may miss early signs of disease. Zhu et al. (2021) introduced a

technique that integrates super-resolution image enhancement with

deep learning, utilizing bilinear interpolation. This method was

evaluated on both the Plant Village dataset and images collected

from orchards in the field, with experimental results showing

improvements of 5.94% in detection accuracy and 10.67% in recall.

By applying five data augmentation techniques to expand the image

dataset, Pandian et al. (2022) demonstrated that the Conv-5 DCNN

achieved an average classification accuracy of 98.41% on the test

dataset. These studies indicate that CNNs are especially suitable for
Frontiers in Plant Science 02
large-scale image recognition tasks due to their ability to

automatically learn hierarchical feature representations from raw

input data Younesi et al. (2024). Their flexibility and scalability

render them an optimal solution for plant disease detection in

diverse environmental conditions. However, CNNs struggle to

effectively capture global contextual information, and techniques

such as region suggestion networks and non-maximum

suppression, commonly used in target detection, may increase

computational burden Gong et al. (2021).

To overcome these difficulties, researchers have begun

exploring new model architectures, the most revolutionary of

which is the Transformer model. Dosovitskiy et al. (2020)

introduced the Vision Transformer (ViT), which utilizes the

Transformer framework for image processing. An image is

segmented into fixed-size patches, which are then linearly

embedded into a sequence that serves as input to a standard

Transformer encoder. Although this method accounts for global

image relationships and has shown promising outcomes in plant

disease recognition, it generally demands a substantial amount of

training data to attain higher accuracy. Li et al. (2023).

Consequently, combining the strengths of CNNs and

Transformers in plant disease detection to extract richer image

features has become a key research direction. The DEtection

TRansformer (DETR) model, developed by the Facebook team,

effectively processes target detection tasks by integrating CNN’s

local feature extraction with the Transformer’s global modeling

capability Carion et al. (2020). The integration of Transformers and

CNNs has been increasingly explored by scholars.For example, Lu

et al. (2022) employs the Ghost convolution module as the

backbone network for ViT, which first generates a small portion

of the primary feature maps and subsequently generates additional

feature maps through linear transformations. This approach

reduces the model’s parameter count and floating-point

operations (FLOPs), thereby lowering memory usage and

computational cost. The Ghost-convolution module effectively

reduced the computational requirements of the model while

maintaining an accuracy of up to 98.14% in the detection of

grape leaf diseases and insect pests. Yu et al. (2023) designed the

Inception convolution module, which significantly enriches

information and enhances ViT’s feature extraction capabilities,

conducting experiments on four different plant disease datasets

with highly accurate results. ViT has garnered growing attention in

the computer vision community, achieving promising results Han

et al. (2022); Islam (2022).

As CNNs and ViTs continue to advance in plant disease

recognition, accuracy is commonly enhanced by increasing the

number of model parameters Wu et al. (2021). However,

increasing the number of parameters introduces certain

drawbacks, including the necessity for more computational

resources during training and inference, as well as limitations in

real-time applications. Consequently, plant disease detection is

frequently conducted on mobile devices, including embedded

systems and smartphones, which encounter challenges such as

limited processing capacity, storage, and excessive power

consumption. For example, Gole et al. (2023) proposed the

lightweight visual transformer network TrIncNet, which achieves
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high accuracy while simultaneously reducing the number of

parameters by replacing the MLP module in ViT with an

Inception block and incorporating jump connections. This design

makes it particularly suitable for deployment on devices with

limited computational resources, significantly reducing both the

model’s computational complexity and energy consumption, thus

enabling real-time processing on mobile platforms. Similarly, Li

et al. (2021a) developed a lightweight RegNet-based method for

apple leaf disease recognition, achieving 99.23% accuracy on a

small, unbalanced dataset through transfer learning. By reducing

the model’s parameter count and focusing on more efficient feature

extraction methods, this approach demonstrates high compatibility

with low-power devices by reducing memory and processing load

without sacrificing accuracy. Li and Li (2022) further introduced the

ConvViT structure, merging CNN and Transformer architectures,

thereby reducing parameters and FLOPs to 32.7% and 21.7% of

those in Swin-Tiny, respectively. This makes ConvViT a practical

solution for devices with limited computational capacity while

maintaining competitive accuracy.

In general, the above models reduce the number of parameters

while maintaining a certain level of accuracy. However, models

deployed on mobile or embedded devices must be comprehensively

evaluated, particularly in agricultural settings, where there is an

increasing demand for low power consumption and low latency

under outdoor conditions. Additionally, the algorithms need to

exhibit stability to withstand external interferences, such as weather,

climate, and varying light conditions. These challenges call for a new

deep learning approach that balances efficiency, performance, and

external factors to better tackle grape leaf disease issues.This study

presents a lightweight method for grape leaf disease detection using an

enhanced RT-DETR framework Zhao et al. (2024) to tackle these

challenges. The key contributions of this paper are as follows:
Fron
1. The generic inverted bottleneck block structure from the

MobileNetv4 network is used to replace the residual blocks

in the original backbone, reducing computational load and

parameter sizes while preserving inference speed, making it

more suitable for resource-limited devices.

2. The dilated convolution from the UniRepLKNet network is

fused with the RepC3 module to form the DRBC3 module,

which replaces the original convolution block. This

modification reduces computational resource demands

while expanding the sensory field, significantly

accelerating inference speed.

3. A novel light-SFPN architecture is introduced by

integrating the Hierarchical Scale Feature Pyramid

Network with Efficient Local Attention and the DRBC3

module. This architecture enhances the detection capability

of small targets while maintaining low computational and

parametric requirements, improving inference speed and

model convergence.

4. Focaler-IoU is used to dynamically control the model’s

focus on difficult and simple samples, combined with GIoU

to form Focaler-GIoU. This loss function replaces the

original model’s GIoU, resulting in lower loss and faster

regression outcomes.
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5. A comprehensive evaluation of the grape leaf disease

dataset demonstrated that the proposed MHDIDETR

architecture surpasses the original RT-DETR framework

in both model efficiency and detection accuracy, while

delivering significantly improved results over other

detection models.
2 Materials and methods

2.1 Data processing

A total of 4,030 grape leaf samples were selected from the AI

Challenger 2018 crop disease dataset. Among them, the four

categories of samples, including black measles disease, black rot,

leaf blight, and healthy, were categorized as 1,368, 1,129, 1,059, and

473 samples, respectively. Considering the uneven distribution of

the samples, the healthy category was augmented to 995 samples

using data augmentation techniques, resulting in a total of 4,551

samples. In addition, all images were processed using Python scripts

to standardize the image size at 640×640 through bilinear cubic

interpolation, As shown in Supplementary Table S1 of the

Supplementary Materials.

The 4551 images are randomly partitioned into a training set, a

testing set, and a validation set in an 8:1:1 ratio. The sample size for

each category in each dataset is provided in Supplementary Table S2

of the Supplementary Materials.
2.2 Access to data and description of data

The AI Challenger 2018 crop disease dataset was manually

annotated with the LabelImg tool to guarantee precise identification

of each sample and enhance the model’s ability to learn broader

features, thereby improving its generalization to previously unseen

data, as illustrated in Figure 1. Following processing, four types of

samples were identified: black measles, black rot, leaf blight, and

healthy leaves. To improve the model’s robustness, the category of

healthy grape leaves was introduced, which presents several

advantages. First, the model can learn the features of healthy

grape leaves, allowing for more accurate differentiation between

healthy and diseased samples. Additionally, comparing healthy and

diseased samples enables the model to develop a deeper

understanding of infection characteristics, such as changes in

color, shape, and texture.
2.3 Model selection

RT-DETR Zhao et al. (2024), a novel real-time end-to-end

target detector, offers high accuracy and fast inference when

identifying a wide range of small diseases in grape leaves.

Additionally, its Transformer Jaderberg et al. (2015) architecture

enables the model to directly predict final bounding boxes and
frontiersin.org
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category scores without the need for additional post-processing to

filter or merge overlapping detection boxes. This architecture also

preserves the model’s stability.

In the RT-DETR target detection model, numerous backbone

networks are provided, including ResNet He et al. (2016), HGNet,

and several others. The ResNet-18 backbone network features a

leaner structure and lower complexity compared to other networks.

It is well-suited for deployment on resource-constrained devices

and grape leaf disease detection, with only a slight reduction in

accuracy compared to other models. This achieves a favorable

balance between accuracy and computational overhead.

Therefore, in this study, the ResNet-18 backbone network is

selected as the base model. The architecture first receives an input

image, which is processed by a convolutional neural network

composed of multiple residual blocks to extract key features.

Three different scales of high-level features (S3, S4, and S5) are

then extracted into the neck network through varying step sizes and

simultaneously serve as inputs to the hybrid encoder. Subsequently,

the advanced feature S5 is encoded by intra-scale feature interaction

(AIFI), while the processed S5, S3, and S4 enter the cross-scale

feature fusion module (CCFM) for multi-scale feature interaction,

where they are converted into sequential image features. Finally,

these features are passed into the decoder detection network, where

IoU-aware querying is employed to select a fixed number of image

features from the encoder output sequence as the initial object

query. Accurate prediction frames and confidence scores are then

obtained through iterative querying. Overall, the combination of

CNN and Transformer in RT-DETR presents significant potential

for improvement in object detection. The model architecture is

depicted in Figure 2.
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2.4 MHDI-DETR model structure

As target detection evolves, RT-DETR, a variant of DETR Zhu

et al. (2020), addresses the limitations of real-time detection when

compared to other models such as SSD Liu et al. (2016) and FLOPs

Jiang et al. (2022), maintaining both accuracy and detection speed.

Additionally, achieving a lightweight grape leaf disease detection

model under natural conditions with limited resources is

challenging. Thus, this study proposes the MHDI-DETR

architecture to optimally address these challenges. In this paper,

MobileNetv4 is employed as the backbone network, utilizing

Universal Inverted Bottleneck Blocks (UIB) Qin et al. (2024), which

significantly improves computational efficiency and operational

speed. The proposed DRBC3 structure is created by fusing the DRB

Ding et al. (2024) with the RepC3module, playing a crucial role in the

final stage of feeding the detection head. It uses a combination of

dilated and normal convolutions to obtain a more comprehensive

feature map by utilizing a larger receptive field while minimizing

parameter size. The proposed light-SFPN structure integrates the

Hierarchical Scale Feature Pyramid Network(HSFPN) structure from

Deformable Detr Chen et al. (2024) with the improved DRBC3

module and ELA Xu and Wan (2024) design, aiming to reduce

computational cost and inference latency while ensuring recognition

efficiency for small targets. By integrating GIoU Rezatofighi et al.

(2019) and Focaler-IoU Zhang and Zhang (2024) into Focaler-GIoU,

the model becomes more focused on difficult samples, enhancing

regression efficiency. A thorough evaluation shows that the MHDI-

DETRmodel surpasses the baseline RT-DETR and other mainstream

detection algorithms in balancing a lightweight design and accuracy.

Figure 3 presents the overall structure of the MHDI-DETR model.
FIGURE 1

Grape leaf disease example figure. (A) black measles. (B) black rot. (C) blight. (D) healthy.
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2.5 Backbone network improvements

The original ResNet-18 network backbone is unsuitable for

deployment on mobile devices with limited storage due to its

deeper network structure and higher number of parameters,

leading to increased computational complexity and larger models.

Thus, selecting a feature extraction backbone suitable for resource-

constrained devices is crucial. The ResNet-18 backbone is replaced

with MobileNetv4, utilizing its advanced UIB module alongside

ordinary convolution to provide more efficient spatial and channel

mixing capabilities. Figure 4 illustrates the backbone network utilized

for MHDI-DETR. The first three layers apply 3 × 3 convolutions with
Frontiers in Plant Science 05
a step size of 2 for feature extraction, where Layer1 and Layer2 are

paired with a 1 × 1 Pointwise Convolution to fuse information from

different channels. Deeper features are then extracted through the

UIB, while 3 × 3 and 5 × 5 DWConv are employed in Layer3 and

Layer4, respectively, to maintain a rich capture of spatial features

while progressively reducing the feature map resolution. In Layer3,

the 5 × 5 DWConv captures larger spatial features, which are further

refined by four consecutive 3 × 3 DWConvs with a step size of 1 and a

dilation rate of 2. In Layer4, a 3 × 3 DWConv is initially used for

feature extraction and downsampling, followed by another 3 × 3

DWConv to capture more global information without altering the

resolution. Finally, Layer5 outputs the final result for channel count
FIGURE 3

Improved RT-DETR network structure diagram(MHDI-DETR).
FIGURE 2

RT-DETR network structure diagram.
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adjustment. This module simplifies network design, enables network

structure adjustments at different stages, and facilitates its application

to grape leaf disease detection tasks. The correspondingmathematical

formula is expressed as follows Qin et al. (2024).

P(X) = X ∗K + b (1)

D(X) =  o
G

g=1
Xg ∗  Dg + b (2)

E(X) = P(X)⊗W   (3)

In Equation 1, assuming the input feature map is X, where ∗
represents the convolution operation, K is the convolution kernel,

and b is the bias term, the Pointwise Convolution is denoted as

P(X). In Equation 2, G represents the number of input channel

groupings, and Dg is the DWConv of the gth group. The Deep

Convolution operation is then expressed as D(X). In Equation 3,

E(X) increases the number of channels through Pointwise

Convolution, providing additional feature representations for

subsequent operations. Here, ⊗ denotes matrix multiplication,

and W represents the weight matrix.
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2.6 Applying dilated convolutional
reparameterisation blocks

It has been observed that using multiple branches during model

training accelerates the process, while employing a single branch

during inference reduces inference time Ding et al. (2021). Therefore,

the DilatedReparamBlock structure is fused with the RepC3 module

in the original neck network, forming the DRBC3 module, which

applies convolutions of the same size to achieve a larger receptive field

with reduced computational effort, thereby enhancing meaningful

feature extraction. Additionally, since dilated convolution adjusts the

receptive field size based on the dilation rate, it captures a wider

region of the input feature map without increasing the number of

parameters, allowing the model to focus on important local regions.

As illustrated in Figure 5, representing the DilatedReparamBlock

structure, during the training phase, the input feature map enters the

DRBC3 module, undergoing multiple convolution operations with

varying kernel sizes and dilation rates to process the input maps in

parallel. The outputs of each convolution are processed by BN and

ReLU6 activation functions, and the feature maps are summed

element-wise to fuse into a final feature map. Convolution kernels

with varying dilation rates extract different levels of information, and
FIGURE 5

The DRBC3 module.’Train’ represents the training phase, and ‘Detect’ represents the inference phase. The numbers following ‘dilation’ indicate
different dilation rates. By employing various dilation rates, the model can capture features at different scales. For instance, convolutional kernels
with dilation rates of 1, 2, and 3 capture local, intermediate, and long-range pixel relationships, respectively.
FIGURE 4

Improved lightweight backbone network diagram.
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the element-wise summation fuses this information, allowing the

model to utilize these features simultaneously, enhancing feature

representation and ensuring that all convolution outputs maintain

consistent spatial dimensions. During the detection phase, the scale

information carried by each branch is fused using the

reparameterization technique, significantly speeding up inference

and reducing model size. This technique simplifies the convolution

operations, improving computational efficiency during inference.

The output of the DRBC3 module is expressed as shown in

Equation 4, Ding et al. (2024).

y = BN ReLU6 (BN  (W ∗ x)) +o
n

i=1
ReLU6 (BN  (Wdilated,i ∗ x))

 !
(4)

kequivalent = (k − 1) r + 1 (5)

W 0 = convtranspose2d (W , I, stride = r) (6)

Where x represents the input, y represents the output, BN stands

for Batch Normalization, and ∗ denotes convolution. W represents

the standard convolutional weights, and W ∗ x denotes the

convolution operation on the input feature maps using a standard

convolution kernel to capture local features, which are subsequently

processed by BN and ReLU6 activation functions.Wdilated,i represents

the ith dilated convolution kernel, and Wdilated,i∗ x denotes the

convolution of the input feature maps using the dilated

convolution kernel, which expands the receptive field with varying

dilation rates, followed by BN and ReLU6 activation functions. The

output feature maps from different convolution operations are

summed element-wise, fusing the multi-scale, multi-receptive field

features. A uniform batch normalization is performed on the fused

final feature maps for the BN layer. To reduce computational

overhead during inference, a structural reparameterization method

is employed to equivalently convert multiple dilated convolution

kernels into a single large non-dilated convolution kernel. The

equivalent kernel size for the dilated convolution is expressed

in Equation 5, where k represents the kernel size and r denotes

the expansion rate. The equivalent transformation is shown in

Equation 6, where W denotes the dilation convolution and

I represents the unit convolution kernel of size 1 × 1. Substituting

the RepC3 module with the DRBC3 module boosts feature

extraction and enhances model performance while preserving

computational efficiency.
2.7 Improved neck feature fusion network

Although using the MobileNetv4 feature extraction backbone

significantly reduces model size and improves performance while

maintaining efficiency, there remains substantial room for

improvement in terms of computational cost and the number of

parameters for the CNN-based Cross-scale Feature-fusion Module

(CCFM). Furthermore, the CCFM is unable to prioritize features

from different layers, despite its ability to fuse them. Thus, we

incorporate the HS-FPN structure from Chen et al. (2024), the ELA

concept proposed in Xu and Wan (2024), and the idea of dilated
Frontiers in Plant Science 07
convolutional reparameterization from Ding et al. (2024) to design

the light-SFPN module. This module compensates for the CCFM’s

loss of small target information during convolution and

downsampling by employing a more flexible feature fusion

approach. This approach allows the model to adaptively select

features from different layers for fusion, enabling it to focus on

regions of interest and improve recognition accuracy. The structure

consists of a Feature Selection Module (FSM) and a Feature Fusion

Module (FFM). It was found that compared to the Channel

Attention (CA) used in the original HS-FPN, Efficient Local

Attention (ELA) improves computational efficiency without

sacrificing performance. Furthermore, unlike CA, ELA does not

require dimensionality reduction, allowing it to maintain the

channel dimensionality of the input feature map, thereby

retaining more feature information.
2.7.1 Efficient local attention module
As illustrated in Supplementary Figure S1 of the Supplementary

Materials, the ELA module specifically receives features from the

previous layer and applies Adaptive Average Pooling to compress

the feature map along both the height and width directions. Strip

Pooling along the height direction generates an average for each

horizontal position, producing a feature map that contains

horizontal coordinate information, as shown in Equation 7, where

zh(h) represents the global information embedding of the input

feature map x in the height dimension. Similarly, Strip Pooling

along the width direction generates an average for each vertical

position, forming a feature map containing vertical coordinate

information, as shown in Equation 8, where zw(w) represents the

global information embedding of the input feature map x across

the width. This process provides the necessary spatial context for

the subsequent 1D convolution. Next, these coordinate features are

processed by 1D convolution to enhance position-specific feature

responses and generate preliminary attention features for the

attention module. The coordinate feature maps processed through

1D convolution and group normalization are used to generate the

final attention weights yw and yh. s represents the Sigmoid function.

As shown in Equations 9, 10, these weights guide the network to

focus on important feature regions.

zh(h) =
1
H o

H−1

i=0
x (h, i) (7)

zw(w) =  
1
W o

W−1

j=0
x (j,  w) (8)

yh = s (GN  (Conv1D (zh))) (9)

yw = s (GN  (Conv1D (zw))) (10)
2.7.2 Light-SFPN feature fusion architecture
The FSM employs GAP (Global Average Pooling) to obtain the

processed feature maps favg and GMP (Global Max Pooling) to

derive the feature maps fmax, as shown in Equations 11, 12.
frontiersin.org
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favg = GAP (x) (11)

fmax = GMP (x) (12)

Next, the weights of each channel are calculated using the

Sigmoid activation function, as shown in Equation 13, where w

represents the weight, FC denotes the fully connected layer, and s
represents the Sigmoid activation function.

w = s (FC (favg) + FC (fmax)) (13)

The weight information is subsequently dot-multiplied with the

featuremap to generate a filtered featuremap, as shown in Equation 14.

ffiltered = x⊗w (14)

The FSM calculates the global average pooling and maximum

pooling of the feature maps to obtain the importance weights for

each channel, and then applies these weights to the original feature

maps to select the most important feature information. Next, the

weighted feature maps (p2–p5) filtered by ELA are input into the

FFM, which is used to fuse high-level features (rich in semantic

information but with imprecise localization) with low-level features

(with precise localization but limited semantic information).

Figure 6, Chen et al. (2024) illustrates this process.

The SFF module is a feature fusion technique designed to

enhance model performance by integrating high-level semantic

information with low-level detail information. The functioning of

the SFF module can be outlined in the following steps: First, the

high-level feature maps are resized to match the resolution of the

low-level feature maps using transposed convolution and bilinear

interpolation operations. Next, the high-level feature maps are used

as attention weights to guide the model’s focus toward important

regions of the low-level feature maps, enabling the model to

selectively emphasize areas in the low-level features that align

with the high-level features. Finally, using these attention weights,

the semantic information of the high-level features is combined

with the detailed information of the low-level features. This fusion

not only preserves the rich semantics of high-level features but also
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incorporates the fine texture and edge details of low-level features.

Figure 7 illustrates the SFF module within the light-

SFPN architecture.

Given an input high-level feature fhigh ∈ RC×H×W and an input

low-scale feature flow ∈ RC�H1�W1 , the high-level feature is initially

convolved with a step size of 2 and a kernel size of 3×3.

The transposed convolution is then extended to obtain fhigh∗ ∈
RC�2H�2W . Next, to align the resolution and dimensionality of the

high-level and low-scale features, the high-level features are

adjusted using Bilinear Interpolation, yielding fatt ∈ RC�H1�W1 .

This process is demonstrated in Equation 15, Chen et al. (2024).

fatt = BilinearInterpolation   (TransposedConvolution   (fhigh)) (15)

Next, the high-level features are converted into the

corresponding attention weights yh and yw using the ELA module

to filter the low-scale features and obtain features with the same

dimensionality. This process is illustrated in Equation 16.

ffiltered = flow ⊗ yh ⊗ yw (16)

Second, the filtered low-scale features ffiltered are fused with fatt to

obtain fout ∈ RC�H1�W1 , as shown in Equation 17.

fout = ffiltered + fatt (17)

Finally, fout is processed through the DRBC3 module to produce

the final feature map fDRB, as shown in Equation 18.

fDRB = DRBC3(fout) (18)
2.8 Improved loss function

The RT-DETR model utilizes GIoU to compute the bounding

box regression loss. While it addresses the issue of IoU’s gradient

vanishing when the two bounding boxes do not overlap, it may

converge more slowly when there is an imbalance between simple

and difficult samples, particularly when there is a significant
FIGURE 6

HS-FPN-ELA structure.
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difference in target sizes and shapes (e.g., small targets often

represent difficult samples). Focaler-IoU addresses this issue by

dynamically adjusting parameters, allowing the model to focus on

either difficult or simple samples, thereby improving detection

performance for specific sample types. Specifically, IoU loss is

reconstructed through linear interval mapping to focus on

different regression samples across various detection tasks.

Combining these techniques preserves GIoU’s localization

accuracy while enabling the model to focus on small target

samples, fully leveraging the strengths of both approaches. GIoU

resolves the issue of IoU’s gradient vanishing in cases of no overlap

by introducing a minimum enclosing frame that contains both the

predicted and ground-truth boxes, thereby improving localization

performance in target detection. The computation of GIoU and its

loss is shown in Equations 19, 20.

GIoU = IoU −
C   (A ∪ B)j j

Cj j (19)

LGIoU = 1 − GIoU (20)

IoU =
(A ∩ B)
(A ∪ B)

(21)

A and B represent the predicted boxes and the ground-truth

boxes, respectively, while C represents the smallest enclosing boxes

containing both A and B, and |·| denotes the area of the region. The

computation of the standard IoU, as shown in Equation 19, is

detailed in Equation 21.

IoUFocaler =

0, IoU < d

IoU−d
u−d , d ≤ IoU ≤ u

1, IoU < u

8>><
>>: (22)

LFocaler−GIoU = LGIoU + IoU − IoUFocaler (23)

To further enhance detection performance, the Focaler-GIoU

loss is introduced. Focaler-GIoU reconstructs the IoU through

linear interval mapping, allowing it to better focus on samples of

varying difficulty. As shown in Equation 22, d and u are tuning

parameters that control the range of samples to focus on. The

Focaler-GIoU loss is then calculated as shown in Equation 23.
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2.9 Evaluation indicators

Model performance improvements are comprehensively

evaluated based on three key metrics: precision, computational

complexity, and processing speed. Precision is evaluated using

precision rate (P), recall rate (R), and the mean average precision

(mAP) across all categories. Computational complexity is assessed

by floating-point operations (FLOP) and parameter counts

(Parameters), and processing speed is measured by frames per

second (FPS), representing the model’s inference speed, with FPS

computed based on the validation test set.

The accuracy metric evaluates the performance of the model’s

detection, where a true positive (TP) refers to the correct

identification of a positive case, a false positive (FP) refers to an

incorrect judgment of a positive case, a true negative (TN) refers to

the correct identification of a negative case, and a false negative

(FN) refers to an incorrect omission of a positive case. The accuracy

formula is provided in Equation 24. The following equations

present the formulas for AP and mAP, where higher values of

both metrics indicate better algorithm performance. P denotes the

precision rate, R denotes the recall rate.

precision =  
TP

TP + FP
(24)

Recall represents the proportion of actual targets that are

correctly detected by the model. A high recall rate indicates that

the model successfully identifies most positive samples and has a

reduced likelihood of missing detections. The formula for recall is

provided in Equation 25.

recall =  
TP

TP + FN
(25)

AP is a composite metric used to evaluate the performance of a

target detection model bymeasuring its ability to detect objects across

different thresholds. mAP offers a composite metric for evaluating the

model’s detection performance across all categories. A higher mAP

indicates better model performance in detecting all categories across

various thresholds. mAP integrates precision and recall, offering a

more complete assessment of the model’s performance. The mAP

calculation is shown in Equations 26, 27.

AP =
Z 1

0
P   (R) dR (26)
FIGURE 7

SFF module in light-SFPN.
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mAP =  
1
No

n

j=1
APj (27)

The model parameter count refers to the total number of

trainable parameters in the model. The number of parameters

directly impacts the model’s storage requirements and training

time. Computational power, typically expressed in floating-point

operations (FLOPs), measures the amount of computation required

for one forward propagation. Models with high computational power

experience slower inference and increased energy consumption,

which not only affects real-time application performance but also

demands significant resources. FPS measures the processing speed of

a model in real applications, indicating the number of frames per

second that can be handled. Higher FPS indicates better real-time

performance of the model in practical applications. The formula for

FPS is provided in Equation 28, where tavg represents the average time

taken by the model to process a single frame.

FPS =  
1
tavg

(28)
3 Results and analysis

3.1 Experimental configuration

The training of the experimental model was conducted on a

cloud server. The configuration of the experimental environment is

provided in Supplementary Table S3 of the Supplementary

Materials. The model’s hyperparameters are configured as follows:

a preset image size of 640 × 640, 150 training iterations, a batch size

of 8, and 4 working threads for data loading. The initial learning

rate is set to 0.0001, the final learning rate is adjusted to 1, and there

are 2000 warm-up iterations. The AdamW optimizer is utilized. All

other training hyperparameters are maintained at their default

values unless otherwise specified.
3.2 Ablation experiment

3.2.1 Ablation experiments on light-
SFPN structures

The ablation experiments presented in Table 1 demonstrate that

using different neck network configurations allows for a clear
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observation of the effects of various network structures on model

performance. Compared to the original model, the P and mAP

metrics improve with the use of HSFPN, while the number of

parameters and computational requirements are reduced to varying

degrees. The HS-FPN+ELA strategy significantly enhances mAP,

albeit with moderate increases in computational complexity and

parameter count, both of which remain within an acceptable range.

The use of light-SFPN further reduces the model size while

maintaining accuracy and appropriately increases inference speed,

leading to improvements in FPS. The optimized model performance

enhances the efficient utilization of computational resources.

3.2.2 Integral ablation experiments
To thoroughly evaluate the impact of the improvement modules

on the model’s performance, we carried out eight ablation studies

with progressive modifications to the baseline model, RT-DETR.

First, the backbone network architecture was replaced with the

MobileNetv4 network featuring the UIB module. Second, the

dilated convolutional reparameterized module was integrated into

the RepC3 module, forming the DRBC3 module. Next, the light-

SFPN structure was designed to optimize the feature fusion

network. Finally, the GIoU loss function was substituted with the

Focaler-GIoU loss function. Each enhancement was implemented

step-by-step, and the results are summarized in Table 2.

The ablation experiment results are presented in Table 2. After

replacing the backbone network with the MobileNetv4 network and

UIB module, the evaluation metrics of P, mAP50, mAP50:95, and

FPS improved by 2.1%, 0.2%, 0.7%, and 8.3%, respectively. This

demonstrates that this network not only enhances detection

accuracy but also accelerates detection speed, while reducing the

number of parameters and computation by 43% and 30.7%,

respectively. Compared to the RT-DETR model, the number of

parameters and computational load decreased, while P, mAP50,

and mAP50:95 increased to varying degrees following the

introduction of the DRBC3 module. This indicates that the

DRBC3 module outperforms the original RepC3 module in both

accuracy and model size. The application of the lightSFPN structure

to the neck network led to significant improvements in P, mAP50,

and mAP50:95 by 2.1%, 0.9%, and 1.1%, respectively, while

preserving stability across other metrics. This suggests that light-

SFPN effectively enhances the fusion of multi-layer feature map

information. Finally, adopting the Focaler-GIoU loss function

resulted in an increase of 1.3%, 0.6%, and 0.9% in P, mAP50, and
TABLE 1 Comparison of ablation experiments of light-SFPN.

Model P (%) mAP50 (%) mAP50:95 (%) Parameters (M) GFLOPs FPS

RT-DETR 95 91.4 71.3 19.87 57 57.7

RT-DETR+HS-FPN 96.4 91.5 71.6 18.11 53.3 63.4

RT-DETR+HSFPN+ELA 96.5 92.2 72.4 18.26 53.4 63

RT-DETR+light-SFPN 96.2 92.3 72.5 17.39 46.5 67.4
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mAP50:95, respectively. Comparing Experiment 1 and Experiment

6, the combination of the MobileNetv4 network and DRBC3

module significantly reduced the number of parameters by 51.7%

and computation by 46%, while maintaining efficient recognition

accuracy suitable for deployment on resource-constrained devices.

From Experiments 1, 6, and 7, it can be concluded that after

applying light-SFPN in Experiment 7, the model’s parameter

count decreased by 8.6%, GFLOPs decreased by 5.8%, and FPS

improved by 8.3%, compared to Experiment 6, despite no

significant increase in average accuracy. Finally, comparing

Experiment 1 and Experiment 8, the results show that the

proposed MHDI-DETR model outperforms the original model in

several metrics, including P, mAP50, mAP50:95, and FPS, with

improvements of 1.9%, 1.2%, 1.2%, and 21%, respectively.

Additionally, the model’s size and computational load were

significantly reduced by 56% and 49%, confirming the

effect iveness of each module ’s improvement in this

comprehensive ablation experiment.
3.3 Comparison experiment

3.3.1 Backbone network comparison experiment
The backbone network of the RT-DETR model utilizes four

BasicBlock modules for feature extraction. A primary challenge in

grape leaf disease detection is ensuring the model’s performance on

resourceconstrained devices, while maintaining accuracy despite a

reduced model size. To verify the performance enhancement

provided by the MobileNetv4 network, several top convolutional

networks were chosen for benchmarking, as illustrated in Table 3.

As shown in Table 3, compared to RT-DETR, using MobileNetv4

as the backbone network significantly reduces the number of

parameters and computational cost by 43% and 30.7%, respectively.

Additionally, MobileNetv4 provides considerable improvements in P,

mAP, and FPS. EfficientViT Liu et al. (2023), RepViT Wang et al.

(2024), and MobileNetv4 all modify the backbone of ResNet-18 as

lightweight networks. While EfficientViT and RepViT offer significant

advantages in reducing the number of parameters and computational

load, their FPS is substantially lower thanMobileNetv4’s, whichmay be

attributed to their use of Transformer architecture. This slowdown is

likely due to the addition of Transformer architecture, which increases

the number of computational layers and delays inference speed. Other

backbone networks, such as Con3XC Wan et al. (2024), achieve

balanced performance when combined with Residual Blocks.

However, its computational load of 68.3 is significantly higher than

other models, making it unsuitable for deployment on resource-

constrained devices. DualConv Zhong et al. (2022) also delivers

balanced performance, but its FPS is substantially lower than

MobileNetv4, which achieves the highest FPS. Although IRMB

Zhang et al. (2023), PConv Chen et al. (2023), and other mainstream

lightweight convolutional networks combined with residual blocks

offer some improvements over the base model, their enhancements

are far less significant than those of MobileNetv4. Thus, after

comparing with other mainstream lightweight convolutional

networks, the UIB module used by the MobileNetv4 network

demonstrates superior performance.
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3.3.2 Average accuracy comparison
To clearly demonstrate the effectiveness of the proposed MHDI-

DETR model, average accuracy curves of mAP50 and mAP50:95 for

RT-DETR andMHDI-DETR were plotted, with blue representing the

RT-DETR model and orange representing the MHDI-DETR model,

as illustrated in Supplementary Figure S2 of the Supplementary

Materials. The MHDI-DETR model consistently outperformed the

RT-DETR model after approximately 20 training rounds until

completion. This finding indicates that, despite the reduction in

size of the MHDIDETR model by half compared to the RT-DETR

model, it still achieves excellent performance in detecting grape

leaf diseases.

3.3.3 Model loss comparison
To verify the advantages of the MHDI-DETR model over the

RT-DETR model, a comparison of the loss curves was performed,

and the visual results are presented in Figure 8 The figure displays

the IoU and classification loss curves for both the RT-DETR and

MHDI-DETR models on the training and validation sets. In the

figure, the blue line represents the RT-DETR model, while the

orange line represents the MHDI-DETR model. The MHDI-DETR

model quickly reduces both IoU and classification losses early in the

training process and maintains low loss values throughout.

Furthermore, the loss curves on the validation set indicate that

the MHDI-DETR model exhibits better generalization, maintaining

low loss on unseen data. Overall, the MHDI-DETR model

demonstrates higher accuracy and stability in target localization,

classification, and regression tasks. These experimental results

clearly highlight the superiority of the MHDI-DETR model in leaf

disease detection tasks.

3.3.4 Comparison of model visualisation
To highlight the advantages of the MHDI-DETR model more

clearly and intuitively, several sets of visualisation experiments were

conducted to fully assess its benefits across various aspects. First, a

comparison of the receptive fields was conducted. In target

detection tasks, where the size of the model’s receptive field and

feature extraction capability are critical to performance, the

receptive fields of the improved models were analysed and

compared using gradient visualisation techniques. The receptive

fields were visualised before and after applying the DRBC3 module,
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as shown in Figure 9, demonstrating the size and distribution of the

receptive fields. The receptive fields of the MHDI-DETR model are

more homogeneous and cover critical regions more effectively,

improving detection accuracy and model robustness. A

comparison of the receptive fields reveals that the MHDI-DETR

model excels in feature extraction, offering a larger and more

optimally distributed receptive field. These improvements allow

the model to capture key information from the input image more

effectively, thereby enhancing overall performance.

Secondly, to evaluate the detection of small, hard-to-detect

target diseases, we tested the effectiveness of RT-DETR and

MHDI-DETR by conducting comparison experiments on two

selected diseases. By comparing the detection results before and

after the improvements, the effectiveness and superiority of the

improved method can be visually observed. Figure 10 presents the

detection results for two diseases, black measles and black rot. In A,

some instances of black measles were detected, but issues of missed

detection and low confidence were observed. In contrast, all black

measles were accurately detected in B, with significantly higher

confidence and almost no missed detections. In C, smaller and more

unevenly distributed black rot targets increased detection difficulty,

resulting in many small targets going unrecognized, which affected

the model’s accuracy. In D, black rot was detected accurately, with

no obvious omissions or misdetections, and the detection results

were reliable. This confirms that the model achieves superior results

in detecting small targets.

Finally, a comparison of the heat maps generated by the two

models was conducted. Figure 11 depicts the models’ focus and

accuracy in identifying diseased areas. Heat maps for both models

were generated using GradCAMPlusPlus to illustrate their focus on

detecting diseased areas. By analyzing the coverage and

concentration of the heat maps, their ability to focus on different

regions was assessed. The heat maps in A and C appear scattered

and unfocused, with several diseased regions not accurately

detected. The RT-DETR model demonstrates low focus in several

regions, resulting in significant false positives and omissions in

detecting both black rot and black measles. The errors generated are

substantial, and the detection results lack sufficient stability. In

contrast, B and D exhibit greater brightness and concentration in

the black rot and black measles regions, indicating higher detection

confidence and more precise focus on the lesion areas. Overall, the
TABLE 3 Comparison of experimental results for different backbone networks.

Backbone network P (%) mAP50 (%) mAP50:95 (%) Params (M) GFLOPs FPS

BasicBlock 95 91.4 71.3 19.87 57 57.7

BasicBlock_Conv3XC 96.4 91.6 71.1 23.85 68.3 54.4

BasicBlock_DualConv 96.4 91.6 71.1 15.87 47.3 60

EfficientViT 96.2 91.8 71.7 10.71 27.2 32.3

BasicBlock_iRMB 96.2 91.8 71.8 16.41 49.1 49.2

BasicBlock_PConv 95.4 92 71.2 14 42.8 62

RepViT 95.5 91.8 70.6 13.3 36.3 47.8

MobileNetv4 97.1 91.6 72 11.31 39.5 62.5
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FIGURE 9

Comparison of receptive field sizes. (A) Receptive field of the MobileNetv4 backbone without the DRBC3 module. (B) Receptive field of the
MobileNetv4 backbone with the DRBC3 module incorporated.
FIGURE 8

Comparison of loss curves for the RT-DETR model and MHDI-DETR model across different loss types. (A) IoU loss during training, (B) Classification
loss during training, (C) IoU loss during validation, (D) Classification loss during validation. In this comparison, the RT-DETR model utilizes the GIoU
loss function, while the MHDI-DETR model employs the Focaler-GIoU loss function.
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MHDI-DETR model demonstrated superior accuracy and

confidence in plant disease detection, as revealed by the

comparative analysis of the heat maps.
3.4 Comparison of different
detection models

To thoroughly assess the effectiveness of the MHDI-DETR model

against mainstream detection models for grapevine leaf diseases,

including black measles, black rot, blight, and healthy samples, six

widely used detection models—YOLOv5, YOLOv6, YOLOv7,

YOLOv8, YOLOv9, and RT-DETR-r34—were selected for

comparative testing with MHDI-DETR. The dataset and

experimental conditions were maintained consistently across all

models. This comparison aimed to validate the effectiveness and

advantages of the MHDI-DETR models under uniform dataset and

experimental setups. All models were trained and evaluated using

identical training parameters, optimization strategies, and hardware

environments. The detailed comparison results is presented in Table 4.
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The specific performance of each model across various metrics

is shown in Table 4. Regarding P, the MHDI-DETR model achieved

an accuracy of 96.3%, second only to RT-DETR-r34’s 97%, and

surpassing all the YOLO series models. YOLOv9 exhibited the

highest accuracy (95.7%) among the YOLO series models, while

YOLOv5 had the lowest accuracy (93%). These results indicate that

the MHDI-DETR model demonstrates high accuracy and reliability

in disease detection tasks. Regarding average accuracy (mAP), the

mAP50 of the MHDI-DETR model reached 92.6%, the highest

among all models, and slightly higher than the 92.3% achieved by

YOLOv9 and RT-DETR-r34. Furthermore, the MHDI-DETR

model achieved the highest mAP50:90 at 72.9%, followed closely

by YOLOv6 with 72.7%. These results demonstrate that the MHDI-

DETR model maintains high detection accuracy across various IoU

thresholds, outperforming both the YOLO series and RT-DETR

series models. The number of parameters and floating-point

operations (FLOPs) are critical indicators of model complexity

and computational efficiency. The MHDI-DETR model contains

only 8.76M parameters, significantly fewer than those of more

complex models such as RT-DETR-r34 (31.1M), YOLOv7 (36M),
FIGURE 10

Comparison of inference performance between MHDI-DETR and RT-DETR. (A, B) show the model’s detection performance before and after
improvement. on black measles disease, respectively.(C, D) show the detection performance of the model before and after improvement on black
rot disease, respectively.
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and YOLOv9 (31.19M). While YOLOv5 and YOLOv6 have lower

parameter counts of 20.86M and 18M, respectively, the MHDI-

DETR model still outperforms them in overall performance.

Additionally, the MHDI-DETR model has 29 GFLOPs,

significantly lower than that of the YOLOv5 to YOLOv9 models,
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indicating reduced computational complexity and greater suitability

for resource-constrained application environments. In conclusion,

the improved MHDI-DETR model demonstrated significant

advantages across all metrics, proving its superiority and

practicality in grape leaf disease detection tasks.
TABLE 4 Performance metrics comparison across different models.

Model P (%) mAP50 (%) mAP50:90 (%) Parameters (M) GFLOPs

YOLOv5 93 91.9 71.6 20.86 48

YOLOv6 93.4 91.8 72.7 18 44

YOLOv7 93.4 91.8 71.4 36 105

YOLOv8 93.6 91.9 72.2 25.8 78.7

YOLOv9 95.7 92.3 73.6 31.19 116.8

RT-DETR-r34 97 92.3 71.5 31.1 88.8

MHDI-DETR 96.3 92.6 72.9 8.76 29
FIGURE 11

Comparison of Heatmaps for RT-DETR and MHDI-DETR Models in detecting black rot and black measles diseases. (A) Heatmap of black rot disease
using the RT-DETR model. (B) Heatmap of black rot disease using the MHDI-DETR model. (C) Heatmap of black measles disease using the RT-DETR
model. (D) Heatmap of black measles disease using the MHDI-DETR model.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1499911
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fu et al. 10.3389/fpls.2024.1499911
4 Discussion

The experimental outcomes indicate that the proposed MHDI-

DETR model outperforms conventional models in detecting grape

leaf diseases. The effectiveness of each enhanced component,

including the lightweight MobileNetv4 backbone, the DRBC3

module, the light-SFPN structure, and the Focaler-GIoU loss

function, was confirmed through ablation studies. The

incorporation of MobileNetv4 as the backbone network effectively

reduces the model’s parameter count and computational load, while

enhancing detection accuracy. Specifically, compared to RT-DETR,

MobileNetv4 reduces the model’s parameters by 48% and

computational load by 30.7%, while improving accuracy by 2.1

percentage points. This indicates that MobileNetv4 can extract

more discriminative features while maintaining computational

efficiency. The DRBC3 module enhances feature extraction by

combining dilated convolution with RepC3 convolution,

significantly improving detection accuracy and efficiency.

Experimental results show that P and mAP50:95 improve by 1.5%

and 0.6%, respectively, with the DRBC3 module, while reducing

parameters and computational load. Additionally, the light-SFPN

structure enhances multi-scale feature fusion, particularly for small

target detection, by incorporating the efficient local attention (ELA)

mechanism. Ablation experiments demonstrate that the light-SFPN

structure improves mAP50 and mAP50:95 by 0.9% and 1.1%,

respectively, while reducing computational complexity and

parameter count. The Focaler-GIoU loss function enhances model

performance by dynamically adjusting parameters to focus on

difficult samples, thereby improving regression accuracy. Compared

to the traditional GIoU loss function, Focaler-GIoU improves

mAP50 by 0.6% and mAP50:95 by 0.9%, while converging faster.

Comprehensive analysis showed that the MHDI-DETR model

excelled in grape leaf disease detection, particularly for small-target

diseases like black measles and black rot, with significantly higher

detection accuracy, confidence. agricultural practices, with the goals

of enhancing crop quality, minimizing waste, and improving overall

agricultural productivity.
5 Conclusion

In this study, a lightweight model, MHDI-DETR, is proposed

for grape leaf disease detection, achieving significant improvements

across several aspects. By incorporating the MobileNetv4 backbone

network, DRBC3 module, light- SFPN structure, and Focaler-GIoU

loss function, the model enhances detection accuracy and efficiency

while significantly reducing the number of parameters and

computational load. Specifically, the MHDI-DETR model

achieves a 1.2% improvement in both mAP50 and mAP50:95,
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while GFLOPs and the number of parameters are reduced by 56%

and 49%, respectively. Experimental results confirm the validity and

reliability of the MHDI-DETR model in practical applications.

Future research will concentrate on incorporating the model into

smart grape harvesting robots for field validation and investigating

detection techniques for diseases in other fruits and agricultural

products, advancing the development of smart agriculture. These

initiatives are focused on promoting smart and sustainable

agricultural practices, with the goals of enhancing crop quality,

minimizing waste, and improving overall agricultural productivity.
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