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Pixel-wise navigation line
extraction of cross-growth-
stage seedlings in complex
sugarcane fields and
extension to corn and rice
Hongwei Li1,2†, Xindong Lai1, Yongmei Mo1, Deqiang He1

and Tao Wu1,2*

1School of Mechanical Engineering, Guangxi University, Nanning, China, 2College of Engineering,
South China Agricultural University, Guangzhou, China
Extracting the navigation line of crop seedlings is significant for achieving

autonomous visual navigation of smart agricultural machinery. Nevertheless, in

field management of crop seedlings, numerous available studies involving

navigation line extraction mainly focused on specific growth stages of specific

crop seedlings so far, lacking a generalizable algorithm for addressing challenges

under complex cross-growth-stage seedling conditions. In response to such

challenges, we proposed a generalizable navigation line extraction algorithm

using classical image processing technologies. First, image preprocessing is

performed to enhance the image quality and extract distinct crop regions.

Redundant pixels can be eliminated by opening operation and eight-

connected component filtering. Then, optimal region detection is applied to

identify the fitting area. The optimal pixels of plantation rows are selected by

cluster-centerline distance comparison and sigmoid thresholding. Ultimately,

the navigation line is extracted by linear fitting, representing the autonomous

vehicle’s optimal path. An assessment was conducted on a sugarcane dataset.

Meanwhile, the generalization capacity of the proposed algorithm has been

further verified on corn and rice datasets. Experimental results showed that for

seedlings at different growth stages and diverse field environments, the mean

error angle (MEA) ranges from 0.844° to 2.96°, the rootmean square error (RMSE)

ranges from 1.249° to 4.65°, and the mean relative error (MRE) ranges from

1.008% to 3.47%. The proposed algorithm exhibits high accuracy, robustness,

and generalization. This study breaks through the shortcomings of traditional

visual navigation line extraction, offering a theoretical foundation for classical

image-processing-based visual navigation.
KEYWORDS

classical image processing, crop seedling, navigation line extraction, plantation row,
growth stage
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1 Introduction

Sugarcane (Saccharum officinarum) is a vital sugar-producing

and energy-producing crop widely cultivated in tropical and

subtropical countries or regions (Wang W. et al., 2023), with an

annual global yield of approximately 1.9 billion tonnes (FAO, 2022).

Diverse field management tasks at the seedling stage, such as

stumping, weeding, spraying pesticides, and root-zone soil

backfill, are crucial in improving the sugarcane yield and quality.

At present, these tasks severely rely on manual operation. In the face

of the aging labor population and the increase in labor costs, it is

urgently needed to explore intelligent agricultural machinery for

field management. Intelligent agricultural machinery can be a

potential resolution to perform field management tasks, and

navigation is one of the key technologies to achieve intelligent

detection/control of agricultural machinery.

Commonly, agricultural machinery navigation methods mainly

include Global Navigation Satellite System (GNSS) navigation (Luo

et al., 2009; Liu et al., 2018; Zhang et al., 2022), radar navigation

(Blok et al., 2019), ultrasonic navigation (Chen et al., 2018) and

visual navigation (Liu et al., 2024; Bai et al., 2023; Shi et al., 2023).

According to the available literature, visual navigation attracted

more interest in these methods. This phenomenon might occur

because visual navigation, relying on the interpretation and

judgment of various landscapes, can be effective in diverse

settings. This includes extensive, continuous farmlands on plains

and fragmented , smal l -sca le farmlands in hi l ly and

mountainous terrains.

It is well known that the visual navigation of crop seedlings can

be classified into two categories: (I) the navigation based on the

ridge centerline and (II) the navigation based on crop plantation-

row centerlines. For the first category, in the early years, one

typically representative method is the least-square-based

navigation line detection algorithm of tomato ridge (Wang et al.,

2012). In recent years, further advances have been found in this

regard. For instance, Yang et al. (2020) proposed a method of real-

time extraction of the navigation line between the corn rows based

on a dynamic Region of Interest. Facing the higher corn seedlings,

Gong et al. (2020, 2022) gave two corn field navigation line

extraction methods by combining edge detection and area

localization and integrating gradient descent and corner

detection. Chen et al. (2020) investigated a median point Hough

transformation algorithm to fit the navigation paths of greenhouse

tomato-cucumber seedlings. Following this previous study, Chen

et al. (2021) also investigated a prediction-point Hough transform

to extract the navigation path for greenhouse cucumber seedlings.

With the in-depth application of deep learning algorithms, ever-

increasing researchers have adopted deep learning algorithms based

on semantic segmentation technology to obtain navigation lines

between the crop rows. For example, Rao et al. (2021) combined the

U-net and Fast-Unet models to generate the navigation line. Zhao

et al. (2021) used remote sensing images acquired from unmanned

aerial vehicles and extracted corn field ridge centerline based on a

fully convolutional network. Li et al. (2022a) achieved the

navigation line extraction using a Faster-U-net model and

adaptive multi-ROIs. Song et al. (2022) proposed a navigation
Frontiers in Plant Science 02
algorithm based on semantic segmentation in wheat fields using

an RGB-D camera. Yang et al. (2023) develops a real-time crop row

detection algorithm for corn fields, leveraging YOLO neural

network and ROI extraction to achieve high accuracy and

robustness. For such a category, it is evident that navigation

utilizing the ridge centerline depends on feature point extraction

between the adjacent crop rows and the color difference in ridge and

plantation rows. The limited condition of non-intersecting

overlapping leaves between adjacent crop rows compounds this

reliance on either classical image processing or deep learning

algorithms. Especially for the semantic segmentation-based ridge

centerline extraction, from the point of view of real-world

application, it remains challenging to integrate with downstream

low-cost, lightweight edge devices after obtaining semantic

segmentation results.

As for the second category, navigation based on crop

plantation-row centerlines has been a research hotspot in the past

two decades. Most of the available literature in plantation-row

centerlines extraction were based on the development of classical

image processing algorithms, such as Hough transform based on

connected component labeling (Rao and Ji, 2007), improved Hough

transformation (Zhao et al., 2009; Diao et al., 2015; Wang et al.,

2020), median-point Hough transform (Li et al., 2022b), least

square method (Si et al., 2010; Ma et al., 2022), color model and

nearest neighbor clustering algorithm (Zhang et al., 2012), scan-

filter algorithm (Li et al., 2013), constraint of liner correlation

coefficient (Meng et al., 2013), improved genetic algorithm (Meng

et al., 2014), boundary detection and scan-filter (He et al., 2014),

multi-ROIs (Jiang et al., 2015; Yang et al., 2020; Yu et al., 2021;

Wang A. et al., 2021; Li et al., 2021), SUSAN corner (Zhang et al.,

2015), Harris corner points (Zhai et al., 2016a), Census

transformation (Zhai et al., 2016b), particle swarm optimization

(Meng et al., 2016), SUSAN corner and improved sequential

clustering algorithm (Zhang et al., 2017), image characteristic

point and particle swarm optimization-clustering algorithm (Jiang

et al., 2017), accumulation threshold of Hough transformation

(Chen et al., 2019), sub-regional feature points clustering (Liao

et al., 2019), Gaussian heatmap (He et al., 2022), contour computing

with vertical projection (He et al., 2021), regional growth and mean

shift clustering (Wang A. et al., 2021), binocular vision and adaptive

Kalman filter (Zhai et al., 2022), RANSAC (Random Sample

Consensus) algorithm (Li et al., 2022c), and region growth

sequential clustering-RANSAC algorithm (Fu et al., 2023). These

numerous literature revealed that both past and present, a

significant proportion of researchers are still keen to perform

navigation centerline extraction based on classical image

processing algorithms. Classical image processing algorithms can

be efficiently run on CPUs without the requirement for high-

performance computing resources such as GPUs. When handling

data from diverse sources and with varying characteristics, the

compatibility and consistency of heterogeneous systems pose

significant challenges. Classical image processing algorithms, due

to their simplicity, are adaptable to various affordable systems and

application scenarios, simplifying the complexities associated with

managing heterogeneous data. Moreover, these algorithms are more

explainable and easier to implement in low-performance
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computing platforms. Nevertheless, when facing complex image

processing, some algorithm executions are time-consuming and can

result in a limited generalization ability.

With the further popularity of deep learning technology, some

researchers have attempted to develop various deep learning

algorithms to extract navigation centerlines in the last few years

to tackle this challenge. For instance, Lin et al. (2020) used the

Faster R-CNN to detect the transplanting rice seeding in complex

paddy field environments, obtaining mean absolute errors of a

deviation of 8.5 mm in the lateral distance and 0.50° of travel angle.

Zhang et al. (2020) extracted the centerlines of rice seedlings based

on the YOLOv3 model, achieving a mean average precision of

91.47%, a mean average angle error of 0. 97° in the extracted

centerline, and an average runtime of 82. 6 ms for one image. Diao

et al. (2024) developed an algorithm for recognizing corn crop rows

at different growth stages using the ST-YOLOv8s network. Their

approach, which included a swin transformer-based backbone and

a local–global detection method, demonstrated improved mean

average precision (MAP) and accuracy compared to YOLOv5s,

YOLOv7 and YOLOv8s, while reducing the average angle error and

fitting time in crop row detection experiments. Li et al. (2023)

presents E2CropDet, an efficient end-to-end deep learning model

for crop row detection. Zheng and Wang (2023) used Pix2Pix Net

to improve navigation line extraction ability in image pre-

processing. Ruan et al. (2023) proposed a crop row detection

method based on YOLO-R, attaining accuracy values of 93.91%,

95.87%, and 89.87% on the seven-day, 14-day, and 21-day for rice

seedling row detection, respectively. Diao et al. (2023) developed a

navigation line extraction algorithm based on an improved

YOLOv8s network in corn seedlings, getting a significantly

enhanced performance in mean average precision and F1, as

compared to the YOLOv7 network and original YOLOv8

network. Liu et al. (2023) showed a recognition method of corn

crop rows using the MS-ERFNet model, the mean intersection over

union (mIoU) and the pixel accuracy (PA) of the MSERFNet model

was 93.40% and 97.54%, respectively, which were higher than other

models. Wang S. et al. (2021, 2023a, 2023b) adopted row vector grid

classification, initial clustering, and exterior point elimination, as

well as sub-region growth and outlier removal, to recognize straight

or curved rice seedling rows, comprehensively realizing the

centerline extraction of transplanted rice seedling rows under

different paddy field environments.

Undoubtedly, deep learning algorithms in crop seedling

centerline extraction require less execution time and showcase a

better generalization ability. Despite these advantages, deep-

learning-based methods require comprehensive datasets,

considerable image labeling, innovative algorithm development,

and rigorous parameter-adjusting processes. In addition, most of

the deep learning algorithms lacked verifications in other crop

seedlings; as a result, their generalization ability remains limited.

In conclusion, existing approaches often target specific crops,

such as rice and corn, which typically exhibit uniformity due to

agronomic influences, yet a generalizable navigation line extraction

algorithm capable of adapting to various crops, growth stages, and
Frontiers in Plant Science 03
environmental conditions remains absent. As a result, algorithms

tailored to these crops may struggle with generalizability when

applied to others, such as sugarcane, which has more complex and

diverse characteristics. For instance, in sugarcane seedlings, ridge

structure and spacing vary significantly, and little literature has

explored this field. A noteworthy exception is Yang et al. (2022),

who used LiDAR to extract navigation lines between sugarcane

ridges. Moreover, traditional methods and many deep-learning-

based approaches focus on site-specific, crop-specific, or growth-

stage-specific ridge centerline navigation or plantation-row

centerline navigation. A generalizable navigation line extraction

algorithm that can handle cross-site, cross-crop, and cross-growth-

stage scenarios has yet to be reported. Addressing this gap, our

study emphasizes the development of an algorithm designed with

broader applicability, aiming to bridge the limitations of the

current literature.

In this study, a generalizable navigation line extraction algorithm

based on classical image processing technologies was proposed. This

study aims to extract the navigation line for cross-growth-stage

sugarcane plantation rows under complex in-field environments

using classical image processing technologies. The specific

objectives of the study were to (a) propose an adaptive navigation

line extraction algorithm of sugarcane plantation rows in different

early growth stages, (b) validate the effectiveness of the proposed

algorithm in complex sugarcane field environments, and (c) apply the

proposed algorithm into the navigation line extraction of plantation

rows in rice and corn, verifying its generalization capability.
2 Materials and methods

The proposed navigation line extraction method comprises four

steps: image acquisition, image preprocessing, optimal region

detection, and navigation line fitting.
2.1 Image acquisition

2.1.1 Location 1 – sugarcane seedlings
The image acquisition location of sugarcane seedlings is situated

in Guangxi subtropical new town of agri-forestry sciences, which

belongs to Guangxi University, Guangxi Province, China (22.52°N,

107.79°E). The sugarcane seedling images were taken using a mobile

device, Huawei Mate 50, positioned at a declination angle of about

45° relative to the terrestrial surface on May 2023. In total, 153

images were captured at different times.

2.1.2 Location 2 – corn seedlings
Corn seedlings’ image acquisition location is in Guangxi

University Experimental Base, Guangxi Province, China (22.86°N,

108.30°E). The corn seedling images were taken using the same

Huawei Mate 50, positioned at a declination angle of about 45°

relative to the terrestrial surface on August 2023. In total, 218

images were captured at different times.
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2.1.3 Location 3 – rice seedlings
The rice seedlings’ image acquisition location is in Guangxi

University Experimental Base, Guangxi Province, China (22.86°N,

108.30°E). The rice seedling images were taken using the same

Huawei Mate 50, positioned at a declination angle of 45° relative to

the terrestrial surface on August 2023. In total, 135 images were

captured at different times.

These acquired images cover diverse in-field conditions such as

varying light, inter-row spacing variability, decay branches,

overlapping leaves, soil color difference, and disordered

vegetation, as well as multiple growth stages which are

determined by the number of crop leaves such as ‘Code 12’ to

‘Code 19’ (Zadoks et al., 1974). To further expand the dataset and

evaluate the generalization performance of the algorithm, this study

employed the open-source image augmentation library

Albumentations to enhance the dataset images. These

augmentation operations simulated the distributions of sugarcane,

corn, and rice seedlings under various low-light conditions and

rainy scenarios.

In the following subsections, the sugarcane seedling images

were first selected for algorithm development, while the other two

image datasets were used for evaluating their generalization

performance, as shown in sections 3.2 to 3.3.
2.2 Image preprocessing

The Windows 11 operating system was used to perform image

processing tasks on a notebook with an AMD R7-7745HX and

NVIDIA GeForce RTX 4060 with 8 GB VRAM. The algorithm in

this paper was implemented in C++ using Microsoft Visual Studio

2022 as the integrated development environment. The flowchart of
Frontiers in Plant Science 04
image processing is shown in Figure 1. These steps will be described

further in the following sections.

2.2.1 Grayscale transformation
To locate crop rows, the excess green index (ExG) is used to

segment the vegetation and non-vegetation areas in the image based

on the distinct difference in the green index (Woebbecke et al.,

1995). The ExG is defined in Equation 1. Grayscale images can be

obtained by applying the ExG, as shown in Supplementary Figure

S1B.

Gray(x, y) =

0,   2ɡ − r − b < 0

255,   2ɡ − r − b > 1

255(2ɡ − r − b),   otherwise

8>><
>>: (1)

where Gray(x, y)   denotes the gray level of the pixel at the position

(x, y) and rgb are determined by the normalized values of the

corresponding RGB channels respectively, as shown in Equation 2.

r = R
R + G + B

ɡ = G
R + G + B

b = B
R + G + B

8>><
>>: (2)
2.2.2 OTSU thresholding and NZPR operation
Threshold segmentation using the Otsu method (Otsu, 1979)

on grayscale images effectively extracts regions of interest. Let pi be

the proportion of pixels for each grayscale level compared to the

total number of pixels in the image, as shown in Equation 3. Let t be

the threshold segmenting the image into foreground and

background. Let P1 and P2 represent the probabilities of

foreground and background, respectively. Let m1 and m2
FIGURE 1

The overall architecture of image processing. Colored boxes indicate the detailed algorithms used for each key step.
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represent the average grayscale values of the foreground and

background, respectively. Let mG be the average grayscale values

of the image. Thus, the variance between the two categories can be

calculated by the Equations 3 and 4:

  pi =
ni
N (3)

s 2
B = P1(m1 −mG)

2 + P2(m2 −mG)
2 (4)

where ni and N represent the sum of pixels for each grayscale

level and total pixels of the image, respectively, while P1 =ot
i=0 pi,

P2 =o255
i=t+1 pi, m1 =

1
P1 ot

i=0 ipi, m2 =
1
P2 o255

i=t+1 ipi a n d mG =

o255
i=0  ipi. The threshold t* that maximizes the inter-class variance

can be calculated by the Equation 5:

t* = argmaxts 2
B(t) (5)

where t* represents the optimal threshold.

Once the threshold that corresponds to the maximum inter-

class variance is defined, it becomes the optimal threshold for the

segmentation. The binary image illustrated in Figure 2A can be

obtained based on the following Equation 6:

Gray(x, y) =
255,  Gray(x, y) > ɡ

0,   otherwise

(
(6)

where g = kt*, in which k is a proportion coefficient. According

to pre-test, k = 0:8 is an optimal proportion coefficient to extract the

green features of sugarcane to the binary image.

Given that non-zero pixels in the binary image represent crops,

this study proposed a concept of non-zero pixel ratio (NZPR),
Frontiers in Plant Science 05
which denotes the proportion of non-zero pixels relative to the total

number of pixels in the image to describe the different growth stages

of crops, as Equation 7:

NZPR = ox,y
Gray(x,y)=255

N � 100% (7)

Furthermore, it is observed that the sugarcane seedlings exhibit

strong branching ability of their leaves from the seedling stage

(Figure 2A). As the growth stage advances, the branching density

and coverage of the leaves increase continuously, resulting in severe

occlusion of the leaf canopy of adjacent crop rows (Figure 2Ac), which

leads to unfavorable repercussions for subsequent clustering processes.

It is worth noting that different agricultural scenarios have

varying requirements regarding image resolution. Low-resolution

images, which do not require excessive image details, offer better

real-time performance. On the other hand, high-resolution images

provide more precise information for tasks such as planting and

weed control. Given common resolutions used in typical cameras,

the image acquired with a resolution of 4096×3072 is converted into

two-type images with 640×480 and 1920×1080. As a result,

established mathematical models were developed to correlate the

two different resolutions—640×480 and 1920×1080—with the

application of morphological operations.

To effectively tackle the severe occlusion of the leaf canopy of

adjacent crop rows, a morphological operation (erosion followed by

dilation) was implemented to eliminate extraneous branches and

slight noise. According to pre-test, the iterations of erosion and

dilation are determined by our defined NZPR ranges, as shown

as below.
FIGURE 2

Threshold segmentation and morphological operation. (A) Binary images at different growth stages: (Aa) Slight occlusion, NZPR=11.84%; (Ab)
Moderate occlusion, NZPR=22.32%; (Ac) Severe occlusion, NZPR=36.38%; (B) Images after morphological operation: the opening operation was
applied in (Ba), (Bb) and (Bc) based on NZPR.
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1. For images with a resolution of 640×480, its nerosion can be

described as

nerosion =

0, NZPR < 6%

round( − 4:0229 · NZPR2 + 11:7543 · NZPR − 0:17), 6% ≤ NZPR ≤ 50% 

5, NZPR > 50%

8>><
>>:

(8)

2. For images with a resolution of 1920×1080, its nerosion can be

described as

nerosion =

0, NZPR < 6%

round(53:5714� NZPR2 + 3:9286 · NZPR + 0:0714), 6% ≤ NZPR ≤ 20%

10� NZPR + 2, 20% < NZPR ≤ 50%

8, NZPR > 50%

8>>>>><
>>>>>:

(9)

ndilation = ⌊ nerosion
2 ⌋ (10)

Compared to linear relationships, nonlinear relationships are

more effective in balancing the preservation of image details with

the suppression of unnecessary pixels. However, in cases where the

NZPR is less than 6%, there are not enough feature pixels in the

image, and therefore, erosion is not necessary.

As sugarcane seedlings grow, the NZPR value steadily increases

(Figure 2), requiring more corrosion and expansion iterations,

leading to more significant differences between them. As shown

in Figure 2B, the main stems of sugarcane seedlings were retained in

the binary image after the morphological operation. Specifically, a

3×3 kernel was used in this process.
2.2.3 Connected component filtering and
baseline detection

The morphological operations effectively suppressed extraneous

branches and leaves in the binary image. However, it was also

observed that numerous disconnected noises were introduced into

the image, resulting from erosion and dilation. At the same time, the

relatively larger connected components constitute the significant

parts of the crop.

Based on the observed difference mentioned above, an eight-

connected labeling algorithm that considers the pixel neighborhood

in all eight directions was applied to identify individual objects. The

specific steps for the labeling process are described as follows:
Fron
Step 1. Initialize a counter that indicates the count of currently

discovered connected components. Initialize a label image

to store the label of each pixel.

Step 2. Iterate through each pixel in the input image. Based on

the grayscale value of the current pixel, classify it into

foreground and background. The presence of a non-zero

grayscale value denotes the membership of a pixel to the

foreground and, in some cases, to a particular connected

component. Identify the labelled pixels within its

neighborhood and place them into a set.
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Step 3. Identify the smallest element in the set, corresponding

to the minimum label value, and assign it to a variable. This

variable represents the label of the connected component to

which the current pixel might belong. If the set is empty, it

indicates that the current pixel has no labelled neighboring

pixels, signifying it as the starting point of a newly

discovered connected component. Therefore, increment

the counter by one and assign this value as the label of

the current pixel. If the set is not empty, assign the variable

mentioned above as the label of the current pixel.

Step 4. Replace different labels belonging to the same

connected component with a single label, referred to as

merging equivalence class (MEC). MEC ensures that each

connected component has a unique label.
The corresponding algorithm for the connected component

labeling process is presented in Algorithm 1.
Input: Binary image I ∈ 0, 255f gm�n; Label image L ∈ Nm�n;

k = 0

For each pixel (i,j) in I do:

If I(i,j) = 0:

L(i,j) = 0

Else:

N = (p,q) ∣p ∈ ½i − 1,i + 1�,q ∈ ½j − 1,j + 1�,L(p,q) > 0f g
 M = min(N)

If M = ∅:

K = K + 1

L(i,j) = k

Else:

L(i,j) = M

End

L = MEC(L)

Output: Label image L ∈ Nm�n
Algorithm 1. The algorithm of the labeling process.

Furthermore, a pixel re-binarization operation, such as in

Equation 11, was employed to eliminate small connected

components considered residual pixels after performing

morphological opening. Figure 3A illustrates the image that was

processed.

B(i, j) =
255,   L(i, j) > 0 & A L(i, j)ð Þ ≥ M � C
0,   otherwise

(
(11)

where A(L(i, j)) represents the area of the connected component

to which the current pixel L(i, j) belongs, M represents the mean

area of all connected components, C denotes a given coefficient, and

pre-test has shown that a value of 0.7 achieves better

elimination effects.

To extract the center row of sugarcane seedlings in the image, a

baseline is needed to predict its potential position. The baseline

detection is based on the following two assumptions: 1) In the image
frontiersin.org
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(Figure 3A), the crop rows present a trend of being smaller at the

top and more prominent at the bottom and leaning towards the

center position, while the crop rows at the center position have a

smaller or almost vertical inclination. 2) Vertically projecting the

image exhibits a specific Gaussian distribution pattern. The

maximum column pixel value position is typically located near

the central crop row. The central 35% of the image is set as the

region of interest (ROI) to obtain accurate results. The column pixel

values within this region are then analyzed. The vertical line

corresponding to the maximum column pixel value is considered

the baseline, as shown in Figure 3B.
2.3 Optimal region detection

2.3.1 Enhanced DBSCAN Clustering with KD-
Tree Optimization

This study employed a density-based clustering method to

group pixels that belong to the same crop or specific crop row, as

shown in Figures 4A, D.

Before the implementation of clustering, it was observed that

the number of pixels presented in high-resolution binary images

was quite substantial, resulting in a significant utilization of

computational resources and time. From the pixel reduction

perspective, a sliding window method was applied to reduce

unnecessary pixels, save computational time, and increase data

processing speed. This method involves computing the average

coordinates of all pixels within the window, as shown in Equations

12 and 13, subsequently replacing the original pixels with the

resulting mean values. The sliding window moves by its step size

at each iteration, covering the entire image. Through the

implementation of this method, image processing is becoming

more streamlined and efficient.

�x = 1
mno

m

i=1
o
n

j=1
xij (12)
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�y = 1
mno

m

i=1
o
n

j=1
yij (13)

where m and n represent the width and height of the sliding

window respectively, they are both set to eight in this step.

Ester et al. (1996) proposed the DBSCAN (Density-Based

Spatial Clustering of Applications with Noise) algorithm. We

considered two critical parameters in the algorithm, the

neighborhood radius (epsilon) and the minimum number of

neighbors (minPts). Based on the pre-test, the parameters were

configured to 200 and 4 respectively.

The traditional DBSCAN algorithm faces computational

bottlenecks, particularly when processing high-resolution images.

The computational complexity of finding neighboring points

increases significantly with the amount of pixel information,

leading to longer processing times. To address this, the KD-Tree

was introduced as a spatial indexing structure to accelerate neighbor

searches in the DBSCAN algorithm, reducing the computational

complexity from O(n2) to O(n log n). The KD-Tree implementation,

as shown in Figures 4B, C, was further enhanced with OpenMP

parallelization to reduce processing time for high resolution images.

By leveraging OpenMP, the neighbor search process was divided

into smaller tasks distributed across multiple threads, significantly

improving computational efficiency. The specific steps for the

enhanced DBSCAN process are described as follows:
Step 1: Build a KD-tree using the dataset to accelerate neighbor

searches. For each data point, find all points within its

epsilon-neighborhood using the KD-tree and cache these

neighbors for quick access. Perform parallel neighbor

searches using OpenMP.

Step 2: Initialize all data points as unclassified by setting their

cluster IDs to -1.

Step 3: For each unclassified data point, perform the following:
A. Retrieve its cached epsilon-neighborhood from the

KD-tree.
FIGURE 3

Connected component detection and vertical projection. (A) Eight-connected component filtering image; (B) Vertical projection curve from the
filtering image, the value of (k) depends on the maximum column pixel value of each image.
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Frontiers in
B. If the number of neighbors (including the point

itself) is less than the user-defined minimum

(minPts), then:

• Mark the data point as noise (remain unclassified).

C. Else if the number of neighbors is greater than or

equal to minPts, then:

• Assign the data point to a new cluster by

setting its cluster ID to a new unique value.

• Initialize a queue and add the current data

point to it to begin expanding the cluster.
Plant Sc
Step 4: While the queue is not empty, perform the following to

expand the cluster:
A. Dequeue a data point from the queue.

B. Retrieve its cached epsilon-neighborhood.

C. If the number of neighbors is greater than 1

(meaning the point has at least one neighbor

besides itself), then:

• For each neighbor in the epsilon-neighborhood:

1. If the neighbor is unclassified (cluster

ID is -1), then:

a. Assign it to the current cluster

by setting its cluster ID to the

current cluster ID.

b. Enqueue the neighbor to

proce s s i t s ne i ghbor s in

subsequent iterations.
ience
Step 5: Repeat Steps 3 and 4 for all data points until all points

are classified either into clusters or marked as noise.
The corresponding algorithm for the process mentioned above

is presented in Algorithm 2.
Input: Set of points D; Distance threshold e; Minimum

number of points minPts;

Initialization:

1. Build KD−Tree and Cache Neighbors:

For each point p in D: Cache N(p)={q∈D∣distance(p,

q)≤e}, while OpenMP distributes the search workload

across multiple threads

2. Initialize Point States:

p :visted = False

For each point p in D: p.clusterID=−1//Unclassified

currentClusterID=0

For p in D do:

If p :clusterID = −1 then:

p :visted = True

If len(N(p)) < minPts: then

Continue//Point is considered noise

(remains unclassified)

Else:

Assign p.clusterID=currentClusterID

Initialize a queue Q = ½p�
While Q is not empty do:

Dequeue currentPoint = Q :pop()

For each neighbor q in N(currentPoint) do:
08
If q :clusterID = −1   then

Assign q :clusterID = currentClusterID

q :visited = True

Enqueue q into Q

End If

End For

End While

currentClusterID = currentClusterID + 1

End If

End For

Output: Set of clusters C.
Algorithm 2. The algorithm of DBSCAN using KD-tree acceleration.

2.3.2 Centerline selection by distance to
the baseline

The plantation row that is required to fit the navigation line is

considered the centerline in Figure 3A. By conducting a

comparative analysis of the distances of clusters to the baseline

depicted in Figure 3B and subsequently delineating a specific ROI, a

more precise estimation of the centerline can be obtained, as shown

in Figure 5C.

The comparative analysis compares the distance from each

cluster centroid to the baseline with the mean distance of all

cluster centroids to the baseline, as shown in Equation 14. This

approach enables the extraction of potential target clusters while

filtering out clusters that exhibit a minimal proportion of areas

within the ROI, yet the centroid is distant from this region, as

illustrated in Figure 5A.

di ≤ cod · �d (14)

where di represents an absolute distance from i- th cluster

centroid of its x-coordinate ci,    x to the baseline, �d is calculated as

the mean of all centroid distances and the coefficient of distance

(cod) will start with an initial value of 0.65 and increase by 0.05 in

each iteration until at least a cluster that satisfies Equation 14

is found.

However, not all clusters that satisfy Equation 14 are necessarily

relevant to the required fitting clusters. These clusters may

encompass redundant significant connected components and

certain biased positional crops. To address this issue, an isosceles

trapezoidal ROI with the baseline as its median was employed.

Figure 5B illustrates the ROI, which consists of two oblique lines,

each spanning from the top to the bottom, with a length equivalent

to 0.07 times the image width. Furthermore, the slopes of these two

lines have an absolute value of 1/12. The cross-product operation, as

shown in Equation 15, was applied to assess the position of the

cluster relative to the oblique lines. Equation 16 determines whether

the cluster is within the ROI. The clusters contributing to a non-

zero value in Equation 16 are regarded as the desired median row, as

illustrated in Figure 5C.

f (a, b, c) =
−1             if (bx − ax)(cy − ay) − (by − ay)(cx − ax) > 0

1                   if (bx − ax)(cy − ay) − (by − ay)(cx − ax) < 0

(

(15)
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where a and b represent two points on the oblique line, c

represents the point which the relative position is to be determined.

The number of points within the two oblique lines is given by:

on
i=1I(f (lp,1, lp,2, pi) = 1∧ f (rp,1, rp,2, pi) = −1) (16)

where lp,1 and lp,2 determine the left oblique line, rp,1 and rp,2
determine the right oblique line, pi = (xi, yi) ∈ ci, and I(x) is the

indicator function, when x is true, I(x) = 1; when x is false, I(x) = 0.

2.3.3 Sigmoid thresholding method based
on NZPR

In crop analysis, accurately selecting a segmentation

representing the crop row is essential for fitting a navigation line.

Despite the series mentioned above of processing steps, it was

observed that the centerline depicted in Figure 6A may still contain

discrete branch portions, which can lead to a decrease in fitting

accuracy. To mitigate this issue, a novel thresholding technique is

proposed in this study, which utilizes a sigmoid function based on

NZPR to segment centerline images.

The threshold for segmenting is determined by Equation 17,

which maps different NZPR values to ranges from 0 to 1,

normalizing pixel values in the image. Images with higher NZPR

values imply later growth stages with denser median crop rows,
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particularly in the central stem region. Consequently, there is an

urgent need for segmentation in such areas, which corresponds to a

lower threshold. The results of several tests conducted on multiple

crop images at various growth stages showed that k takes a value of

(-8.67) and x takes a value of 0.354, resulting in relatively favorable

outcomes concerning image segmentation.

t = 1
1+e−k(NZPR−x) (17)

As illustrated in Figure 3B, the vertical projection method will

be reused on centerline images to carry out the segmentation

process mentioned above. Specifically, a horizontal line will be

generated to intersect with the vertical projection curve, and the

region enclosed by the intersection points is considered the final

fitting area. The horizontal line shown in Figure 6B is given by

Equation 18:

line = (1:2 − t) · ymax (18)

where ymax represents the maximum y-value on the vertical

projection curve of the centerline image. The value 1:2 is optional,

and since the origin of the coordinate system in OpenCV is in the

top-left corner, the corresponding horizontal line y-value should be

calculated starting from the origin.
FIGURE 4

Images of clusters based on density: (A) Illustration of DBSCAN; (B) 2D space partitioning based on KDTree, each vertical and horizontal line
represents a split along the x or y axis, respectively, the labels (L1, L2, etc.) indicate the hierarchical levels of the partition; (C) KDTree structure;
(D) Indexes 1 to 17 indicate clusters c1 … c17 of that density level.
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FIGURE 6

Sigmoid thresholding process. (A) Median rows at different growth stages: (Aa) NZPR=1.84%, t =0.95; (Ab) NZPR=8.96%, t =0.91; (Ac) NZPR=22.32%,
t =0.76; (B) Vertical projection curves of centerlines: the horizontal line is applied in (Ba), (Bb) and (Bc) to determine the blue area which corresponds
to the final fitting area; (C) Centerlines after segmentation, the larger the NZPR, the more likely it is to segment a smaller fitting area.
FIGURE 5

Selection of median row: (A) Compare d1 … d17 with cod · �d; (B) Detect the presence of clusters to verify if there is at least one point within the
region of interest; (C) Obtain the centerline.
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2.4 The straight-line fitting based on
RANSAC and the least squares method.

After the aforementioned preprocessing steps, the resulting image

was nearly devoid of noise or outliers. Based on the resulting image,

this study utilized the advantages of the RANSAC algorithm (Fischler

and Bolles, 1981) to select a group of representative points with

higher density. Subsequently, the least squares method shown in

Equation 21 was applied to fit these points, avoiding the fitting line

biased towards the density center of the points. The fitting effect is

improved, as shown in Supplementary Figure S2C. Furthermore, as

depicted in Figure 6C, it was worth noting that not all the pixels are

required for navigation line fitting. The inclusion of additional pixels

leads to increased calculative complexity. As a result, feature points

that can capture the main characteristics of the crop should be

selected before the fitting process. The aforementioned sliding

window method is an effective technique to extract feature points.

As shown in Supplementary Figure S2A, the data has been

significantly simplified while effectively preserving the primary

characteristics of the crop. In this case, the sliding window has a

width of 16 and a height of 32.

The RANSAC is a widely used robust estimation technique that

is critical in various computer vision and machine learning

applications. The RANSAC algorithm can be expressed as shown

in Equation 19. Two crucial parameters of RANSAC include the

distance threshold and the number of iterations. The distance

threshold can be chosen based on either empirical observations or

experiments, and this study sets it to 0.155. The number of

iterations is given by Equation 20.

L* = argmax(a,b)∈L ∣ p ∈ Pjd(p, ax + b) < tf g ∣ (19)

where P = (xi, yi)f gni=1 represents the given set of points, L =

(a, b)f g represents the parameter set for the line to be fitted, d is the

distance from the point P to the line, L* is the optimal parameter for

the line, ·j j  represents the size of the set and t represents the

distance threshold.

k = log(1−CL)
log(1−pn) (20)

where CL represents the probability of the correct model, p =
ninliers

ninliers+noutliers
represents the probability of the correct model and n

which is set to 2 represents the minimum number of points required

for each model estimation. To enhance model accuracy, CL is set to

0.99 in this study and ninliers takes a value of 2 in the initial iteration.

(a*, b*) = argmin(a,b)∈Lop∈I(yi − axi − b)2 (21)

where I = p ∈ Pjd(p, ax + b) < tf g represents the optimal

inlier set.
2.5 Evaluation metrics

A set of crop images at different growth stages was selected for

rigorous testing and evaluation to assess the efficacy of the

aforementioned image-processing techniques. To quantitatively
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analyze the effectiveness of the image processing results, this

study employed a manual annotation method to obtain ideal

reference lines for crop row navigation in different images, and

the obtained reference lines were regarded as a criterion. The

reference lines were subsequently juxtaposed with the fitting lines,

and the accuracy of the system was evaluated by computing the

angular discrepancies between the reference lines and the fitted

lines. The yaw angle between the fitting line and the reference line is

calculated by the following Equation 22:

cosa = P1
!

·P2
!

∣P1
!

∣ ∣P2
!

∣
= x1x2+y1y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x21+y
2
1 )(x

2
2+y

2
2)

p (22)

where P1
!

= (x1, y1) and P2
!

= (x2, y2) represent the vectors of

two lines, respectively. To enhance the analysis of angular data, the

following mathematical metrics for evaluation are employed: MEA,

RMSE, and MRE, which are defined below.

�a = on
i=1

ai

n
(23)

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1a
2
i

q
(24)

MRE = 1
non

i=1 ∣
aifitting − aiannotation

aiannotation

∣� 100% (25)

where �a and ai represent the MEA and the yaw angle between

two lines of i − th image, respectively, aifitting and aiannotation represent,

respectively, the angles between the fitting line and the manually

annotated line with the horizontal line at the bottom of the i − th

image. n is the total number of image samples.

The smaller the MEA is, the closer the fitting result is to the

reference line. RMSE takes into account the size and distribution of

the errors. MRE offers insights into the smaller the angle error

relative to the reference line.
2.6 Interface design and development of
field navigation

To facilitate effective user interaction and visual feedback, a

human-computer interaction interface was designed and developed

in this section, as illustrated in Supplementary Figure S3. This

interaction interface contains resolution selection, processing,

processing time and result display. This interface serves as a

critical bridge between the algorithm and its real-world

applications. Once finishing the resolution selection and

processing, the result can be shown in the interaction interface.
3 Experimental results

3.1 Evaluation of cross-growth-stage
sugarcane seedling images

This section involves carefully curating a subset of sugarcane

seedling images from ‘Code 12’ to ‘Code 19’ to serve as a validation
frontiersin.org
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dataset for assessing the efficacy of the image processing techniques

on sugarcane. The yaw angles between the fitting lines and the

reference lines are illustrated in Figure 7.

Table 1 illustrates the evaluation of three growth stages, revealing

an initial upward trend followed by a subsequent decline in MEA,

RMSE, and MRE. This pattern can be attributed to variations in

branch distribution. Specifically, during stages of ‘Code 12-13’,

sugarcane seedling foliage is small and less dispersed, resulting in

minimal data fitting dispersion and relatively good symmetry.

However, during stages of ‘Code 14-16’, the foliage becomes more

extensive and dispersed, leading to increased data fitting dispersion

and diminished symmetry. Notably, in stages of ‘Code 17-19’, the

foliage is large and evenly distributed, resulting in a high degree of

data fitting dispersion but maintaining good symmetry.
3.2 Generalization capability verification:
evaluation of seedling images in corn
and rice

This section provides a comprehensive evaluation of the image

processing techniques applied to corn and rice seedling images,

primarily focusing on the growth stages corresponding to ‘Code 12-

15’ and ‘Code 16-19’, which aids in assessing the algorithm

generality and applicability across crop image scenarios. The yaw

angles between the fitting lines and the reference lines are illustrated

in Figures 8 and 9, respectively. The evaluation of corn and rice

seedlings is denoted in Tables 2 and 3, respectively.

Table 2 presents the evaluation results for two growth stages of

corn seedlings. In the growth stage of ‘Code 12-15’, the algorithms

exhibit enhanced performance on corn seedlings, with lower MEA,

RMSE, and MRE compared to crops in the growth stage of ‘Code 16-

19’. The primary factors contributing to this phenomenon are the
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morphological differences in corn during these two growth stages and

weeds. As the growth period progresses, both the dispersion of corn

leaves and the presence of weeds in the field can, to some extent,

impact the accuracy of navigation line extraction.

Contrary to corn, the algorithms demonstrate better

performance in the growth stage of ‘Code 16-19’ of rice compared

to the growth stage of ‘Code 12-15’. The uneven dispersion of leaves

in rice during the early growth stage has been well documented and

attributed to the long length of the leaves. As the plant grows and

more leaves are produced, the dispersion becomes more even.
3.3 Evaluation of ridges with
seedling absence

Seedling less ridges are prevalent in agricultural cultivation (see

Figure 10), especially for multi-year crops. Such ridges result in the

wastage of land, fertilizers, and other resources, ultimately

impacting crop quality and yield. Achieving precise navigation in

rows affected by seedling-less ridges ensures efficient execution of

tasks such as replanting and fertilization application.

As shown in Figure 10, the navigation line can be extracted even

in severe crop seedling absence in the crop rows. The MEA, RMSE,
TABLE 1 Evaluation results of sugarcane seedling.

Growth
stage

Number
of samples

MEA RMSE MRE

Code 12-13 20 2.21° 3.35° 2.37%

Code 14-16 20 2.44° 3.86° 3.47%

Code 17-19 20 2.31° 3.61° 2.64%
frontie
FIGURE 7

Navigation line extraction results of sugarcane seedlings with different growth stages. (A) Code 12; (D) Code 14; (B, E) Code 16; (C, F) Code 19;
(A–F) illustrate the yaw angles of sugarcane at different growth stages.
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and MRE indicators in Table 4 also demonstrate that the extracted

navigation line meets high precision requirements.

Based on the analysis in Section 2.2.3, the imaging method

employed in this study identifies the baseline as the area with the

highest pixel density along the vertical direction of the image,

corresponding to the potential central crop row. By establishing the

region of interest based on this baseline, the algorithm can

dynamically classify crops belonging to the same row, unaffected by
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missing crops. The accurate extraction of the median crop row within

the ROI enables the algorithm to effectively handle seedling absence.

By comparing the distances between detected crop clusters and the

baseline, the algorithm can robustly identify the correct row despite

missing or sparse crop seedlings. This leads to improved accuracy and

stability in scenarios with crop row discontinuities. These results

demonstrate the centerline selection approach significantly enhances

the robustness of crop row detection in challenging conditions.
FIGURE 9

Navigation line extraction results of rice seedlings with different growth stages. (A) Code 12; (D) Code 15; (B, E) Code 17; (C, F) Code 19; (A-F)
illustrate the yaw angles of rice at different growth stages.
FIGURE 8

Navigation line extraction results of corn seedlings with different growth stages. (A, B, D, E) Code 12-15; (C, F) Code 16-19; (A-F) illustrate the yaw
angles of corn at different growth stages.
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3.4 Generalization capability verification:
evaluation of diverse in-field environments

The image processing techniques presented in this study

demonstrate good generalization ability for corn and rice

seedlings and perform well in extracting navigation lines in

complex field environments, as shown in Figure 11. The

evaluation of diverse in-field environments is denoted in Table 5.

As shown in Table 5, it can be inferred that the algorithms are

robust in dealing with images derived from complex in-field

environments, especially for those images regarding illumination

and disordered vegetation.

Compared to branch-and-leaf and soil environments, the

algorithm in this study demonstrates better robustness under
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varying illumination conditions and in chaotic vegetation

environments. This can be attributed to the algorithm primary

focus on green pixels in the image, while morphological operations

based on NZPR effectively eliminate redundant pixel information.

However, in branch-and-leaf and soil environments, factors such as

fallen leaves and the greenish appearance of soil in paddy fields

introduce a certain degree of disorder to the green pixel information,

resulting in a slight decrease in algorithm performance.
3.5 Generalization capability verification:
evaluation of data augmentation for low-
light and rainy conditions

Data augmentation plays a crucial role in improving the

robustness and generalization capability of machine learning

models, especially when addressing variations in environmental

conditions. In this section, the Albumentations library was utilized

to simulate real-world scenarios under low-light and rainy

conditions. This evaluation aims to further validate the algorithm

adaptability to special conditions and enhance its performance in

practical applications.

As shown in Table 6, the navigation line extraction accuracy of

traditional image processing algorithms exhibits significant

differences under low-light and rainy conditions. According to

the data, rainy conditions have a lesser impact on navigation line

extraction, with lower MAE, RMSE, and MRE values for sugarcane,

corn, and rice compared to low light conditions, indicating good

algorithm robustness in rainy environments. In contrast, under low

light conditions, the errors increase significantly, primarily due to
TABLE 3 Evaluation results of rice seedlings.

Growth
stage

Number
of samples

MEA RMSE MRE

Code 12-15 20 2.96° 4.65° 3.37%

Code 16-19 20 1.679° 2.15° 1.859%
FIGURE 10

Navigation line extraction results of seedling less ridges. (A-F) illustrate instances of crop seedling absence within specific sections of a crop row.
The white circle indicates the location of the seedling absence.
TABLE 2 Evaluation results of corn seedling.

Growth
stage

Number
of samples

MEA RMSE MRE

Code 12-15 20 1.13° 1.46° 1.49%

Code 16-19 20 1.65° 2.22° 1.84%
frontiersin.org

https://doi.org/10.3389/fpls.2024.1499896
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1499896
insufficient lighting, which restricts the extraction of green features

in the images. This is particularly evident in extreme low light
Frontiers in Plant Science 15
environments, as illustrated in Figures 12Ac, Cc, Ec, where green

features are substantially suppressed. Although rainy environments

also involve some degree of low light, the overall lighting is typically

better than in pure low-light conditions. Among the crops, corn

shows the lowest error across both conditions, while rice exhibits

relatively higher errors, especially in terms of RMSE and MRE,

highlighting the challenges faced by the algorithm in

these scenarios.
FIGURE 11

Navigation line extraction results of different crop seedlings in the complex field environment. (A) Variations in illumination conditions: (Aa) Intense
illumination; (Ab) Shadowed environment; (Ac) Water surface glare; (B) Decaying branches and fallen leaves: (Ba) Dried leaves; (Bb) Large clusters of
dried branches; (Bc) Fallen rice leaves; (C) Variations in soil backgrounds: (Ca) Yellowish soil; (Cb) Dark-colored soil; (Cc) Pale-green soil; (D) Chaotic
vegetation: (Da) Adjacent crops interconnection and occlusion; (Db) Weed and misaligned crop; (Dc) Duckweed and green algae.
TABLE 4 Evaluation results of seedling less ridges.

Environment
Number

of samples
MEA RMSE MRE

Seedling absence 20 0.844° 1.263° 1.0448%
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3.6 Processing time analysis: pre- and
post-optimization

In high-resolution image processing, the increase in the number

of pixels necessitates the processing of a larger number of data

points, which significantly augments the computational load and

processing time. To address this challenge, code and algorithm

optimizations were implemented. Ten images of three crop

seedlings at different growth stages were used to evaluate the

average time consumption of various modules in the proposed

algorithm. As shown in Figure 13, the processing time for a late-

growth stage crop image with a resolution of 1920×1080 is largely

dominated by the DBSCAN clustering algorithm. This is attributed

to the high complexity of the neighbor search process, where

processing time escalates markedly with increasing resolution.

Based on Figure 13, it is evident that the processing time of the

optimized DBSCAN algorithm has been significantly reduced. At a

resolution of 640×480, the processing time was nearly 30%.

Meanwhile, at a resolution of 1920×1080, the processing time was

reduced by almost 94%. However, it is worth noting that the

processing time of the optimized DBSCAN algorithm still

accounts for the majority of the total processing time.

To address the issue of DBSCAN, this study has implemented a

KD-Tree to accelerate the neighbor search and utilized OpenMP for

optimizing parallelization. Crop images with two resolutions

(640×480 and 1920×1080) were utilized to test the processing

time of the algorithm proposed in this paper, with 20 images of

crops under different environmental conditions selected for each

growth stage, as shown in Figure 14. The average processing times

for the crops at these two resolutions are presented in Table 7.
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It is observed that processing times for crops in the early growth

stages (as exemplified by instance No. 1 in Figure 14Ab and No. 20

in Figure 14Bb) could be comparable to or exceed those recorded in

later stages (as exemplified by instance No. 15 in Figures 14Ab, Bb).

This discrepancy is likely attributable to varying field conditions; for

instance, images from earlier growth stages may contain substantial

areas of weeds.

A comparison between Figures 14A, B, as well as Figures 14C, D,

reveals a significant reduction in processing time after optimization,

with the improvement being particularly pronounced in high-

resolution image processing. Although there is some variation in

processing times across different crop images, the optimized

algorithm exhibits much greater stability, indicating that the

optimization not only reduces processing time but also enhances

the stability of performance. However, even after optimization, the

processing time for high-resolution images remains significantly

longer than that for low-resolution images, highlighting the

continued computational challenges posed by high-resolution data.

As shown in Table 7, the evaluation suggests that a resolution of

640×480 offers an optimal balance for practical applications.

Comparing the average processing times before and after

optimization, for images with a resolution of 640×480, the

average processing time decreased by approximately 25% to 30%

after optimization. The optimization effect is even more

pronounced for images with a resolution of 1920×1080, where the

processing time was reduced by approximately 80% to 86%. The

processing time was significantly reduced across all resolutions and

crop types, indicating that the optimization methods employed,

such as DBSCAN accelerated using KD-Tree and OpenMP

parallelization, are effective in practical applications. As a result,

the selection of resolution is decided by personalized needs.

4 Discussion

The proposed image-processing techniques exhibit effective

performance in navigation line extraction for sugarcane seedling

plantation rows, accompanied by a desired generalization capability

when applied to different crops and diverse, complex in-field

environments. This study bridges a gap that previous studies still

need to address.
TABLE 5 Evaluation results of the complex environment.

Environment
Number

of samples
MEA RMSE MRE

Illumination 20 0.916° 1.352° 1.008%

Branch and leave 20 1.184° 1.650° 1.330%

Soil 20 1.160° 1.716° 1.239%

Chaotic vegetation 20 0.905° 1.249° 1.008%
TABLE 6 Evaluation results of simulated environments.

Crop Environment
Number

of samples
MEA RMSE MRE

Sugarcane
Low light 20 1.723° 3.136° 1.400%

Rainy 20 1.030° 2.105° 1.310%

Corn
Low light 20 1.478° 2.729° 1.810%

Rainy 20 1.022° 1.813° 1.180%

Rice
Low light 20 1.698° 3.214° 1.990%

Rainy 20 1.510° 3.042° 1.700%
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4.1 Decision process and environmental
robustness of the algorithm

This study proposes a crop row navigation line extraction

algorithm designed based on the principle of prioritizing green

pixels. The algorithm utilizes traditional image processing techniques,

starting with a preprocessing stage that enhances green features and
Frontiers in Plant Science 17
effectively removes noise through grayscale transformation and OTSU

segmentation. Morphological operations guided by the NZPR

significantly reduce unnecessary pixels in the image, isolating the

main stem regions of the crop rows. Noise caused by the

morphological operations is further removed using an eight-

connected algorithm, which also refines the stem regions. During

this step, vertical projection is applied to detect curve peaks
FIGURE 12

Navigation line extraction results of different crop seedlings in simulated environments. As shown in (Bb1), dim grayish raindrops are distributed
across the image at a certain inclined angle. (A) Low light for sugarcane seedlings; (B) Rainy for sugarcane seedlings; (C) Low light for corn seedlings;
(D) Rainy for corn seedlings; (E) Low light for rice seedlings; (F) Rainy for rice seedlings.
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(baseline), providing a foundation for clustering the central crop row.

Optimal region detection is performed using DBSCAN enhanced with

KD-tree acceleration and parallelization techniques, enabling efficient

pixel clustering while reducing computational time. The baseline

detection process helps identify potential target crop clusters, and the

trapezoidal ROI ensures the algorithm focuses on relevant areas, even

in cases of crop absence, while excluding irrelevant clusters. Sigmoid

thresholding further segments the target crop rows, producing the

optimal region for subsequent processes. Finally, the RANSAC

algorithm combined with the least squares method is employed to fit

the data points. This ensures robust accuracy even in the presence of

outliers, successfully extracting the navigation line. Image

preprocessing is a critical step in the navigation line fitting process.

During this stage, the number of extracted pixels directly impacts the

algorithm performance: too few pixels may fail to adequately represent

the characteristics of the crop row, while too many pixels could

significantly increase the computational burden in subsequent steps.

Therefore, ensuring the extracted image reflects the crop row main

features is a key objective in the preprocessing stage.

To evaluate the adaptability of this step under different

environmental conditions, this study specifically selected low-light

and rainy conditions as experimental scenarios, given their broader

and more pronounced impact on image quality compared to other

factors. As shown in Figure 15B, the total number of pixels extracted

during preprocessing is highest under normal conditions, followed by

low-light conditions, and lowest under rainy conditions. This

indicates that the algorithm is affected to some extent under

extreme environments. However, the extracted image pixels remain

effective in representing the main features of the crop rows.

Moreover, the navigation lines obtained under the three different

conditions are nearly identical, demonstrating the proposed

algorithm robustness and adaptability in extreme environments.
4.2 Algorithm efficiency

In this study, 640×480 and 1920×1080 are adopted as the target

resolutions for image processing. These two resolutions reflect the
Frontiers in Plant Science 18
consideration of mainstream resolutions in current visual devices and

technology trends (Lin et al., 2020; He et al., 2022). The 640×480

resolution is widely used in real-time visual processing systems since

that resolution requires reduced computational power, enable

efficient algorithm operation within constrained computational

resources. Conversely, 1920×1080, as a representative of higher

definition resolutions, provides richer details and higher image

quality, suitable for applications demanding higher detail accuracy,

such as precise image analysis and advanced visual recognition tasks

(Yang et al., 2020). By conducting experiments at these two

resolutions, the adaptability of our proposed algorithm to different

application demands can be validated. When applying our proposed

algorithm to perform diverse field management tasks at the seedling

stage such as weeding, spraying pesticides, and root-zone soil backfill,

an optimal resolution can be selected through our developed human-

machine interface in response to cross growth stage of crop seedlings.

Statistical analysis reveals that the algorithm average runtime is

0.31 seconds for images with a resolution of 640×480 and 0.51

seconds for images with a resolution of 1920×1080. In practical

applications, agricultural robots performing field management tasks

such as weeding, spraying pesticides, fertilizer application, and root-

zone soil backfill typically travel at 0.6~1.5 meters per second. This

indicates that the algorithm proposed in this study addresses the

demands for real-time application.
4.3 The algorithm adaptability to different
growth stages

The excellent adaptability of the algorithm to crops at different

growth stages represents a significant breakthrough in this study.

The average values of the growth stages of ‘Code 12-19’ from the

evaluation results of Tables 1–3 show that MEA is 2.01°, RMSE is

2.95°, and MRE is 2.37%, which has demonstrated commendable

performance in the case of cross-growth-stage crops. Additionally,

by comparing the experimental results of different crops, it can be

observed that the algorithms perform better on corn and rice

seedlings, which have relatively concentrated and evenly
FIGURE 13

Comparison of average processing times before and after optimizations for different main algorithm modules (processing time exceeding 1 ms). The
numbers 1-7 correspond to the following algorithm modules: ExG, OTSU, NZPR-Morphological Operation, Eight-Connectivity, first sliding window,
KD-Tree accelerated DBSCAN, second sliding window. (A) Resolution of 640×480; (B) Resolution of 1920×1080.
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distributed branches and leaves, than on sugarcane seedlings, which

have unevenly dispersed branches and leaves.
4.4 The algorithm adaptability to complex
field environments

An essential aspect of evaluating the performance and robustness

of the proposed image processing techniques is the adaptability to

complex field environments. Complex field environments, as
Frontiers in Plant Science 19
depicted in Figure 11, can pose various challenges for the

algorithms, such as varying illumination (Figure 11A), fallen leaves

(Figure 11Ba), dry branches (Figure 11Bb), soil background

(Figure 11C), similar colors (Figure 11Db) and occlusion

(Figure 11Da), dry fields (the first and second columns in

Figure 11) and paddy land (the third column of Figure 11),

different crop row spacing, etc. These factors can affect the accuracy

and efficiency of the algorithms in detecting and segmenting crop

plants from the images. Therefore, the algorithm adaptability to

different complex field environments will be discussed in this section.
FIGURE 14

Processing times of crop images at the two resolutions. (A) Resolution of 640×480 before optimization; (B) Resolution of 640×480 after
optimization; (C) Resolution of 1920×1080 before optimization; (D) Resolution of 1920×1080 after optimization; (a) Sugarcane; (b) Rice; (c) Corn.
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On the basis of the evaluation results of environments presented

in Tables 4 and 5, it can be inferred that MEA has an average value

of 1.0018°, while RMSE has an average value of 1.446°. Moreover,

MRE has an average value of 1.126%. Among the environments

presented in Table 5, the algorithms perform the best in chaotic

vegetation, indicating that they can effectively handle situations

where the branches and leaves of crops overlap and occlude with

each other, while also accounting for the presence of offset crops

and weeds. This remarkable performance can be mainly attributed

to the proposed NZPR concept and the mapping relationship

between NZPR and morphological operations. It is noteworthy
Frontiers in Plant Science 20
that the common phenomenon of seedling less ridges in agricultural

production can be successfully clustered into crop rows, thanks to

the centerline selection method proposed in this study.

The inter-row spacing of the crops tested in this study was 1

meter for sugarcane seedlings (Figure 7), 0.5 meters for corn

seedlings (Figure 8), and 0.3 meters for rice seedlings (Figure 9).

Upon analyzing the evaluation results of three crops, it becomes

evident that the algorithms can effectively facilitate precise

navigation for crops with inter-row spacing variability. As

illustrated in section 2.2.3 and section 2.3.2, the utilization of

vertical projection can successfully detect the baseline, which
FIGURE 15

Illustration of image preprocessing under extreme environments. (A) Original images: (Aa) Normal; (Ab) Low light; (Ac) Rainy; (B) Images after
preprocessing; (C) Results of navigation line.
TABLE 7 Evaluation results of the average processing time.

Resolution
Average processing time of crop seedling images/ms

Optimization Sugarcane Rice Corn

640×480
Before 435.93 441.52 449.05

After 326.60 295.12 329.05

1920×1080
Before 2784.10 3904.50 2502.74

After 518.20 516.20 519.90
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serves as the reference for centerline selection; crop clusters located

in the centerline area can be determined by applying the distance

threshold method, thus ensuring adaptability to inter-row

spacing variability.

Arid land and paddy fields represent two major environments

for crop cultivation, bearing considerable influence on agricultural

production. For arid land crops, represented by corn, the average

values calculated from Table 2 present that MEA is 1.39°, RMSE is

1.844°, and MRE is 1.665%. For paddy field crops, represented by

rice, the average values calculated from Table 3 present that MEA is

2.3195°, RMSE is 3.4°, and MRE is 2.6145%. It is easily noticeable

that the algorithm exhibits better adaptability to corn seedlings than

rice seedlings. Apart from the influence caused by the inherent

morphological differences between these two crops, factors such as

reflections and glare in the paddy field environment can also

interfere with the extraction of navigation lines. However, even in

the case of rice seedlings, where the performance is relatively less

favorable, there is a slight improvement in terms of MEA when

compared to similar studies in the same category (Fu et al., 2023;

Wang A. et al., 2021).
4.5 The algorithm adaptability to
simulate environments

In practical agricultural operations, it is inevitable to encounter

extreme conditions such as low light, nighttime, and rainy weather.

Therefore, simulating these extreme environments, as shown in

Figure 12, through image augmentation is highly beneficial for

further validating the generalization capability of the proposed

algorithm. According to the results in Table 6, the average values

of MEA, RMSE, and MRE for the three crops under low light and

rainy conditions are 1.41°, 2.67°, and 1.56%, respectively. When

compared with the average values obtained under various real-

world conditions in Tables 4 and 5 (MEA: 1.0018°, RMSE: 1.446°,

MRE: 1.126%), it is evident that low-light and rainy conditions

present greater challenges to the robustness and generalization

capability of the proposed algorithm. This discrepancy can be

attributed to the fact that lighting and rain affect the image

globally, leading to diminished visibility of green features under

such conditions. Since the algorithm proposed in this paper heavily

relies on green information for subsequent processing, the decrease
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of these features in low-light and rainy environments directly

impacts its performance. This highlights that future research

could explore the use of sensors to acquire multidimensional data

of crops, addressing the limitations of relying solely on image-

based information.
4.6 Comparative analysis between the
proposed pixel-wise method and the deep
learning-based method in navigation
line extraction

4.6.1 Navigation line extraction combining deep
learning method and image processing method

On the basis of our constrained image dataset, to accelerate the

training process and improve the model accuracy and

generalization, we use transfer learning to obtain a model that

can identify rice, sugarcane and corn plants. A YOLOv8n pre-

trained weights was used in the process of transfer learning. The

software environment comprised Python version 3.9, PyTorch

version 2.4.1, and CUDA version 12.1. The model was trained

with a batch size of 2 and 300 epochs, while all other

hyperparameters were kept at their default settings. In this study,

our datasets consisting three types of crop seedlings under various

environmental conditions were also used for training. The primary

stem regions of the seedlings were annotated, aligning with the

approach of the proposed traditional image processing algorithm,

which extracts the main stem regions for navigation line fitting. The

workflow is illustrated in Figure 16. The process begins with

training the YOLOv8n model on the dataset. Once trained, the

model processes the test set to generate bounding boxes around the

crop regions. The center points of these bounding boxes are

extracted and clustered using the DBSCAN algorithm to identify

the primary crop row. The clustered center points are then used in

an Orthogonal Distance Regression (ODR) model to fit a

navigation line.

Supplementary Table S1 illustrates the evaluation results of

navigation line extraction using the YOLOv8n model for three

crops: sugarcane, corn, and rice. Among the crops, rice achieved the

best overall performance, with the lowest MAE (0.833°), RMSE

(1.225°), and MRE (0.971%), indicating that the model could
FIGURE 16

The workflow for navigation line extraction combining transfer learning and image processing methods (named as CTLIP).
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effectively detect and extract navigation lines in rice fields. This

performance can be attributed to the relatively distinct stem regions

of rice seedlings, which are easier to identify, and the minimal

occlusion between individual stems. In contrast, sugarcane and corn

showed higher error values, with corn having the highest MRE

(2.386%) and sugarcane having the highest RMSE (2.934°). The

inferior performance of sugarcane and corn can be attributed to

their severe occlusion in the later growth stages, where stem regions

become nearly indistinguishable. These occluded areas significantly

increase the occurrence of missed detections (shown in the white

circled area of Figure 17), thereby affecting the accuracy of

navigation line extraction. Additionally, the performance was

observed to degrade under extreme low-light conditions, where

green features are heavily suppressed. This leads to higher error

rates and occasional missed detections. These results will serve as

the basis for a comparative analysis with the algorithm proposed in

this study, which will be detailed in the subsequent discussion

section. The aim is to evaluate the advantages and limitations of

deep learning in handling various conditions relative to the

approach proposed in this study.

4.6.2 Comparative analysis
To further present our study, in combination with evaluation

metrics used in this study, a comparison analysis was done between

our study with existing similar research and the CTLIP method, as

illustrated in Supplementary Table S2.
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As shown in Supplementary Table S2, the proposed navigation

line extraction algorithm outperforms the traditional image

processing method by Fu et al. (2023) in terms of MEA,

demonstrating a notable reduction in error. Moreover, the RMSE

achieved by our algorithm is 2.47°, further highlighting its accuracy

across multiple crops, growth stages and diverse field environments,

including sugarcane and corn, as opposed to the single crop tested

in the comparative study. Additionally, the inclusion of MRE in our

results presents a more comprehensive evaluation. This

demonstrates the enhanced generalization and robustness of our

algorithm in terms of traditional image processing. The comparison

between CTLIP and the proposed algorithm indicates that both

methods exhibit good performance in crop row detection. Our

method achieved better results, reflecting its high precision and

effective error control. This highlights the capability of traditional

image processing methods to leverage prior knowledge and

structured algorithms for accurate navigation line extraction in

simpler, well-defined scenarios. Notably, CTLIP performed

particularly well in scenarios where the main stems of crops were

visible with minimal occlusion, such as in rice seedlings (lowest

MEA of 0.833° in Table 7). Both methods outperformed the Fu et al.

(2023) approach, emphasizing the adaptability across multiple

crops (sugarcane, corn, and rice) and environmental conditions.

The findings suggest that integrating the strengths of traditional

methods and deep learning could further enhance crop row

detection accuracy, particularly under diverse field conditions.
FIGURE 17

Navigation line extraction results of CTLIP. (A) Sugarcane seedlings; (B) Corn seedlings; (C) Rice seedlings.
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4.7 Error analysis of navigation
line extraction

In this study, traditional image processing methods and deep

learning-based object detection methods exhibit distinctly different

challenges in navigation line extraction. For traditional image

processing, a significant source of error lies in the clustering

process, particularly when crop rows appear closer together at the

top of the image. This issue is exacerbated in cases where the inter-

row spacing is narrower, as shown in Figure 18A, C with rice

seedlings. The clustering algorithm may mistakenly group crops

from adjacent rows into the central crop row, especially in the top

regions of the image, leading to inaccuracies in navigation line

fitting. A practical solution to this problem is to adjust the field of

view of the camera. Since real-time navigation typically does not

require distant views, narrowing the field of view can reduce the

apparent convergence of crop rows at the top of the image, thereby

mitigating clustering errors.

In contrast, deep learning-based object detection errors

primarily stem from missed detections. As illustrated in

Figures 18B, D, missed detections result in the loss of critical

information from both the top and bottom regions of the crop

rows in the image. When fitting the navigation line, the algorithm

can only rely on a limited number of bounding boxes, significantly

impacting navigation line extraction accuracy. In extreme cases,

such as when only one bounding box remains for the central crop

row, it becomes impossible to perform navigation line fitting, which

is a critical failure for the algorithm. The reasons for these missed

detections include the inability to extract features of the main stem.

This issue can arise due to severe occlusion among crops, where
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overlapping leaves and stems obscure the main stem from the

camera view. Additionally, in low-light conditions or during

inclement weather, the features of the crops become less distinct

in the images. This lack of clarity hampers the deep learning model

ability to accurately detect and identify the main stems, leading to

increased instances of missed detections. To address this issue,

future research will focus on collecting more crop datasets under

varying environmental conditions and using more efficient and

suitable modules in the deep learning model.

This comparative analysis highlights that, in this study,

traditional methods struggle with row spacing and clustering

errors, and deep learning methods are vulnerable to detection

omissions, especially in adverse environmental or crop

conditions. Understanding these failure modes is essential for

improving the robustness of navigation line extraction in practical

agricultural scenarios.
4.8 Advantages, limitations and prospects

4.8.1 Advantages and limitations
Deep learning models have achieved impressive progress in

image recognition but still have some shortcomings and challenges.

One such challenge is that most existing models are trained for

specific datasets and are usually unable to adapt to different

scenarios, thus lacking generalization ability. Additionally, the

scale and diversity of the required datasets are demanding.

Furthermore, the high computational cost and latency associated

wi th deep learn ing may not be conduc ive to some

practical applications.
FIGURE 18

Illustrations of error samples. (A, C) Narrower interrow spacing; (B, D) Missing detection.
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In extracting navigation lines, deep learning-based object

detection is well-suited for scenarios where there is a clear

differentiation between the growth stages, minimal crop occlusion,

and easy plant identification. However, these ideal field conditions are

rare in most cases. As a result, the algorithms proposed in this study

fall under classical image processing techniques, characterized by

their cost-effectiveness, minimal data requirements, ease of

integration with edge devices, and suitability for deployment on

resource-limited embedded systems or mobile devices. In addition,

classical image processing techniques are more interpretable and

explainable, as they rely on well-defined mathematical models and

algorithms rather than black-box neural networks. This is particularly

desirable for researchers, as it helps to understand the fundamental

logic governing variations in phenomena, thereby enabling adequate

explanation and management. Notably, deep learning-based object

detection outperforms traditional image processing methods in the

presence of weeds within crop rows. This advantage arises because

deep learning models are capable of learning complex features and

distinguishing between crops and weeds based on extensive training

datasets, whereas traditional methods often rely on predefined rules

and thresholds, which can be easily disrupted by the presence of

similar or overlapping features such as weeds.

Overall, the presented study highlights the generalization of

navigation line extraction at different crop seedling stages. Despite

advancements in classical image processing techniques, there are

limitations in dealing with complex image processing tasks such as

complex seedling interaction between adjacent planting rows,

intense weeds between plantations.

4.8.2 Prospects
In this study, a pixel-wise navigation line extraction method of

cross-growth-stage seedlings was verified, showing a promising

solution for in-depth intelligent agricultural machinery

application, especially for the field management task practices

such as stumping, weeding, spraying pesticides, and root-zone soil

backfill. For future studies, the proposed navigation line extraction

method can be integrated into agricultural machinery, make it

possible to change the current field management task practices

from mechanization to intelligence, solving the problem of

population ageing and labor costs.
5 Conclusion

From the results presented in this study, the following

conclusions could be drawn:
Fron
1. The present study successfully achieved near-noiseless

binary images through pre-processing. It identified

appropriate fitting regions by detecting crop rows.

Furthermore, it obtained precise navigation lines through

linear fitting, regardless of growth stages, diverse field

environments, or ridges of seedling absence.

2. The performance of the proposed algorithms was

comprehensively evaluated by three indicators: MEA,
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RMSE, and MRE. For different crops under different

growth stages or environmental conditions, MEA and

RMSE are basically in the range of 1° to 4°, while MRE is

in the range of 1% to 4%, which indicates that the

navigation line and the reference line were closely

aligned. The distribution of errors between them was

found to be relatively uniform. For the 640×480

resolution, the algorithm average processing time is 310

ms, demonstrating sufficient real-time performance to

meet the navigation and operational requirements of

agricultural robots. For the 1920×1080 resolution, the

average processing time is 510 ms, which, despite being

longer, is still adequate for practical applications, ensuring

that the algorithm maintains real-time functionality in field

management tasks.

3. The mathematical relationship between opening operation

and NZPR can create clear and distinct boundaries between

crop rows in different growth stages. This enables the

connected component filter to significantly suppress

irrelevant information in the image. Moreover, the fitting

region that best represents the central part of the crop can

be obtained by applying the NZPR adaptive sigmoid

function to segment the vertical projection curves of

different centerlines. This ensures the accuracy of the

centerline fitting.
In conclusion, this study proposed an image processing algorithm

for navigation line extraction of cross-growth-stage seedlings in

sugarcane, corn and rice. Its efficiency and generalization

capabilities were verified in complex field environments.
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SUPPLEMENTARY FIGURE 1

Image graying process by applying ExG. (A) Original image; (B)
Grayscale image.

SUPPLEMENTARY FIGURE 2

Navigation line fitting. (A) Crop pixels after applying the sliding window
method; (B) The navigation line is obtained after applying RANSAC and the

least squares method.

SUPPLEMENTARY FIGURE 3

Interaction interface for field navigation at crop seedling stage.
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