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Deep learning-enabled
exploration of global spectral
features for photosynthetic
capacity estimation
Xianzhi Deng1, Xiaolong Hu1*, Liangsheng Shi1*, Chenye Su1,
Jinmin Li1, Shuai Du1 and Shenji Li2

1State Key Laboratory of Water Resources Engineering And Management, Wuhan University, Wuhan,
Hubei, China, 2Urban Operation Management Center of Hengsha Township, Shanghai, China
Spectral analysis is a widely usedmethod formonitoring photosynthetic capacity.

However, vegetation indices-based linear regression exhibits insufficient

utilization of spectral information, while full spectra-based traditional machine

learning has limited representational capacity (partial least squares regression) or

uninterpretable (convolution). In this study, we proposed a deep learning model

with enhanced interpretability based on attention and vegetation indices

calculation for global spectral feature mining to accurately estimate

photosynthetic capacity. We explored the ability of the model to uncover the

optimal vegetation indices form and illustrated its advantage over traditional

methods. Furthermore, we verified that power compression was an effective

method for spectral processing. Our results demonstrated that the new model

outperformed traditional models, with an increase in the coefficient of

determination (R2) of 0.01-0.43 and a decrease in root mean square error

(RMSE) of 1.58-12.48 mmol m-2 s-1. The best performance of our model in R2

was 0.86 and 0.81 for maximum carboxylation rate (Vcmax) and maximum

electron transport rate (Jmax), respectively. The photosynthesis-sensitive

spectral bands identified by our model were predominantly in the visible range.

The most sensitive vegetation indices form discovered by our model was
Reflectancenear−infrared+Reflectancegreen=blue

Reflectancenear−infrared�Reflectancered
. Our model provides a new framework for

i n t e rp re t i ng spec t r a l i n fo rma t i on and accu r a t e l y e s t ima t i ng

photosynthetic capacity.
KEYWORDS

hyperspectral data, spectral sensitive band, vegetation index, photosynthetic capacity,
deep learning, power compression
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1 Introduction

Photosynthesis plays a critical role in the carbon uptake of

vegetation and significantly impacts food production

(Friedlingstein et al., 2022). The capacity of photosynthesis in C3

crops relies on two critical physiological parameters: the maximum

carboxylation rate (Vcmax) and the maximum electron transport

rate (Jmax) (Long and Bernacchi, 2003). Accurate estimation of these

biochemical parameters that determined by modelling CO2

assimilation rate versus intercellular CO2 concentration (A-Ci)

curves is important for describing the complex dynamics of

photosynthetic performance in various crops (Farquhar et al.,

1980; Van der Tol et al., 2009; Zhang et al., 2014).

The Vcmax and Jmax is typically measured via gas exchange

systems, which is expensive and time-consuming. Due to the

intrinsic mechanisms of reflectance spectroscopy in response to

photosynthetic physiological processes, the excellent efficacy of

spectral reflectance in accurately estimating Vcmax and Jmax has

been widely proved across different species and temperature ranges

(Serbin et al., 2012, 2015; Heckmann et al., 2017; Silva-Perez et al.,

2018; Kumagai et al., 2022).

Previous studies have demonstrated that specific wavelengths

are highly sensitive to photosynthetic traits, making them valuable

for estimating photosynthetic capacity. Light absorbed by

chlorophyll pigments, especially in the blue and red regions (400-

700 nm), drives key photosynthetic processes like electron flow and

carbon fixation (Gitelson et al., 2022). While green light (500-570

nm) is less absorbed, it still plays a role in overall photosynthetic

efficiency, which has been shown to be comparable to that of red

light (Wolf and Blankenship, 2019; Gitelson et al., 2022). Far-red

light (700-750 nm), although not directly involved in oxygen

release, contributes by stimulating cyclic electron flow in

Photosystem II (PSII) and Photosystem I (PSI), which enhances

the overall efficiency of photosynthesis (Kramer and Sacksteder,

1998; Cruz et al., 2001; Joliot and Joliot, 2005, 2006; Laisk et al.,

2010). Furthermore, near-infrared (750-1200 nm) reflectance is

primarily influenced by leaf structure and mesophyll cell

characteristics, which are linked to photosynthetic performance

(Terashima and Saeki, 1983). The mechanical link between spectra

and photosynthesis provides the foundation for exploring the

spectral features of photosynthetic capacity.

In recent years, advances in sensor-enabled photosynthetic

measurements have shifted the research focus towards mining

rich spectral information (Araus and Cairns, 2014). However, the

limited availability of real-world measurements of photosynthetic

data poses a challenge in mining hyperspectral data, especially when

the sample size is smaller than the dimension of the hyperspectral
Abbreviations: Vcmax, maximum carboxylation rate; Jmax, maximum electron

transport rate; Rnir, reflectance of near-infrared; Rg/b, reflectance of the green or

blue bands; Rr, reflectance of the red bands; Ames, mesophyll cell surface area;

FvCB, Farquhar-von Caemmerer-Berry; PSI, Photosystem I; PSII, Photosystem

II; A photosynthetic rate; Ci, intercellular CO2 concentrations; POC, power-

compression; SR, simple ratio; mNDVI, modified normalized difference index;

SIPI, structure insensitive pigment index; R2, coefficient of determination; RMSE,

root mean square error; MAPE, mean absolute percentage error.
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data (Prasad and Bruce, 2008; Mojaradi et al., 2009; Bioucas-Dias

et al., 2013). Additionally, the spectral reflectance captured by

hyperspectral sensors is influenced by multiple factors, including

the geometric structure of plants (Slaton et al., 2001) and leaf

scattering characteristics (Grant, 1987). Accordingly, spurious

spectral variations will be introduced in the recorded signals,

blurring spectral signatures associated with target photosynthetic

traits (Fu et al., 2020). To address these challenges posed by high

dimensionality of hyperspectral data and complex biophysical

mechanism in the response of spectral reflectance to

photosynthesis, current studies propose two mainstream

solutions: vegetation indices-based model and full spectra-

based model.

The vegetation indices are constructed based on sensitive

wavelength bands. The mechanical relationship between the

photosynthetic traits and some specific sensitive wavelengths has

been widely proved (Barnes et al., 2017). Previous studies revealed

that the visible to near-infrared (VNIR: 400-1400 nm) region is

essential for predicting Vcmax and Jmax (Serbin et al., 2012; Barnes

et al., 2017; Meacham-Hensold et al., 2019). The key wavelengths,

including blue band at 450 nm (Meacham-Hensold et al., 2019),

green band at 550 nm (Wang et al., 2021a), red band at 660 nm (Fu

et al., 2020) and 680 nm (Meacham-Hensold et al., 2019), far red

band at 700-720 nm (Fu et al., 2020; Wang et al., 2021a), and near-

infrared region of 800-1400 nm (Serbin et al., 2012, 2015), are

detected. Accordingly, the vegetation indices defined based on

abovementioned wavelengths are widely used to estimate Vcmax

and Jmax, such as normalized difference vegetation index (NDVI),

enhanced vegetation index (EVI), and ratio vegetation index (SR)

(Fu et al., 2020; Camino et al., 2022; Guo et al., 2023; Song et al.,

2023). Specifically, the photochemical reflectance index (PRI),

which is defined at 531 and 570 nm wavelengths and indicates

xanthophyll pigments, shows good performance for describing

photosynthetic efficiency (Ainsworth et al., 2014; Barnes et al.,

2017; Fu et al., 2022). The Structure Insensitive Pigment Index

(SIPI), which is calculated using 445, 680 and 800 nm wavelengths

and is sensitive to chlorophyll a and carotenoids, is also proved as a

good proxy for photosynthetic traits (Wu et al., 2019; Fu et al., 2020;

Yan et al., 2021). However, the single vegetation index fails to fully

utilize hyperspectral information. Different forms of indices can

yield varying results in estimating photosynthetic capacity (Jin et al.,

2012). Finding an appropriate combination of sensitive bands and

index forms becomes a challenging task for target traits estimation

(Wu et al., 2008; Yao et al., 2010; Chen et al., 2022).

The full spectral profiles contain more abundant information

compared to vegetation indices. Many studies directly use the

hundreds of bands to quantify the photosynthetic traits (Serbin

et al., 2012, 2015; Yendrek et al., 2017; Meacham-Hensold et al.,

2020; Sexton et al., 2021). The popular method is to construct the

statistical relationship between full spectral reflectance and

photosynthetic parameters. Some classical machine learning

algorithms including partial least squares regression (PLSR)

(Meacham-Hensold et al., 2019; Fu et al., 2024b) and lasso

regression (Pellikka et al., 2023), deep learning models including

artificial neural network regression (Fu et al., 2019) and one

dimensional convolutional neural network (OneDCNN) (Furbank
frontiersin.org
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et al., 2021; Fu et al., 2024a) have been employed to build the

statistical model and show good performance. Moreover, deep

learning methods demonstrate higher performance compared to

classical machine learning approaches (Furbank et al., 2021; Deng

et al., 2024). However, the full spectral-based deep learning model

such as OneDCNN is highly likely to learn the spurious relationship

and even distort our understanding of the true biophysical response

due to lack of prior knowledge constraints, resulting in the poor

generalization ability (Fu et al., 2022). Therefore, it is important to

incorporate prior knowledge constraints on biophysical spectral

response characteristics into the deep learning models to enhance

their interpretability and generalization.

The effective means to address current issues in estimating

photosynthetic parameters lies in the integration of methods that

automatically mine multiple spectral bands and incorporate

biophysical priors within deep learning models. Accurately

estimating photosynthetic parameters requires identifying key

bands and spectral features tied to biophysical characteristics.

Recent advancements have introduced attention mechanisms as

an effective method for selecting sensitive bands (Lorenzo et al.,

2020; Zheng et al., 2022). Attention mechanisms enable the model

to assign greater weight to regions of interest, thereby improving the

selection of important features (Vaswani et al., 2017). Global

attention approach provides a promising method for sensitive

bands selection. The gumbel softmax, characterized by the output

in the form of one-hot vectors, exhibits excellent performance in

models with latent categorical variables (Jang et al., 2017).

Incorporating gumbel softmax into attention mechanism for

identifying sensitive bands shows great potential. While these

methods offer improvements, the application of knowledge-

guided deep learning for photosynthetic trait estimation is still

relatively underexplored.

Traditional spectral analysis methods often rely on predefined sets

of spectral bands and fixed vegetation indices, which can fail to capture

the full complexity of spectral information or adapt to variations in

spectral characteristics (Wu et al., 2008; Yao et al., 2010; Chen et al.,

2022). These methods tend to be limited by the assumption that fixed

spectral bands are sufficient for accurate parameter estimation, which

often does not align well with the complex biophysical processes being

studied. Knowledge-guided deep learning, which integrates physical

constraints, network architecture design based on prior knowledge, and

data preprocessingmethods informed by biophysical principles, offers a

promising alternative (De Bézenac et al., 2019; Yuan et al., 2020; Chen

et al., 2021; Sridharan and Mota, 2023). However, research on the

application of knowledge-guided deep learning for photosynthetic trait

estimation remains limited. Our previous study pioneeringly proposed

the SA-IndiceCNN model which integrates prior knowledge by

designing vegetation indices calculation (Deng et al., 2024). However,

this model feeds abstract features derived from large spectral band

regions through dilated convolutions and pooling operations, which

sacrifices the detailed information from individual bands and distorts

the spectral band positions.

To overcome this limitation, we focus on sensitive spectral

bands and their correct positioning, which is expected to provide
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more reliable biophysical priors and further improve performance

of the knowledge-guided deep learning model for Vcmax, and Jmax

estimation. Unlike previous models that employed a single index

form, we expect the most important index form could be

automatically identified by gating mechanism (Yu et al., 2019).

Additionally, appropriate spectral signal preprocessing is crucial for

improving photosynthetic capacity estimation (Guo et al., 2023;

Song et al., 2023). Power compression, a technique widely applied in

deep learning for speech spectrum signal processing (Li et al.,

2021b), can reduce dynamic range and balance the loss gap

between different spectral regions, allowing the neural network to

capture more detailed information in weak signal areas (Li

et al., 2021b).

In this study, we propose a novel approach that combines global

attention mechanisms and gumbel softmax to identify sensitive

spectral bands, addressing the limitations of traditional methods in

spectral information utilization. A specialized loss function is

introduced to preserve the spectral reflectance characteristics in

the input features, ensuring accurate attention-based selection. We

also incorporate prior knowledge of vegetation indices into the deep

learning framework, using a gating mechanism to select the most

relevant biophysical features related to photosynthesis.

Additionally, power compression is applied during preprocessing

to enhance weak signal features and improve model performance.

Our research objectives are as follows: (1) to explore the feasibility

and reliability of using deep learning for mining photosynthetic

sensitive bands and vegetation indices; (2) to investigate the utility

of spectral power compression and verify the stability and

applicability of our developed model under different spectral

resolutions; (3) to evaluate the performance of our developed

model in estimating photosynthetic capacity and illustrate its

advantage over the traditional models.
2 Materials and methods

2.1 Data acquisition and processing

We collected samples of rice and wheat from two distinct

experimental locations. The rice samples were grown in Fumin

Village, Hengsha Township, Chongming District, Shanghai, China

(31.34°N, 121.84°E) from May to November 2022. This area has a

subtropical monsoonal climate with an average annual temperature

of 15.4°C and annual precipitation of around 1,100 mm. No special

irrigation or fertilizer treatments were applied to the experimental

field. The wheat samples were grown in Wuhan, Hubei Province,

China (30.54°N, 114.36°E) from November 2022 to June 2023. This

region has a north subtropical monsoonal climate, with an average

annual temperature of 15.8°C to 17.5°C and annual precipitation of

1,150 mm to 1,450 mm. To ensure comprehensive coverage, we

collected samples of both rice and wheat throughout the entire

growth period. The geographic location of the experimental area is

shown in Supplementary Figure S1, and the experimental data

collection images are displayed in Supplementary Figure S2.
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2.1.1 Gas exchange measurement and
photosynthetic capacity acquisition

The photosynthetic parameters Vcmax and Jmax were obtained

from leaf gas exchange measurements using a portable gas exchange

system, LI-6800 (LI-COR, Lincoln, NE, USA). The system recorded

the response of photosynthetic rate (A) to a series of intercellular CO2

concentrations (Ci). The leaf chamber temperature was adjusted to

match the temperature of the leaves. A full-span calibration for CO2,

water, and gas flow rate and minimal slope search were performed

before each curve measurement. The relative humidity inside the leaf

chamber was manually set to match the actual humidity. The

photosynthetic measurements were taken at a saturation light

intensity of 2000 mmol m-2 s-1 for rice and 1800 mmol m-2 s-1 for

wheat. The light intensity was determined from the preliminary

experiments of the assimilation rate - light intense (A-Q) response

curve. Gas exchange measurements were conducted on fully

expanded leaves from the upper, middle, and lower layers of each

rice and wheat plant. The dynamic assimilation technique (DAT)

(Stinziano et al., 2019) was employed, with an initial CO2

concentration of 100 ppm and a final concentration of 1100 ppm.

Due to the significant assimilation shifts caused by high CO2 change

rates, the ramp rate for CO2 changes was set at 100 ppm/min

(Stinziano et al., 2017 (Stinziano et al., 2019; Saathoff and Welles,

2021). To determine Vcmax and Jmax, Farquhar-von Caemmerer-

Berry (FvCB) model (Farquhar et al., 1980; Bernacchi et al., 2001)

was fitted to the collected A-Ci curves (Sharkey et al., 2007). The most

widely accepted use for the A-Ci curve obtained from DAT is to

estimate Vcmax and J, and those values are closely aligned between the

standard and DAT approaches (Stinziano et al., 2017; Taylor and

Long, 2019).We did not consider the effect of mesophyll conductance

limitation, consistent with previous studies (Drake et al., 2017;

Heckmann et al., 2017; Rogers et al., 2017; Kumarathunge et al.,

2019; Salmon et al., 2020; Saathoff and Welles, 2021; Deng et al.,

2024). The fitting analysis of the A-Ci curves was conducted using the

“plantecophys” package (Duursma, 2015) in the R platform (https://

bitbucket.org/remkoduursma/plantecophys). All photosynthetic

parameters were normalized to 25°C.

2.1.2 Spectral data acquisition and processing
The spectral data were collected using a Specim-IQ

hyperspectral camera (Oulu, Finland, Behmann et al., 2018),

which captured hyperspectral images of each detached leaf. The

push-broom camera recorded spectral reflectance in a continuous

wavelength ranging from 400 nm to 1000 nm with a spectral

resolution of 3.5 nm. Two 150W halogen lamps which cover the

400-1000 nm wavelength range were fixed beside the camera as

light sources. A tripod supported them to capture images at a

distance of 0.5 m from the leaves. Each scan consisted of 512 spatial

channels along the rows. A white panel with 99% reflectance

(Spectralon, Labsphere Inc., North Dutton, NH, USA) was placed

horizontally next to the leaves and scanned along with the plant

leaves in the collected hyperspectral images. The exposure time was

adjusted to avoid sensor saturation. Image acquisition and storage

were completed within three minutes for each image. The acquired

images were processed by applying a mask calculation to remove
Frontiers in Plant Science 04
the background. The mask calculation was performed by

segmenting the leaf from the surrounding background based on

color thresholds. The spatial dimension of hyperspectral images

after mask calculation was consistent with the spatial area measured

by the LI-6800. The spatial dimensions of the leaves were averaged

to obtain spectral reflectance. Then, we used Savitzky-Golay (SG)

filter to remove noise (Schafer, 2011). The window length was set to

21, and the polynomial fitting order was 2.

Based on the SG filter, we applied different power compression

(POC) ratios to enhance the spectral signals (Li et al., 2021a, b).

Power compression is a nonlinear transformation technique

commonly used in speech spectral signal processing to adjust the

range and distribution of signal values, especially when the original

signal exhibits wide variations in magnitude (Yu et al., 2022;

Ochieng, 2023; Wen and Verhulst, 2023; Abdulatif et al., 2024).

During network training using mean square error (MSE) as a

criterion, the optimization process tends to favor areas with

higher spectral values. This focus can obscure finer details in

regions with lower values, such as the visible light spectrum. By

compressing the reflectance values, we anticipated capturing more

intricate information in weak areas such as visible bands region.

This method can potentially enhance the quality of spectral

feature extraction.

We only applied power compression to the reflectance values

(amplitude). We did not compress the relative trends (phase). This

transformation equalizes the importance of all spectral bands by

compressing the highly variable reflectance values, especially in

regions with uneven distributions. This compression is particularly

beneficial for highlighting weaker signals that may otherwise be

overshadowed by stronger reflectance values in certain regions,

such as the near-infrared spectrum, which often dominates

hyperspectral data. A generalized compression method was

employed. The calculation formula is as follows:

Xc = jX jb (1)

In this study, we considered power compression transformation

in the range of 0.1-2.0 proportions. The transformations are

denoted by the adjustable compression parameter b∈(0,1). A
smaller value of b corresponds to stronger compression.

Conversely, when b>1, it represents an inflation transformation

that amplifies information in regions of high values. For b=1, no
transformation is applied. The compressed spectral information is

represented as Xc.

The application of power compression impacts model

performance by adjusting sensitivity to spectral features. By

amplifying weak spectral signals, especially in regions like the

visible spectrum, it improves the ability of the model to detect

subtle variations. Additionally, power compression helps balance

the focus across spectral bands, preventing overfitting to dominant

signals and ensuring the model captures important features in

weaker bands.

To validate the applicability of the model at different

resolutions, spectral resampling was conducted using cubic spline

interpolation (McKinley and Levine, 1998). Given data bands (x0,

R0), (x1, R1), …, (xn, Rn), we interpolated between every two bands.
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For the interval [xi, xi+1], the form of the reflectance curve Ri(x) is:

Ri(x) = ai + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3 (2)

where ai, bi, ci, di are coefficients that need to be determined based

on boundary conditions and continuity conditions. The entire

reflectance curve is composed of these locally defined cubic

polynomials. All of our resampling operations were based on the

original data and ensure consistency with the original data. The spectra

were resampled to 60, 120, 180, 204, 240, 300, 400, 500 and 600 bands.

We also used spectral data from previous studies as one of our

validation datasets, which included experimental data covering 350-

2500 nm, with 2151 spectral bands across 583 samples (Meacham-

Hensold et al., 2020; Furbank et al., 2021; Kumagai et al., 2022).

Data spanning 601 spectral bands from 400 to 1000 nm were also

utilized for comparison. Related results can be seen in

Supplementary Figure S6.
2.2 Traditional vegetation index calculation

This study used several traditional vegetation indices to

examine their correlation with photosynthetic capacity (Table 1).

Spectral indices associated with leaf pigment such as chlorophyll

content have been frequently employed in phenotypic analysis of

plant photosynthesis. For instance, the SIPI, also known as the

chlorophyll index (Dash and Curran, 2007), is linked to chlorophyll

content. The indices based on the crucial pigment chlorophyll

content may serve as reliable indicators of photosynthetic

capacity (Croft et al., 2017). In addition, the simple ratio

vegetation index (SR) and the modified normalized difference

vegetation index (mNDVI) were also used for estimating

photosynthetic capacity (Fu et al., 2020).
2.3 The classical machine
learning algorithms

2.3.1 Support vector regression
The SVR methodology first maps the input data to a higher

dimensional (possibly infinite) kernel feature space by means of a

nonlinear mapping f :RN
→H and then solves a linear model there
Frontiers in Plant Science 05
(Camps-Valls et al., 2006):

ŷ i = f (xi,w) = fT (xi)w + b (3)

where ŷ i are the estimations of yi; w is a weight vector in the

feature space, and b is the bias term in the regression. The SVR was

implemented using the Python library sklearn.

2.3.2 Partial least squares regression
The PLSR model has been applied to estimate leaf

photosynthetic capacity (Serbin et al., 2012; Ainsworth et al.,

2014). PLSR is a bilinear regression technique that aims to reduce

a large set of collinear spectral variables into a smaller set of

orthogonal components (Wold et al., 2001). The explanatory

variables Vcmax and Jmax are projected into a new space. A linear

regression model is then fitted between these independent variables

and the predicted variables in the new projection space. The

computational formula for PLSR is as follows:

y =o
n

i=1
gi ∗ pi, i = 1, 2,…n : (4)

pi =o
d

j=1
lj ∗ xj, i = 1, 2,…n : (5)

The variable y denotes Vcmax and Jmax. The number of latent

variables used for regression is represented by n. The regression

coefficient is denoted by g. The latent components computed from

the original input measurements x are denoted by p. d is the dimension

of the input data. l represents the transformed latent components,

which are calculated as xTx. The PLSR was implemented using the

Python library sklearn. The number of principal components was

optimized through a grid search of 10 to 15 to find the best value.

2.3.3 One-dimensional convolution
Given the processing of spatially averaged spectral data, a one-

dimensional convolutional network has been utilized as one of the

baseline models. The OneDCNN often incorporates a hierarchical

structure that captures increasingly complex feature patterns. The

OneDCNN uses a learned weight filter to slide across the input

length at each layer. This sliding filter strategy enables the network

to detect patterns found in one part of the sequence and applies

these patterns to other parts of the sequence. To further enhance the

ability of the network to capture a larger receptive field, we

incorporated dilated one-dimensional convolution. The

mathematical operation for computing the one-dimensional

convolution of input is expressed in the following equation:

XC∘
= f(o(W · XCi

+ b)) (6)

where W is the parameter matrix of the convolutional kernel;

XCi is the input feature; Ci represents the input channel; b represents

the learnable bias; f denotes the activation function; and Co

represents the output channel.

The parameter settings for the OneDCNNmodel were determined

based on previous study (Furbank et al., 2021). The input to the network

was a reflectance sequence of size 1×204. The sequence first underwent
TABLE 1 Spectral indices utilized in this study.

Vegetation indices Formula References

simple ratio (SR) Rl1=Rl2
(Clevers and

Kooistra, 2011)

modified normalized
difference index (mNDVI)

(Rlref − Rl1)=(Rlref + Rl2 )
(Gitelson and

Merzlyak, 1994)

structure insensitive pigment
index (SIPI)

(Rlref − Rl1)=(Rlref − Rl2 ) (Curran, 1994)
The wavelength lref, denoting 440 nm in the blue spectral range, is based on the study by Jay
et al. (2017).
R represents the reflectance of any band. l1 and l2 represent any band within the 400–1000
nm range.
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an initial layer of average pooling, with a kernel size of 10, a stride of 10,

and a padding of 2. Two layers of one-dimensional convolution were

then applied. The first convolutional layer had an input channel of 1,

output channels of 50, a kernel size of 5, and a dilation factor of 1. The

second convolutional layer had input channels of 50, output channels of

50, a kernel size of 5, and a dilation factor of 2. Finally, the output passed

through two fully connected layers. The number of neurons in the first

fully connected layer ranged from 400 to 1000. The number of neurons

in the second fully connected layer ranged from 1000 to 1.

2.3.4 Vegetation indices convolution
IndiceCNN, built for dealing with one-dimensional reflectance

in our previous research (Deng et al., 2024), extracts the abstract

features from reflectance using convolution and pooling operators

and then feeds these features into a computation formula of

vegetation indices. In this study, the addition-multiplication

calculation was incorporated into the IndiceCNN model.

Ri = s (o(Wc · Xi + b)) (7)
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O =o(Wl ·
R1 + R2

R3 � R4
)) (8)

Xi denotes the input. Wc represents the weight matrices of

different convolutional units. s is the sigmoid function. Wl

represents the weight matrices of various linear layers. Ri

represents the spectral features after convolution layers. O denotes

the output.
2.4 Design of the Indexfindnet model

To fully leverage spectral dimension information and

investigate the spectral sensitive bands and vegetation index with

the latent mechanism of photosynthesis, we proposed a novel

architecture that employed multiple modules coupled with

different branches (Figure 1). The subsequent sections would

provide detailed descriptions of the network structure, loss

function, and solutions to address overfitting issues.
FIGURE 1

The architecture of the Indexfindnet model. M1 denotes the input reflectance. M2 denotes the gated convolutional module GCONV. M3 denotes the
encoder-decoder module UCRN. M4 is the global sensitive band search module NonlocalBandAttention. M5 represents the Vegetation Index
calculation module Indexcal. M6 is the module for choosing the important index form features. M7 is the output. C represents the convolutional
layer. L represents the linear layer. W denotes the weight matrices of cosine similarity. Adacos Scafactor is the adaptive cosine scaling factor.
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2.4.1 The architecture of Indexfindnet
The framework structure of the Indexfindnet model was shown

in Figure 1. The first operation of the network structure was the

feature extraction and noise removal module “Mask”. This module

consisted of two components. The first component was a gated

convolution unit named M2-GCONV. Traditional convolution

calculated all features as valid values and extracted local features

through a sliding window. However, hyperspectral reflectance data

contained large amounts of information with high correlations and

redundancies between different spectral bands. Therefore, we

utilized a technique called gated convolutional units. This method

provided a learnable dynamic feature-selection mechanism for each

band in every channel (Yu et al., 2019). The calculation formula is as

follows:

Gating =o Wc • Ib (9)

Feature =o Wc • Ib (10)

O = f(Feature⊙s (Gating)) (11)

where f refers to the ReLU activation function; s is the sigmoid

function; Ib denotes the input features; Wc represents different

convolution kernels; O represents the output; and ⊙ denotes the

matrix multiplication.

In the second part, M3-UCRN combined multi-level feature

extraction with an encoding-bottleneck-decoding process

(Ronneberger et al., 2015). This architecture effectively captures

crucial features in the spectral dimension by learning a compact

representation of the data that filters out noise. By compressing the

input into a lower-dimensional space, it suppresses irrelevant or

noisy components, while preserving the original data structure and

avoiding distortions or compression of spectral bands (Chiang et al.,

2019; Casas et al., 2021; Konstantinova et al., 2021). The lower-level

features were directly connected to the higher-level features to

preserve and restore fine-grained details. By gradually reducing

the feature dimension, high-level semantic features were extracted

through the downsampling operation. After the features were

compressed by a linear layer, they were fed into a recurrent

neural network (LSTM) for sequence feature learning

(Sherstinsky, 2020). The output of the LSTM was further

expanded through a linear layer. The data size was gradually

restored via upsampling operations during the decoding process.

This module ultimately achieved fine-grained feature extraction.

The core formulas of the UCRN module are as follows:

OMaxpool = max(Ib, Ib+1) (12)

OEncoder = f(o (Wc •OMaxpool)) (13)

Ib =o (Wc •o (Wl •OEncoder)) (14)

Ob−1 = s (o (Wc • Ib−1)) (15)

Ob = s (o (Wc • Ib)) (16)
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Obottleneck = s (o (Wc • (Ob + Ob−1))) (17)

Idecoder =o (Wc •o ((Wl •Obottleneck))) (18)

ODecoder = f(o (Wc •o (WT
c • IEncoder + OEncoder))) (19)

where the input is denoted as Ib; Wc represents the weight

matrices of different convolutional units; Wl represents the weight

matrices of various linear layers; WT denotes the transposition of a

weight matrix. The activation function is f, specifically the Rectified
Linear Unit (ReLU) activation function. The sigmoid function is

denoted as s. Additionally, Idecoder, Oencoder, and Odecoder correspond

to the input of the decoding layer, the output of the encoding layer,

and the output of the decoding layer, respectively.

The calculation formula for the Mask module of the input data

is as follows:

O = I �Mask(I) (20)

where I denotes to the input data; Mask refers to the feature

extraction module; and O refers to the output.

Then, we moved on to the most critical module, the Indexfind

module. The core idea of this module was to leverage the network to

automatically identify sensitive bands and vegetation indices from the

spectral data. It consisted of two layers. The first layer aimed to

identify sensitive bands from the full spectral sequence by conducting

a comprehensive search across all spectral bands using the M4-

NonlocalBandAttention module. This module utilizes a global

attention mechanism and one-hot encoding vectors corresponding

to each spectral band, allowing precise identification of the most

relevant bands. Several improvements were introduced in the M4-

NonlocalBandAttention module to enhance its performance over

traditional attention mechanisms. Firstly, two layers of dilated

convolutions were added before the global operation of attention to

enhance feature extraction and eliminate spatial redundancy in

spectra. Secondly, instead of a standard linear transformation, we

used a global cosine similarity calculation to better capture the

relationships between spectral bands across the entire wavelength

range. This technique involves normalizing both the input features

and the cosine similarity weight matrices, and then multiplying them.

This approach helps better capture the relationships between spectral

bands and enables more accurate alignment across the entire

wavelength range. Thirdly, the similarity matrix of the attention

weight matrix was replaced with a single sequence activation vector as

a global alignment of weights. Fourthly, to further enhance band

separability, particularly when dealing with noisy or overlapping

spectral data, we introduced an adaptive cosine scaling factor. This

factor multiplies with the band activation vectors, refining the

selection of relevant bands by improving the separability and

reducing noise overlap, which is crucial for accurate feature

extraction (Zhang et al., 2019; Wilkinghoff, 2021). Fifthly, the

softmax function was replaced with the modified uniform gumbel

softmax function, which determined a specific band rather than

the probability of a band. We replaced the gumbel noise with

uniform noise, which had a certain regularization effect. The

gumbel softmax function also enabled gradient-based updates
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during backpropagation by making the discrete distribution sampling

process differentiable (Jang et al., 2017). Gumbel softmax introduced

randomness. We employed the second step to control the range of

input data. At the same time, we introduced a shrinking factor in

gumbel softmax to reduce the influence of noise. The model results

were stable. Finally, the feature output was passed through a sigmoid

function and normalized to a range of 0-1 for physical compatibility

with reflectance. The second layer of the Indexfind module used the

sensitive bands identified by the M4-NonlocalBandAttention module

to perform vegetation index calculations. These sensitive bands,

selected through the attention mechanism, were expected to

capture key spectral features that are most relevant for

photosynthetic capacity estimation. The identified bands were then

used to calculate various vegetation indices, which were designed to

capture the non-linear relationships between spectral bands that

reflect photosynthetic activity. We have constructed vegetation

index formulas to calculate the non-linear combination of addition,

subtraction, multiplication, and division. These formulas served as

the main framework of the M5-IndexCal module (Equations 27–29).

Q = f(o (Wc • Ib)) (21)

V = f(o (Wc •Q)) (22)

K = ao (
Wl

jWl j
•
V
Vj j ) (23)

A = UGumbelSoftmax(KT •
ffiffiffiffi
D

p −1
) (24)

p
0
i=

exp((gi + log pi)=t)

ojexp((gi + log pi)=t)
(25)

Oa = s (A • Iref ) (26)

Index1 =
R1 − R2

R3 − R4
(27)

Index2 =
R1 + R2

R3 � R4
(28)

Index3 =
R1

R2
(29)

Ib denotes the input of M4. Iref denotes the reflectance data. Wc

represents the weight matrices of different convolutional units. Wl

represents the weight matrices of cosine similarity. a is the adaptive

cosine scaling factor. The calculation of the adaptive cosine scaling

factor can be found in Equations 35-38. UGumbelSoftmax denotes

the uniform gumbel softmax. pi denotes the input of uniform gumbel

softmax. gi denotes the uniform noise. t is the temperature factor. p
0
i

denotes the distribution of uniform gumbel softmax. The activation

function is denoted by f. D represents the data feature dimension.

The sigmoid function is denoted as s. The bands R1, R2, R3, and R4

are identified by the NonlocalBandAttention module.
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Next, the data from these three types of vegetation index

features were concatenated. A convolutional layer was employed

to extract features. The softmax function was used for index

importance scoring. Subsequently, two linear layers were used for

photosynthetic capacity estimation. The computation formula can

be represented as follows:

S = Softmax(o (Wc • Ib)) (30)

O =o (Wl •o (Wl •o (S • Ib))) (31)

where Ib represents the input features; Wc denotes the weight

matrix of the linear layer; Softmax denotes the softmax function; S

denotes the gated ratio; Wl denotes the weight matrix of the linear

layer; and O represents the predicted photosynthetic capacity.

The integration of attention mechanisms and gumbel softmax

enabled the model to effectively prioritize the most relevant spectral

bands. The M4-NonlocalBandAttention module captured long-range

dependencies to identify sensitive bands, while the gumbel softmax

technique facilitated the discrete selection of these bands in a

differentiable manner, thereby enhancing model stability and

regularization. Furthermore, the incorporation of vegetation indices

enabled the non-linear combination of spectral bands, which

improved the ability of the model to identify key features related to

photosynthetic capacity. The gating mechanism dynamically selected

the most informative indices, ensuring the extraction of critical

spectral features for accurate estimation. Through these strategies,

along with noise reduction and dimensionality reduction, the unified

deep learning framework effectively identified meaningful patterns in

hyperspectral data, thereby ensuring robust performance and

improved generalization across diverse datasets.
2.4.2 Loss function design
The loss function of the model consisted of two components.

One component was used for constraining the regression of

photosynthetic capacity, which was calculated by MSE, as shown

in the following equation:

MSE =
1
no

n

i
(yi − ŷ i)

2 (32)

where yi represents the actual value; ŷ i is the corresponding

predicted value; and n is the number of samples.

The second component of the loss function was primarily

intended for the Mask module. The Mask module functioned as a

feature extraction module and should not change the data patterns.

We proposed a correlation loss named MaskLoss for the input and

output of the Mask module. A smaller MaskLoss value indicated a

higher similarity between the input and output features. The

MaskLoss was calculated using the following formula:

MaskLoss = −o
n

1
( on

1I � O

on
1 Ij jon

1 Oj j )=n (33)

where I represents the input data; and O represents the output

data after applying Mask.
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The total loss was the sum of the two components:

AllLoss = MSE + a ∗MaskLoss (34)

where a represents the scaling factor for MaskLoss, which was

set to 0.05 during model training; and AllLoss refers to the overall

model loss.

2.4.3 Solutions to prevent overfitting
Overfitting significantly hindered the ability of the model to

generalize effectively to the testing set. To address this issue, we

employed three techniques: early stopping, L2 regularization,

and dropout.

Early stopping aimed to prevent overfitting by stopping the

model training in the early stages (Caruana et al., 2000). This

approach prevented the model from continuously learning the

noise in the input data. It encouraged the model to focus on

mapping higher-level features of the input data and generalize

better to the testing dataset. In our case, we trained the model for

1000 epochs. We evaluated the validation dataset every 50 epochs

and stopped training when the model did not improve after 500

epochs. We saved the model with the highest validation score

throughout the training process. And the results usually occurred

before the end of training.

L2 regularization was used to address overfitting (Byrd and

Lipton, 2019). We set the initial regularization parameter weight

decay to 10-3. By incorporating the L2 norm as the regularization

term, we obtained an optimized solution with small and proximate,

yet non-zero values for each parameter w that is associated with the

feature. This regularization term also helped prevent the model

from becoming complex to fit the training dataset and enhance the

generalization capability of the model.

We also incorporated a dropout layer of 20% before the final

linear layer to assist the model in avoiding overfitting. Dropout

randomly deactivated a percentage of neurons during training. It

prevented complex dependencies between neurons from forming. It

encouraged neurons to work more independently. This led to

simpler mappings from input to output.

Additionally, we added batch normalization layers within the

network structure. Batch normalization sped up network

convergence as a normalization technique. It also provided some

regularization effects (Ioffe and Szegedy, 2015).

2.4.4 Parameter setting and model training
The input size is a 1×204 vector. Firstly, it underwent a gated

convolutional unit M2, with an input channel size of 1, an output

channel size of 128, a kernel size of 5, a stride of 1, and a padding

value of 2. The gated factor is the result of convolution followed by

sigmoid. The output shape of the gated convolutional unit

is 64×204.

The shape of the input data to the encoding layer is 64×204.

Firstly, it was passed through a mapping layer, which consisted of a

two-layer one-dimensional convolution. The convolution layer has
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an input channel size of 64, a convolution kernel size of 5, a dilation

factor of 2, a stride of 1, and a padding of 4. Then, the data entered

the encoding layer with a pooling kernel size of 2. During the

downsampling process, the channel size was doubled. Four

downsampling modules were in the encoding layer with a

channel size change of [64, 64, 64, 64]. The upsampling, or

decoding layer, had the same channel size changes as the

downsampling. The upsampling had a scaling factor 2 and

utilized the nearest neighbor sampling method. The output of the

upsampling was added to the corresponding output of the last

encoding layer to prevent gradient disappearance. Finally, it passed

through another layer with an input channel size of 64, an output

channel size of 1, and a convolution kernel of 1. As a result, the

output data shape is 1×204.

The data input shape for the Indexfind module was 1×204. It was

simultaneously fed into three branches for index mining. The number

of spectral sensitive bands required for the IndexCal module aligned

with the number of core searchmodules in the NonlocalBandAttention

module. Within the NonlocalBandAttention module, the attention

weight matrix had an input channel of 1, an output channel of 64, a

kernel size of 5, a dilation factor of 2, and a padding of 5. The output

shape of the global operation was 64×204. Adacos scale factor was

calculated by the formulas as follows:

S =
ffiffiffi
2

p
∗ ln (bandnum) (35)

B = S ∗ x −max (S ∗ x) (36)

Bavg =
1
No

N

i=1
Bi (37)

a = (max (S ∗ x) + ln(BAvg)=cos(
p
4
)) (38)

where bandnum denotes the number of bands; x denotes the

input data; Bavg is the normalization of conditional probability; a is

the adaptive cosine scaling factor.

After transposing, the uniform gumbel softmax function was

applied to obtain globally aligned weights. The shrinking factor of

uniform gumbel softmax noise is 10. The global aligned weights

were one-hot vectors. These weights were then scaled and

multiplied with the input reflectance data before passing through

a sigmoid function. The output shape was 1×64. The output of the

NonlocalBandAttention module represented the activated

reflectance data in sensitive bands. Subsequently, this output was

fed into the IndexCal framework, which obtained three vegetation

index features. Each vegetation index branch produced an output

shape of 1×64.

Next, the data from these three types of vegetation index

features were concatenated with a shape of 3×64. Then, two

convolutional layers were employed with an input channel of 128,

an output channel of 64, and a kernel size of 1. The softmax

function was used for index importance scoring. The weighted sum
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of these index features was computed with a shape of 1×64.

Subsequently, two linear layers were used. The first linear layer

has an input channel of 64 and an output channel of 128. This

dimensionality transformation allowed the output of the hidden

linear layer to be mapped to a higher-dimensional space. It can

introduce non-linear transformations and enhance the model

expressive power. The second linear layer had an input channel

of 128 and an output channel of 1. It reduced the high-dimensional

features to a lower-dimensional space and extracted the most

important and representative features. This combination of

dimensionality transformations enabled the model to capture

complex features flexibly and efficiently and improved its

performance and generalization ability.

The data was randomly split into training, validation, and

testing sets, with each set accounting for 80%, 10%, and 10%,

respectively. We used the validation and testing sets to evaluate the

model. The model was trained on the training set using the

RAdam algorithm.

We randomized and divided the training set into mini-batches

for network input. The batch size was set to 8 with an initial

learning rate 0.001. We implemented the CyclicLR decay strategy.

Training stopped upon reaching the maximum number of

iterations. The parameter settings of the model can be found in

the appendix.

We fed partitioned testing sets into the trained network for

forward propagation during validation. Each spectral reflectance

was linked to a predicted photosynthetic parameter value. We

applied separate models for each of the two photosynthetic

parameters. Test results from all deep learning models were

averaged over three runs. The deep learning models were built

and tested using the PyTorch deep learning framework. We utilized

an NVIDIA GeForce RTX 2060 SUPER GPU with 8GB of memory.
2.5 Evaluation metrics

The performance of different models was evaluated based on the

coefficient of determination (R2), root mean square error (RMSE),

and mean absolute percentage error (MAPE). A model performed

better if it had a higher R2 and lower RMSE and MAPE values.

R2 = 1 −o
n

i=1
(yi − ŷ i)

2=o
n

i=1
(yi − ym)

2 (39)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(yi − ŷ i)

2=n

s
(40)

MAPE =
100
n o

n

i=1

ŷ i − yi
yi

����
���� (41)

where ŷ i represents the predicted values of Vcmax and Jmax; yi
represents the values of Vcmax and Jmax fitted by the A-Ci curve;

ym represents the average measured values of Vcmax and Jmax, and

n represents the number of samples in the testing set.
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3 Results

3.1 Characteristics of photosynthetic
capacity and hyperspectra

Figure 2 illustrates the characteristics of photosynthetic capacity

and spectra. Vcmax ranged from 5 to 195 mmol m-2 s-1 throughout the

growth period. Jmax ranged from 5 to 350 mmol m-2 s-1. Vcmax and

Jmax values were predominantly distributed within the range of 60-

100 and 100-200 mmol m-2 s-1, respectively. The ratio of Jmax/Vcmax

was 1.93, with a standard deviation of 25.7. These findings aligned

with previous studies (Wullschleger, 1993). Furthermore, a strong

correlation was observed between Vcmax and Jmax (Qian et al., 2021).

Figure 2D presents the hyperspectral reflectance data of leaf samples

from both rice and wheat. Absorption peaks occurred at 410–450 nm

and 660–690 nm. A reflection peak appeared at 500–550 nm.
3.2 Correlation between traditional
vegetation indices and
photosynthetic capacity

Figure 3 illustrates the correlation coefficients (r) between Vcmax

and Jmax with various traditional spectral indices. High correlation

coefficients were observed in several reflectance combinations,

indicating potential relationships between the spectral indices and

photosynthetic parameters. Specifically, Figures 3A, B, D, E

highlight spectral regions between 490 to 530 nm and 560 to 660

nm, which are associated with the light absorption properties of

chlorophyll and nitrogen content (Carter, 1994; Blackburn, 1998).

In contrast, Figures 3C, F demonstrate that SIPI yielded a

correlation coefficient (r) below -0.5, with l1 between 600 and

690 nm and l2 between 420 and 460 nm. This spectral range

corresponds closely to the absorption spectra of total chlorophyll

and the absorption properties of PSII and PSI (Laisk et al., 2014),

which explained the observed hotspots in Figures 3C, F. SIPI

(Figures 3C, F) exhibited the weakest correlation with

photosynthetic capacity compared to other spectral indices. It was

worth noting that there was a strong correlation between the

combination of near-infrared and visible light and photosynthetic

parameters, regardless of the spectral index used. Overall, the

spectral indices demonstrated moderate correlations with

photosynthetic capacity, with the highest correlation coefficient

reaching approximately 0.5.
3.3 Performance of the Indexfindnet under
different power compression spectra

Figure 4 presents the spectra of different power compression ratios.

The compressed spectral curves still retained the original trends. The

decrease in the difference between the maximum andminimum values

within the wavelength range of 400-720 nm was insignificant

compared to 720-1000 nm when the compression ratio was less
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than 1. There was a significant increase in the difference between the

maximum and minimum values within the wavelength range of 720-

1000 nm with a compression ratio greater than 1 (Figures 4D–G). The

spectral signals in the visible region were enhanced.

This study evaluated the estimation accuracy of the Indexfindnet

model using power compression spectra (Figure 5). R2, RMSE, and

MAPE were calculated to assess the accuracy of the model on the

validation dataset (Supplementary Table S1). The baseline model

(Indexfindnet with no power compression, POC ratio=1.0) achieved

an R² of 0.82, RMSE of 11.43 mmol m-2 s-1, and MAPE of 18.9% for

Vcmax. For Jmax, the model yielded an R² of 0.80, RMSE of 25.75 mmol

m-2 s-1, andMAPE of 16.5%. For the photosynthetic parameterVcmax,

the model based on POC-0.6 (POC ratio=0.6) achieved best

performance, with an R2 of 0.86, RMSE of 10.10 mmol m-2 s-1, and

MAPE of 15%. The best performance was observed with POC-0.1

(POC ratio=0.1) for Jmax, with an R2 of 0.81, RMSE of 25.33 mmol

m-2 s-1, and MAPE of 16.8%. POC-2.0 (POC ratio=2.0) had the

poorest performance for both photosynthetic parameters. For Vcmax,

the R² dropped to 0.66, with an RMSE of 15.94 mmol m-2 s-1 and a
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MAPE of 26.0%. For Jmax, the performance was similarly lower, with

an R² of 0.68, RMSE of 32.99 mmol m-2 s-1, and MAPE of 23.5%. The

Indexfindnet model with POC ratios less than 1 consistently

outperformed the baseline model, which was based on the

uncompressed spectra. The R² values for the compressed models

ranged from 0.83 to 0.86, with RMSE values between 10.05 mmol

m-2 s-1 and 11.22 mmol m-2 s-1, while the baseline model achieved an

R² of 0.82 and an RMSE of 11.43 mmol m-2 s-1 for Vcmax.
3.4 Performance of Indexfindnet and
traditional methods for leaf photosynthetic
capacity estimation

Table 2 presents the performance comparison of the classical

machine learning model and the Indexfindnet. The Indexfindnet

model had a modest parameter count, remaining under one million.

We can observe that the deep learning method performed better than

traditional machine learning methods. The R2 values were 0.20-0.39
FIGURE 2

Statistical description of photosynthetic capacity and spectra. (A) Distribution of Vcmax. (B) Distribution of Jmax. (C) Correlation between the two
photosynthetic parameters. (D) Hyperspectral reflectance data of leaf samples. A solid red line represented average reflectance. A black dashed line
indicated the 95% confidence interval. Gray dotted lines marked maximum and minimum reflectance values of multi leaf samples.
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higher than those of the PLSR model. Specifically, the R² values for

Vcmax and Jmax in the Indexfindnet model were 0.86 and 0.81,

respectively, significantly higher than the PLSR model, which

achieved 0.58 for Vcmax and 0.56 for Jmax. The RMSE and MAPE

values were lower than the PLSR model by 6.1-12.48 mmol m-2 s-1 and

9%-15%, respectively. Before feeding the spectral data into the

Indexfindnet model, POC was used to reduce the reflectance

difference between visible light and near-infrared regions. This

preprocessing step allowed the model to better focus on the local

details of visible light. The compressed spectral data performed better

across different models. Indexfindnet demonstrated the most

impressive results in power compression spectra among the models,

with the R² values for Vcmax and Jmax reaching 0.86 and 0.81,

respectively, and an average absolute error of approximately 15% for

Vcmax and 17% for Jmax.
3.5 Photosynthesis-sensitive bands and
vegetation indices discovered
by Indexfindnet

Sensitive bands significantly contributed to the prediction of

photosynthetic capacity. They can be identified through weight
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analysis of the NonlocalBandAttention module from the best

trained model which has the highest accuracy. The results of the

search for characteristic wavelengths for photosynthetic capacity

are shown in Figures 6A, B. The wavelengths at 410-470 nm, 510-

530 nm, and 660-690 nm play a crucial role in predicting the

photosynthetic capacity. Other wavelengths have little impact on

the photosynthetic capacity. The spectral characteristic wavelengths

sensitive to photosynthetic capacity were ranked based on search

numbers. The top eight wavelengths for Vcmax were 667, 525, 415,

471, 795, 905, 935 and 750 nm. The top eight wavelengths for Jmax

were 667, 471, 905, 525, 415, 750, 688, and 706 nm.

The ranking of the spectral indices discovered through

automatic model search can be seen in Figures 6C, D and

Table 3. The most effective vegetation index formula identified for

both Vcmax and Jmax was
Rnir+Rg=b

Rnir�Rr
(Table 3). The computation

between the near-infrared wavelength and the shorter wavelength

is important regardless of the type of index (Table 3).

Further validation was conducted to investigate the effectiveness

of the identified wavelength bands. The reflectance of sensitive

bands was used as input variables for machine learning algorithms

to estimate photosynthetic capacity. The results are presented in

Table 4. The accuracy of the model remained unaffected when using

only the top eight sensitive bands instead of the full spectrum.
FIGURE 3

The correlation coefficients (r) between Vcmax, Jmax, and spectral indices in wheat and rice leaves. (A, D) presents simple ratios (SR). (B, E) presents
modified normalized difference index (mNDVI) (C, F) present structure-insensitive pigment index. The equations for these spectral indices can be
found in Table 1.
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Although there was a slight increase in the root mean square error

and average error percentage compared to the full spectrum, it was

not significant. The sensitive spectral band results of the SVR model

in estimating Vcmax and Jmax even exceeded the full spectrum. The

results demonstrated that the estimation of photosynthetic

parameters using automatically identified band reflectance was

close to those of the full spectrum. The bands identified by our

model yielded higher estimation of photosynthetic parameters

compared to those proposed by the classic machine learning

model (PLSR). Furthermore, these results validated the reliability

and effectiveness of the model in identifying wavelength bands.
3.6 Performance of Indexfindnet at
different spectral resolutions

To investigate the applicability of the Indexfindnet model at

different spectral resolutions, the R2, RMSE, and MAPE were

calculated to evaluate the Indexfindnet model performance

(Supplementary Table S1). Figure 7 demonstrates the

performance of Indexfindnet in estimating the photosynthetic

capacity across various spectral resolutions. Overall, there was no
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significant difference in the performance of the model for estimating

the two photosynthetic parameters across different spectral

resolutions. The spectrum with 300 bands exhibited the highest

performance in estimating Vcmax and Jmax, with an R2 of 0.81-0.85,

RMSE of 10.5-25.6 mmol m-2 s-1, and MAPE of 17%. The spectral

sequence based on 600 bands showed the poorest performance for

Vcmax and Jmax. The model showed high predictive accuracy on 1

nm resolution spectral data from previous studies (Supplementary

Figure S6), which achieved an R² of 0.75 for Vcmax and 0.79 for Jmax.

In general, the variety in spectral resolution had minimal impact on

the performance of the model.
4 Discussion

4.1 Advantage of Indexfindnet over
traditional methods

Modeling photosynthetic capacity with vegetation indices

showed weak ability with correlation coefficients below 0.6

(Section 3.2). This weakness may stem from challenges in finding

spectral indices with optimal band combinations (Chen et al., 2022)
FIGURE 4

Average power compression (POC) spectra for rice and wheat leaves. ‘POC=0.1’ denotes that the power compression ratio is 0.1. The pink-shaded
region represents the difference between the maximum and minimum spectral values. The blue line represents the mean spectral reflectance. (A–L)
represent different power compression ratio spectra.
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FIGURE 5

Performance of Indexfindnet in estimating photosynthetic parameters under different compressed spectra. The number around the outer circle
represents the power compression ratio. The numbers inside the circle represent the axis labels of each evaluation metric. The unit of RMSE is mmol
m-2 s-1. The value of MAPE represents a percentage. (A, D) are the R² values for estimating photosynthetic parameters under different power
compression ratios; (B, E) are the RMSE values for estimating photosynthetic parameters under different power compression ratios; (C, F) are the
MAPE values for estimating photosynthetic parameters under different power compression ratios.
TABLE 2 The performance of each model in estimating the photosynthetic capacity of maximum carboxylation rate and maximum electron
transfer rate.

Model Process
Params Vcmax Jmax

(M) R2 RMSE Preds MAPE R2 RMSE Preds MAPE

SVR SG 0.43 ± 0.03 20.59 ± 0.59 60.56 ± 26 0.28 ± 0.01 0.53 ± 0.01 39.99 ± 0.22 142.50 ± 54 0.27 ± 0.01

SVR SG-POC 0.42 ± 0.02 20.68 ± 0.44 61.01 ± 25 0.27 ± 0.01 0.56 ± 0.02 38.68 ± 0.18 142.22 ± 48 0.26 ± 0.02

PLSR SG 0.47 ± 0.02 19.71 ± 0.35 58.62 ± 25 0.30 ± 0.01 0.58 ± 0.04 37.81 ± 1.89 141.58 ± 53 0.27 ± 0.02

PLSR SG-POC 0.50 ± 0.01 19.23 ± 0.32 58.06 ± 26 0.29 ± 0.02 0.61 ± 0.01 36.96 ± 0.44 140.69 ± 50 0.26 ± 0.01

OneDCNN SG 0.42 0.75 ± 0.02 13.61 ± 0.41 57.87 ± 23 0.21 ± 0.01 0.78 ± 0.01 27.46 ± 0.36 140.60 ± 49 0.19 ± 0.01

OneDCNN SG-POC 0.42 0.79 ± 0.02 12.11 ± 0.37 57.52 ± 25 0.20 ± 0.00 0.78 ± 0.01 27.36 ± 0.32 140.54 ± 49 0.18 ± 0.01

IndiceCNN SG 0.28 0.83 ± 0.02 11.06 ± 1.16 56.62 ± 22 0.18 ± 0.02 0.80 ± 0.01 25.41 ± 0.19 139.39 ± 49 0.16 ± 0.01

IndiceCNN SG-POC 0.28 0.84 ± 0.01 11.01 ± 0.25 56.44 ± 22 0.17 ± 0.01 0.80 ± 0.01 25.39 ± 0.98 139.01 ± 49 0.16 ± 0.01

Indexfindnet SG 0.63 0.82 ± 0.01 11.42 ± 0.37 56.70 ± 22 0.19 ± 0.01 0.79 ± 0.01 26.85 ± 0.16 136.17 ± 49 0.18 ± 0.01

Indexfindnet SG-POC 0.63 0.86 ± 0.01 10.05 ± 0.42 57.37 ± 22 0.15 ± 0.02 0.81 ± 0.01 25.33 ± 0.34 137.06 ± 49 0.17 ± 0.01
F
rontiers in Plan
t Science
 14
 fr
The unit of RMSE is mmol m-2 s-1. The value of MAPE represents a percentage. For example, a MAPE with a value of 0.30 represents 30%. Bolding indicates the best performance. SG represents
the Savitzky-Golay filtering. POC represents power compression. “Params” refers to the number of model parameters, and “M” indicates that the number is expressed in millions. The value
before ± is the mean, and the value after ± is the standard deviation. The results were averaged through three runs across randomly split validation set. Preds represents the values of Vcmax and
Jmax predicted by the model.
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or the limitations of linear modeling in capturing the complex

nonlinear relationship between vegetation indices and

photosynthetic capacity. Traditional machine learning methods

like PLSR reduced spectral data to a few principal components

and had weak representational capacity. The results of

photosynthetic capacity estimation also performed poorly

(Section 3.4). Although IndiceCNN performed well, it relied on

uninterpretable features across a wide and chaotic spectrum of

bands in the calculation of vegetation index formulas due to dilated

convolution and pooling operators, which may result in imprecise

biophysical features (Deng et al., 2024).
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The deep learning model developed in this study can effectively

address these issues. Previous models that used deep learning to

extract spectral features were mostly uninterpretable (Furbank et al.,

2021; Wang et al., 2021b, 2022; Deng et al., 2024). In contrast, our

model Indexfindnet incorporated an interpretable neural network

architecture (Figure 1). It employed a Mask module to feature

extraction. We constrained the input features of attention layer

using MaskLoss. (Section 2.4.2). The feature map of the Mask

module is shown in Figure 8. It can be seen that the reflectance

characteristics of remained unchanged. The reflection troughs of

blue light and red light, as well as the reflection peaks of green light,
TABLE 3 Spectral indices searched out by the Indexfindnet.

Trait Index1 Index2 Index3 Index4 Index5 Index

Vcmax R795 + R525

R905 � R667

R471 + R525

R905 � R667

R795 + R525

R935 � R667

R795 + R415

R935 � R667

R845 − R616

R560 − R705

Rnir+Rg=b

Rnir�Rr

Jmax R795 + R415

R543 � R667

R471 + R525

R905 � R750

R471 + R525

R905 � R667

R795 + R525

R935 � R750

R815 − R420

R593 − R726

Rnir+Rg=b

Rnir�Rr
Index1 refers to the most frequently searched index by the model, Index2, Index3, Index4, and so on in a similar manner. Index refers to the universally summarized indices derived. Rnir
represents the reflectance of near-infrared bands. Rg/b represents the reflectance of green or blue bands. Rr represents the reflectance of red bands.
FIGURE 6

The distribution of the sensitive bands and index formulas for photosynthetic capacity Vcmax and Jmax identified by the Indexfindnet model. The
vertical axis represents the frequency from all channels at which the wavelength or indices were identified by the best model. (A, B) represent the
distribution of sensitive bands, and (C, D) represent the frequency of vegetation indices.
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were highlighted. This was advantageous for the subsequent module

NonlocalBandAttention to extract the positions of sensitive bands.

A global band attention module was used to obtain a global one-hot

activation vector in the NonlocalBandAttention module. Figure 9

illustrates the global one-hot vectors obtained from different

channels. These vectors served as the global alignment weight for

automatic band search. They provided a deterministic band

selection from global spectra on each channel rather than a

probability distribution. The extracted band spectra were then fed

into the vegetation index calculation module. This module

integrated the biophysical features from multi sensitive bands

response to photosynthetic capacity. We selected the most

important index form features by gating mechanism. We can

achieve precise band and vegetation index selection through this

interpretable network structure.

Notably, this interpretable model exhibited superior

performance in estimating photosynthetic capacity compared to

traditional methods. Specifically, it demonstrated estimation

accuracy above 0.8 for Vcmax and Jmax. Among the traditional

models, one-dimensional convolutional neural networks

outperformed SVR and PLSR. This observation underscored the

powerful feature extraction capability of deep learning. Numerous

studies have successfully employed deep learning-based spectral

analysis methods to predict various indicators with satisfactory

results (Yu et al., 2018; Xin et al., 2020; Zhang et al., 2020; Wang
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et al., 2021b). These findings demonstrated the great potential of

deep learning in handling high-dimensional spectral data.
4.2 The bands and vegetation indices
searched by Indexfindnet and the
underlying mechanisms of spectra
response to photosynthesis

Compared to previous studies (Serbin et al., 2012; Barnes et al.,

2017; Meacham-Hensold et al., 2019; Fu et al., 2020; Wang et al.,

2021a), the sensitive bands identified by our model resulted in

higher estimation for photosynthetic capacity (Table 4). This

improvement is attributed to the ability of the model to target

wavelengths that are directly linked to the key photosynthetic

processes. These wavelengths are crucial for capturing the

biochemical and structural properties of leaves, which are

fundamental to understanding and estimating photosynthetic

capacity. Our findings indicated that photosynthetic capacity

exhibited characteristic bands predominantly in the visible

regions (400-700 nm) (Section 3). Red spectra (600-700 nm) and

blue spectra (400-500 nm) were the most prevalent. Green spectra

(500-560 nm) and near-infrared spectra (700-1000 nm) came next.

The regions identified by the model were mainly consistent with the

areas where the leaves absorb (Zhang et al., 2021). PSII primarily
TABLE 4 The photosynthetic capacity estimation results of different machine learning methods for the full spectrum wavelength bands, the sensitive
bands identified through Indexfindnet and the sensitive bands identified by classic machine learning model (PLSR).

Model treat metrics Vcmax Jmax

SVR

Full

R2

0.43 ± 0.03 0.53 ± 0.01

Indexfindnet Filtered 0.45 ± 0.02 0.61 ± 0.01

PLSR Filtered 0.41 ± 0.02 0.45 ± 0.02

Full

RMSE

20.59 ± 0.59 39.99 ± 0.22

Indexfindnet Filtered 20.17 ± 0.33 36.26 ± 0.31

PLSR Filtered 20.85 ± 0.65 43.00 ± 0.53

Full

MAPE

0.28 ± 0.01 0.27 ± 0.01

Indexfindnet Filtered 0.27 ± 0.02 0.25 ± 0.01

PLSR Filtered 0.30 ± 0.01 0.30 ± 0.02

PLSR

Full

R2

0.47 ± 0.02 0.58 ± 0.04

Indexfindnet Filtered 0.49 ± 0.01 0.51 ± 0.02

PLSR Filtered 0.34 ± 0.02 0.43 ± 0.03

Full

RMSE

19.71 ± 0.35 37.81 ± 1.89

Indexfindnet Filtered 19.43 ± 0.22 40.65 ± 1.55

PLSR Filtered 21.95 ± 0.46 43.82 ± 2.04

Full

MAPE

0.30 ± 0.01 0.27 ± 0.02

Indexfindnet Filtered 0.29 ± 0.01 0.31 ± 0.02

PLSR Filtered 0.34 ± 0.02 0.32 ± 0.01
The unit of RMSE is mmol m-2 s-1. The term “Full” represents the full spectrum. “Indexfindnet Filtered” refers to the eight bands identified using Indexfindnet. “PLSR Filtered” represents the
sensitive bands identified by classic machine learning model (PLSR). Specific bands are listed in Supplementary Table S2. Bolding indicates the best performance.
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absorbs blue light. PSI absorbs red light (Gitelson et al., 2022).

Green light can efficiently drive photosynthesis once absorbed

(Wolf and Blankenship, 2019; Gitelson et al., 2022). Far-red light

(700-750 nm) enhances photosynthesis in synergy with shorter

wavelengths (Emerson et al., 1957; Kono et al., 2020; Zhen et al.,

2022). In addition to the portion absorbed by leaves, near-infrared

spectra also accounted for a significant proportion. Near-infrared
Frontiers in Plant Science 17
spectra are affected primarily by leaf structure (750-1000 nm)

(Slaton et al., 2001). The Ames exposed to IAS has also been

strongly associated with photosynthetic performance in numerous

species (Sinclair et al., 1977; Longstreth et al., 1985). These

structural features of leaves determine the depth into the leaf

interior that visible light wavelengths can propagate and be

absorbed. By focusing on biologically relevant spectral bands—
FIGURE 7

Scatter plots of estimation of the photosynthetic parameter Vcmax and Jmax at different spectral resolutions. The “Resample 60” refers to the spectral
sequence being resampled to 60 bands, which is also reflected in the naming convention used in the other subfigures. The black dashed line
represents the 1:1 line at a 45-degree angle. The darkblue solid line represents the trendline of the linear fit. (A–I) represent the scatter plots of
estimation of Vcmax at different spectral resolutions, and (J–R) represent the scatter plots of estimation of Jmax at different spectral resolutions.'
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such as red, blue, and NIR—the model is better aligned with the

core processes of photosynthesis, enhancing its adaptability across

species and environments. Moreover, the use of fewer, targeted

bands makes the estimation process faster, more cost-effective.

Studies presented different sensitive band wavelengths for these

specific spectral regions (Serbin et al., 2012; Barnes et al., 2017;

Meacham-Hensold et al., 2019). Samples collected from different

periods, regions, and species had different physical and chemical

properties, such as shape and leaf thickness. As a result, the spectral

response of photosynthesis also tended to be different. However, deep

learning methods achieved better results than traditional machine

learning methods when searching for feature wavelengths on larger

datasets due to their strong feature representation ability (Serbin

et al., 2012; Barnes et al., 2017; Meacham-Hensold et al., 2019; Fu

et al., 2020; Wang et al., 2021a). When dealing with a large scale of

spectral and photosynthetic samples, deep learning methods excelled

at capturing and reconstructing more features through Indexfindnet.

The selected characteristic wavelengths became more stable and

accurate after multiple iterations.

The model results suggested that vegetation indices
Rnir+Rg=b

Rnir�Rr

were crucial for predicting photosynthetic capacity. It indicated that

the interaction between near-infrared light and shorter-wavelength

light was of significant importance for photosynthesis (Wong et al.,
Frontiers in Plant Science 18
2020). The correlation between spectral indices and photosynthetic

capacity also confirmed the model results (Section 3.2). Near-

infrared spectroscopy reflects the structural characteristics of

leaves, further reflecting whether the light can reach deeper parts

of the leaves and be absorbed. Visible spectroscopy reflects the

absorption of light by mesophyll cells. Numerous studies have

demonstrated the ability and mechanisms of similar index types

in relation to photosynthesis (Qian et al., 2019). The normalized

difference vegetation index, proven to be a good indicator of

photosynthesis, utilizes the interaction between near-infrared and

red light (Gamon et al., 1995). The second most important was the

double-difference vegetation indices R1−R2
R3−R4

. PRI and SIPI are both

indices of this type. PRI was widely used because it represented the

de-epoxidation of xanthophyll pigments and indicated an increase

in zeaxanthin concentration (Garbulsky et al., 2011; Peñuelas et al.,

2011; Sukhova and Sukhov, 2018). PRI is closely related to NPQ and

photosynthetic efficiency (Goerner et al., 2011). The Structure

Insensitive Pigment Index (SIPI) is correlated with leaf

chlorophyll content (Dash and Curran, 2007). Since chlorophyll

content plays a significant role in photosynthesis, derived indices

based on chlorophyll content can serve as reliable indicators of

photosynthetic capacity (Croft et al., 2017). By aligning with key

physiological processes—such as photosystem efficiency and
FIGURE 8

The feature maps of the Mask module. The values on the y-axis represent the weights of feature activation. (A–L) represent the 12 feature maps of
the Mask module.
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chlorophyll content—these indices enhance the predictive accuracy

of the model, providing a more precise and biologically meaningful

estimation of photosynthetic capacity.

When the full spectrum and the sensitive bands identified by

Indexfindnet were used as inputs for various machine learning

models, the results showed that the estimated photosynthetic

capacity using the sensitive bands were either similar or even

superior to those obtained using the full spectrum. These results

suggested that the bands identified by Indexfindnet effectively

represented the photosynthetic capacity. The slight decrease in the

results was attributed to the loss of detailed information of spectral

local features.
4.3 Impact of signal enhancement on the
underlying mechanisms of spectra
response to photosynthesis

The power compression transformation was widely used in

processing speech spectral signal features (Li et al., 2021b). Green

leaves absorb more visible light and show higher reflectance in the

near-infrared region. This fact led to significant differences in
Frontiers in Plant Science 19
reflectance values between these two parts. When training a

network using criteria such as MSE, the optimization process

tended to prioritize regions with larger spectral values. Because

optimizing these regions resulted in a more noticeable reduction in

the loss, this would lead to a blurred spectral structure in the low

values region such as visible light. Therefore, applying an

appropriate compression function to balance the loss disparity

between different spectral regions can allow the network to

capture more detailed information in the regions with weaker

signals. This operation can enhance the spectral signals in the

visible region and improve the quality of spectral feature

extraction. Consequently, the performance of the model improved

with a compression ratio below 1 and deteriorated with a

compression ratio exceeding 1. This was why the accuracy of

Vcmax and Jmax estimation models can reach above 0.8 when the

compression ratio is 0.6 and 0.1, respectively.

Supplementary Figure S3 displays the sensitive bands identified

by Indexfindnet under different spectra using power compression.

The top eight wavelengths for Vcmax were 667, 525, 905, 471, 795,

415, 935, and 750 nm. The top eight wavelengths for Jmax were 667,

750, 415, 471, 905, 795, 525 and 816 nm. The sensitive band

distribution found by the model under mean compressed spectra
FIGURE 9

The one-hot vector found by the NonlocalBandAttention module. The index with a value of 1 in this vector represents the positions of a sensitive
band. (A–L) represent the 12 one-hot vectors of the NonlocalBandAttention module.
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was similar to the original spectrum. Because the compressed

spectra did not alter the entire shape characteristics of the

spectrum. Overall, the visible light range (400-700 nm) was still

the most important for photosynthetic capacity. The near-infrared

(700-1000 nm) light played a synergistic role but with reduced

importance. The connection between near-infrared and visible light

still plays a major role in predicting photosynthetic capacity

(Supplementary Table S3).
4.4 Applicability of the Indexfindnet under
different spectral resolutions

Our findings indicated that the proposed Indexfindnet

performed well at various resolutions, both on our simulated

resampled data (Figure 7) and previously reported experimental

data (Supplementary Figure S6). These results increased the

possibility of extending the utility of Indexfindnet to large spatial

scales in handling advanced and upcoming satellite or airborne

hyperspectral and multispectral data. The model achieved a slightly

lower performance of estimated photosynthetic capacity when it

sampled 600 bands. This was attributed to the increased difficulty

for the model to determine the sensitivity of each band with more

bands and the increased data redundancy.

Supplementary Figures S4, S5 display the sensitive bands

identified by Indexfindnet under different spectral resolutions.

The model detected sensitive bands across different resolutions

consistently. The distribution of sensitive bands the model identifies

was more concentrated in the visible light range. There were more

and higher peaks of sensitive bands in the visible light region,

whether in lower or higher resolutions. The higher or lower

resolution spectra obtained by resampling would affect the peak

position of sensitive bands. However, the main regions remained

unchanged. This made Indexfindnet a promising approach to

facilitating different-scale remote sensing of photosynthetic

capacity. Supplementary Table S4 displays the vegetation indices

identified by Indexfindnet at different spectral resolutions. It can be

observed that the importance of the synergistic effect between near-

infrared and visible light remained unchanged regardless of the

changes in resolution.
4.5 Limitations and prospects

The newly developed Indexfindnet has shown remarkable

performance in estimating photosynthetic capacity. We also

verified the effectiveness of Indexfindnet to identify sensitive

bands of vegetation indices within high-dimensional spectral

wavelengths. We established the form of the vegetation index

based on commonly used indices. Further research is needed to

apply deep learning to automatically learn more complex forms of

vegetation indices. Meanwhile, the applicability of the model to

other species and indicators need to investigate. In this study, only
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one spectral preprocess method was utilized. Additional

mathematical spectral treatments can be explored to enhance the

accuracy of the model. This study incorporated the visible and near-

infrared spectral regions. Further investigation into spectral regions

that encompass the short-wave infrared portion is needed.
5 Conclusion

We developed an interpretable deep learning model for

evaluating leaf photosynthetic capacity based on global spectral

dimensional information mining. The Indexfindnet model

outperformed traditional methods in estimating photosynthetic

capacity. The model improved the utilization of spectral

dimensional information. Visible light, especially red and blue light,

was the most sensitive region identified by the model, followed by the

near-infrared region. The interaction between near-infrared spectra

and visible spectra was crucial for photosynthetic capacity. Signal

enhancement presented an opportunity to improve the performance

of deep learning using hyperspectra. Our developed model also

remained stable under different resolutions. However, the

performance of the model could be influenced by specific factors,

such as extreme environmental conditions, poor spectral data quality

and variations in spatial resolution. Additionally, its adaptability

across different platforms and scalability for large datasets require

further evaluation. Future research should focus on assessing the

robustness of the model under diverse conditions and enhancing its

efficiency for broader applicability in real-world scenarios. These

advancements could provide a foundation for future research to fully

explore spectral features and deep insights into the mechanisms of

spectra response to photosynthesis.
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