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Alders are widely distributed riparian trees in Europe, North Africa andWestern Asia.

Recently, a strong reduction of alder stands has been detected in Europe due to

infection by Phytophthora species (Stramenopila kingdom). This infection causes a

disease known as alder dieback, characterized by leaf yellowing, dieback of

branches, increased fruit production, and bark necrosis in the collar and basal

part of the stem. In the Iberian Peninsula, the drastic alder decline has been

confirmed in the Spanish Ulla and Ebro basins, the Portuguese Mondego and Sado

basins and the Northern and Western transboundary hydrographic basins of Miño

and Sil, Limia, Douro and Tagus. The damaging effects of alder decline require

management solutions that promote forest resilience while keeping genetic

diversity. Breeding programs involve phenotypic selection of asymptomatic

individuals in populations where severe damage is observed, confirmation of tree

resistance via inoculation trials under controlled conditions, vegetative propagation

of selected trees, further planting and assessment in areas with high disease

pressure and different environmental conditions and conservation of germplasm

of tolerant genotypes for reforestation. In this way, forest biotechnology provides

essential tools for the conservation and sustainable management of forest genetic

resources, including material characterization for tolerance, propagation for

conservation purposes, and genetic resource traceability, as well as identification

and characterization of Phytophthora species. The advancement of

biotechnological techniques enables improved monitoring and management of
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natural resources by studying genetic variability and function through molecular

biology methods. In addition, in vitro culture techniques make possible large-scale

plant propagation and long-term conservation within breeding programs to

preserve selected outstanding genotypes.
KEYWORDS

alder decline, environmentally friendly management, forest diseases, forest trees,
oomycetes, riparian ecosystems
Introduction

Alders are deciduous riparian trees distributed mostly in the

Mediterranean, temperate and boreal zones of the Northern

Hemisphere (Bjelke et al., 2016) up to the Himalayas and the Andes.

These trees compose the genus Alnus (Family Betulaceae), represented

by more than 40 species. In the Iberian Peninsula, two different species

coexist: Alnus glutinosa (L.) Gaertn. (common name: common alder)

and Alnus lusitanica Vıt́, Douda & Mandák (common name: Iberian

alder; Vıt́ et al., 2017). Common alder is the most widespread alder

species in Europe and Western Asia, playing a significant ecological

role as a key component of the riparian vegetation along streams

(Claessens et al., 2010; Smeriglio et al., 2022). However, in the Iberian

Peninsula, the presence of A. glutinosa is limited to the northeast

region. Conversely, A. lusitanica is the most representative and

widespread alder species with a large distribution in the northwest

region (Gomes Marques et al., 2024a; Martıń et al., 2024).

Alders are actinorhizal plants that fix atmospheric nitrogen,

therefore contributing very significantly to nitrogen dynamics at the

local and landscape scales. In addition, they stabilize streams and

riverbanks, functioning as a protective barrier against flooding,

preventing waterlogging of crops and surrounding areas, and

mitigating the damage caused after periods of widespread rainfall.

Also, alders contribute to the rapid colonization of abandoned sites

and the maintenance of biodiversity by providing refuge for

terrestrial and aquatic organisms (Compton et al., 2003; Wipfli

and Musslewhite, 2004; Claessens et al., 2010; Handa et al., 2014).

This combination of attributes, along with the provision and

cultural ecosystem services that are derived from streams and

rivers, makes alder replacement by other species very difficult.

Over the recent decades, different alder species have been

severely impacted by decline and mortality events caused by

abiotic factors, such as extended periods of drought followed by

flooding, as well as biotic factors (Ferreira et al., 2022; Gomes

Marques et al., 2022), which accumulate to already existing long-

term pressures on rivers (Vörösmarty et al., 2010). Along with

global change, an increase in outbreaks of invasive pathogenic fungi

and oomycetes has severely affected native plants worldwide (Fisher

et al., 2020; Gomes Marques et al., 2024b).

Recently, a strong reduction of alder stands has been detected in

Europe due to infection by the Phytophthora alni species complex

Brasier & S.A. Kirk (Bjelke et al., 2016). This complex includes a group
02
of pathogens that cause Phytophthora disease of alder, also known as

alder dieback, affecting different organs of the aerial part of the tree

and roots (Gibbs et al., 1999). Although P. ×alni (Husson et al., 2015)

is the most aggressive species within the complex, a possible synergy

between Phytophthora species in the damage caused to alders is

unknown. The aggressiveness is favored by mild winters and warm,

but not too hot, summers (Bjelke et al., 2016; Gomes Marques et al.,

2024b; Horta Jung et al., 2024). Also, global environmental changes

may promote shifts in the pathogen distribution and impact. Their

dispersal occurs primarily along water currents which transport

thousands of infective zoospores, thus constituting an important

route of dissemination of Phytophthora species. Due to the dendritic

structure of river networks, Phytophthora can spread rapidly to new

areas, notably downstream (Bjelke et al., 2016). The Phytophthora

zoospores usually infect the host through the root system, mainly fine

roots, or by wounds at the base of the trunk and ascend through its

tissues causing lesions in the cambium (Brasier and Kirk, 2001; Černý

and Strnadová, 2012). Thus, alders may be subjected to multiple

infections over time due to their proximity to the river and the contact

of their tissues with surface runoff. Therefore, changes in

phytosanitary state and vigor, as well as the degree of tree survival

over time are conditioned by environmental factors, including the

concentration of inoculum in the soil, the soil type, the water flow

velocity, and the geomorphic position of the tree in relation to water

(Gomes Marques et al., 2024b).

The wide distribution of alders, with isolated local populations,

has resulted in a high genetic diversity that allows them to respond

differently to selection pressures related to stand structure (like

canopy composition and density) and edaphic, abiotic and biotic

factors. In the same way, it has also resulted in inbreeding and

moderate local differentiation, partly associated with the ease of

seed dispersal through river channels (Štochlová et al., 2012). Given

the local adaptation of alders, the identification/selection of more

tolerant or resistant genotypes in distant stretches of the same river

should seek to retain the adaptive traits so that they can thrive in

different environmental conditions. Even when infected, some

alders may look asymptomatic and can remain so for a long time

(Elegbede et al., 2010). This would also contribute to broadening the

genetic base of resistance, thereby reducing the risk of the pathogen

overcoming resistance (Sniezko and Koch, 2017). For these reasons,

it is very important to understand and protect the existing diversity

and to identify resistant genotypes with as much genetic variation as
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possible and from suitable sources, so they can be used for

riverbank restoration.

In this review, the impacts of alder dieback in the Iberian

Peninsula and the potential breeding strategies for alder resistance

to Phytophthora are summarized. New approaches to improve the

resistance selection process and breeding are also described.
Alder genetic diversity

During the last two decades, several studies have used molecular

markers to address the genetic diversity and structure of European

alders (Mingeot et al., 2010; De Kort et al., 2014a, De Kort et al.,

2014b; Beatty et al., 2015; Cubry et al., 2015; Havrdová et al., 2015;

Gryta et al., 2017). Although traditionally considered diploid species,

recent studies using cytometry and molecular markers revealed

variation in ploidy level (Lepais et al., 2013; Mandák et al., 2016).

This way, Mandák et al. (2016) identified three main groups across

Europe in what was before considered to be A. glutinosa. In addition

to the most common and widely distributed diploid (2n = 2x = 28) A.

glutinosa, two tetraploid (2n = 4x = 56) clusters were identified: one in

western Balkan Peninsula (A. rohlenae Vıt́, Douda & Mandák) and

the other in the Iberian Peninsula and North Africa (A. lusitanica)

(Vıt́ et al., 2017; Gomes Marques et al., 2024a). The proposed post-

glacial recolonization of Europe by alders would have taken place

from multiple refuges in the north of the Iberian, Apennine and

Balkan Peninsulas, composed of diploid populations (A. glutinosa),

with no involvement of tetraploid populations, which may have

originated later (Comes and Kadereit, 1998; Havrdová et al., 2015;

Mandák et al., 2016; Šmıd́ et al., 2020).

In the Iberian Peninsula, the Iberian alder (A. lusitanica) and

the common alder (A. glutinosa) are native tree species occurring in
Frontiers in Plant Science 03
riparian and wetland forest communities. Both species contribute to

shaping the characteristics, communities and functioning of stream

ecosystems (Table 1). The most representative and widespread alder

is the tetraploid A. lusitanica, which is widespread from Morocco,

and shows three main genetic groups with a clear geographical

distribution in the northern, western and central and southern

regions (Figure 1A; Martıń et al., 2024), under Atlantic and

continental climates. The common alder is present in the Ebro

basin and some northeast Cantabrian and Catalonian basins

(Figure 1A). The Ebro River represents the northeast limit for the

distribution of this species (Sanna et al., 2023; Martıń et al., 2024),

but also a contact zone between A. lusitanica and A. glutinosa. Even

so, to date, there is no evidence of gene flow between these species,

as evidenced by the absence of triploid individuals among the

samples prospected in this area (Martıń et al., 2024). In turn,

although rare, in the Balkans, triploid individuals have been

identified in the overlapping distribution areas of A. glutinosa and

the tetraploid A. rohlenae (Mandák et al., 2016; Šmıd́ et al., 2020).

Based on these findings, future studies might also identify triploids

in the area where A. lusitanica and A. glutinosa meet in the

Iberian Peninsula.
Ecological importance of Alnus
lusitanica and Alnus glutinosa in
Iberian riparian and
wetland ecosystems

According to the European Habitats Directive 92/43/EEC,

alders are considered key components of alluvial forests, which

are priority habitats for biodiversity conservation (priority habitat
TABLE 1 Summary of alder tree traits and their contributions to stream ecosystems.

Alder trait Contribution to streams References

Extensive root system Bank stabilization and channel morphology Claessens et al., 2010

Woody adventitious roots Habitat, refuge and feeding ground for aquatic organisms Claessens et al., 2010

Nitrogen-fixing owing to the symbiotic association with Frankia alni in
root nodules

Increase of Nitrogen concentrations in water through Nitrogen
export from Nitrogen-enriched soil

Compton et al., 2003;
Shaftel et al., 2012

Large canopy

Shade in summer Bjelke et al., 2016

Habitat and refuge for aquatic organisms during their terrestrial
life stage

Bjelke et al., 2016

Habitat, refuge, food and feeding ground for terrestrial organisms,
which in turn may fall into streams being food for
aquatic organisms

Bjelke et al., 2016

Autumn leaf litterfall
Supply of leaf litter in autumn, allowing the early instars of aquatic
insect detritivores to have a high-quality food resource

Pozo et al., 1997

Leaf litter with high concentrations of Nitrogen and low concentrations
of recalcitrant carbon

High-quality and fast-decomposing leaf litter
Feio et al., 2010;
Woodward
et al., 2012

Faster decomposition of more recalcitrant leaf litter from other
tree species

Ferreira et al., 2012;
Alonso et al., 2021;
Rubio-Rıós
et al., 2023
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91E0*). Indeed, alders are trees that live close to water and so have

high ecological importance (Table 1).

The extensive root system of alders contributes to defining the

morphology of the stream channel, thus creating important habitats for

other organisms (Figure 2A). Moreover, woody adventitious roots

provide habitat, refuge and feeding grounds for aquatic organisms
Frontiers in Plant Science 04
(Claessens et al., 2010). Their root system also provides an important

ecosystem service by contributing to stabilize riverbanks. Alders are

also nitrogen-fixing trees owing to their symbiotic association with the

nitrogen-fixing bacteria Frankia alni (Voronin) Von Tubeuf in root

nodules, which increases soil nitrogen availability (Teklehaimanot and

Mmolotsi, 2007; Claessens et al., 2010). As a result, alder trees in the
FIGURE 1

(A) Distribution of Alnus species within the Iberian Peninsula according to ploidy assessment (Havrdová et al., 2015; Vıt́ et al., 2017; Gomes Marques
et al., 2022; Sanna et al., 2023) and to genetic structure analyses by using microsatellite markers (Gomes Marques et al., 2024a; Martıń et al., 2024).
(B) Location of Phytophthora species isolated from unhealthy alder trees (Solla et al., 2010; Pintos-Varela et al., 2010, 2012, 2016; Haque et al., 2014;
Jung et al., 2016; Kanoun-Boulé et al., 2016; Ferreira et al., 2022; Bregant et al., 2023; Vieites-Blanco et al., 2023; Gomes Marques et al., 2024b;
Gomes Marques, 2024) and stands with characteristic tarry spots on alder trunks from which Phytophthora was not isolated yet. Edges of major river
basins are highlighted in red and black, main rivers in blue and country borders in brown.
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watershed could significantly increase nitrogen levels in streams. This

was verified in the USA, where redder alder (A. rubra Bong.) cover in

the watershed was linked to higher nitrogen concentrations in stream

water (Compton et al., 2003; Shaftel et al., 2012). Increases in soil

nitrogen availability in the presence of alder may also increase the

nutrient concentrations of leaf litter of non-nitrogen-fixing species

(Shainsky and Rose, 1995; Rhoades et al., 2001).

Alder trees do not tolerate shade, making them pioneer species,

and the choice to help restore degraded riparian habitats. The shade

provided by these trees during summer limits instream primary

production while contributes to keeping stream water cool (Bjelke

et al., 2016). Furthermore, the alder canopy provides habitat, refuge,

food and feeding grounds to terrestrial and aquatic species during

their terrestrial life stage, which may provide food inputs to the

stream ecosystem when falling into the water (Wipfli, 1997).
Frontiers in Plant Science 05
Moreover, leaf litter of Iberian and common alders (Figure 2B)

is soft and has high nitrogen concentration and low concentration

of recalcitrant carbon, in comparison with leaf litter of other Iberian

native tree species (Jabiol et al., 2019; Ferreira et al., 2022). This

makes it a very palatable food resource for aquatic microbial

decomposers and macroinvertebrate detritivores, which prefer

alder leaf litter to more recalcitrant one (Graça and Cressa, 2010;

Alonso et al., 2021), resulting in its fast decomposition (Feio et al.,

2010; Woodward et al., 2012). Especially in autumn, alder leaf

litterfall offers an important food supply to aquatic food webs (Pozo

et al., 1997), providing a high-quality food resource for the early

stages of detritivores aquatic insects (Molinero and Pozo, 2006). In

addition, alder leaf litter often stimulates the decomposition of litter

mixtures (Alonso et al., 2021), not only because it is a fast-

decomposing leaf litter itself (Rubio-Rıós et al., 2023), but also
FIGURE 2

(A) Alnus glutinosa trees provide streambank stabilization. (B) Leaf litter of A. lusitanica, indicated by arrows. Both species show root systems that
tolerate submersion, with long tap roots that ensure anchorage during water level decline.
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because it stimulates the decomposition of more recalcitrant leaf

litter due to the likely reduction in nutrient limitation (Ferreira

et al., 2012; Alonso et al., 2024).
Alder Phytophthora species in Spain
and Portugal

Riparian forests are particularly vulnerable to pathogen

invasions, which spread rapidly along rivers, taking advantage of

the current and becoming more effective once they reach stagnant

waters (Bjelke et al., 2016). Since the 1990s, the principal pathogens

associated with alder disease have been the oomycete of the genus

Phytophthora. The first observation of the pathogen infecting alder

trees in Europe was in the UK in 1993 (Brasier et al., 1995), and it

rapidly spread being quickly detected in a large part of Europe

(Brasier et al., 2022). Although the mechanisms behind the rapid

spread of the pathogen across Europe are not well understood, it is

known that water enhances the pathogen’s sporulation, spread and

infection via zoospores (Chen et al., 2022). Furthermore, other

authors consider that human activities have significantly

contributed to the rapid spread of the disease. For instance, plants

already infected by Phytophthora from nurseries may have been

used for the reforestation of riparian forests, allowing the

introduction of new pathogens (Gibbs et al., 2003; Eschen et al.,

2015; Jung et al., 2016; Tremblay et al., 2018; Mora-Sala et al., 2022).

In the Iberian Peninsula, the first reports of outbreaks of

Phytophthora associated with alders date from 2009 in Spain and

from 2016 in Portugal (Pintos-Varela et al., 2010; Solla et al., 2010;

Kanoun-Boulé et al., 2016). The main pathogens causing the disease

in alder trees are grouped in the P. alni complex, which includes P.

×alni, P. uniformis and P. ×multiformis, described as species by

Husson et al. (2015) (Bjelke et al., 2016; Nave et al., 2021; Trzewik

et al., 2021; Bregant et al., 2023). Over the years, new species of

Phytophthora (Table 2; Figure 1B) have been detected and isolated

from diseased alders presenting symptoms similar to the disease

caused by P. alni complex infection (Figure 3). In particular, P.
Frontiers in Plant Science 06
plurivora Jung & Burgess (Jung and Burgess, 2009) has been isolated

from bark cankers on several occasions, being the second most

isolated species in the Iberian Peninsula (Vieites-Blanco

et al., 2023).

All these Phytophthora taxa (Table 2) generate common symptoms

in alders (Figure 3) including small and yellowish leaves, increased cone

production but cones smaller than the ones from healthy alders,

canopy dieback, growth reduction, bark necrosis, bleeding cankers,

exudations in the collar and basal part of the stem, root and collar rot,

and tree mortality (Bjelke et al., 2016; Corcobado et al., 2023; Handa

et al., 2014; Redondo et al., 2015a). Nonetheless, the pathogenicity of

the different Phytophthora species varies. Different methods have been

described to study the pathogenicity of Phytophthora species under

controlled conditions (Haque et al., 2015; Chandelier et al., 2016).

Within the P. alni complex, P. ×alni is considered the most aggressive

(Haque et al., 2015). However, studies comparing the pathogenicity

between P. plurivora and P. ×alni (the most pathogenic species isolated

from alders in the Iberian Peninsula; Jung et al., 2013; Haque et al.,

2015; Ferreira et al., 2022; Horta Jung et al., 2024) suggest that the

oomycete with the highest pathogenicity on alder is P. plurivora

(Zamora-Ballesteros et al., 2017; Corcobado et al., 2023; Vieites-

Blanco et al., 2023). This difference in pathogenicity may depend on

many factors, such as the alder species and their defense mechanisms,

the environmental factors of different riparian forests and the isolates of

the Phytophthora pathogen tested and their infection capacity. It is

important to note that the higher pathogenicity of P. plurivora

compared to P. ×alni may be due to two factors. First, infection of P.

plurivora causes a low response in alder, which implies a low defense

against this pathogen. Secondly, P. plurivora colonizes the xylem and

phloem, in contrast to P. ×alni which primarily occurs in the phloem.

The ability to invade the xylem may provide P. plurivora with a

competitive advantage over P. ×alni (Vieites-Blanco et al., 2023).

Phytophthora lacustris Brasier, Cacciola, Nechwatal, Jung & Bakonyi

(Figure 1B, Table 2, Rial-Martıńez et al., 2023) and P. hydropathica

Hong &Gallegly (Table 2, Pintos-Varela et al., 2016) were also detected

in alder trees or river water associated with riparian alder, but their

pathogenicity remains to be demonstrated.

Ecological impact of alder disease
caused by Phytophthora species in
riparian and wetland ecosystems

Given the ecological importance of alders (Table 1), their

disappearance from riparian forests, due to Phytophthora

occurrence, will likely alter the plant community diversity and

structure, and affect the characteristics of streams, because of

modified channel morphology, decreased bank stability and

increased water temperature (Figure 4A). Root rot caused by the

pathogen will result in reduced tree stability, and fallen trees in

riverbanks will cause accelerated erosion, affecting river

geomorphological conditions and increasing damages caused by

flooding in crops and farms (Figure 4B). Also, with alder death, the

loss of woody adventitious roots will reduce the instream habitat

available to aquatic organisms, and the loss of wide-canopy trees

will reduce the habitat availability to terrestrial organisms.
TABLE 2 First reported distribution of different species of Phytophthora
associated with alder in Spain.

Species
River and

Spanish region
References

Phytophthora ×alni
Avia River – Galicia
Miño River – Galicia

Pintos-Varela et al., 2010;
Solla et al., 2010

P. uniformis Deza River – Galicia Pintos-Varela et al., 2012

P. plurivora

Tera River – Castile and
León
Tormes River – Castile
and León

Haque et al., 2014

P. hydropathica
Arnoia and Avia Rivers
– Galicia

Pintos-Varela et al., 2016

P. ×multiformis Muiños River – Galicia Pintos-Varela et al., 2017

P. lacustris
Miño-Sil – Galicia
and León

Rial-Martıńez et al., 2023
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Moreover, the disappearance of alder leaf litter from autumn leaf fall

will reduce the supply of high-quality organic matter, disrupting the

stream detrital pathway (Alonso et al., 2021). Consequently,

instream nutrient cycling will be impaired due to the decreased

decomposition rate of leaf litter, caused by the loss of high-quality

alder leaf litter (Rubio-Rıós et al., 2023). Additionally, the absence of

alder will stop contributing to the increase of the quality of leaf litter

from non-nitrogen-fixing species (Rhoades et al., 2001), which may

decompose slower due to the loss of the stimulatory effect of alder

litter presence on the decomposition of other low-quality leaf litter

in mixtures (Ferreira et al., 2012; Alonso et al., 2024).

Even before alder trees completely disappear from streamside

forests due to the disease, sick alder trees might already be affecting

the functioning of the stream ecosystem. For instance, diseased

alder trees generally have sparse and small-sized leaves (Jung et al.,

2018), and their leaves have lower nitrogen and higher phosphorus

concentrations compared with leaves from healthy trees (Ferreira

et al., 2022). As aforementioned, these changes will reduce the

amount of leaf litter inputs to streams and likely affect the instream

cycling of litter-derived nutrients. Microbial-mediated leaf litter

decomposition was faster for Iberian alder trees infected with P. alni

complex than for healthy trees, probably because of the higher litter

phosphorus concentration in diseased trees (Ferreira et al., 2022).

On the other hand, the mortality of alder trees by Phytophthora

often generates landscape gaps, which trigger germination and
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proliferation of some exotic invasive species (Figure 4C), such as

Acacia dealbata Link and A. melanoxylon R. Br. in specific areas

(Portela-Pereira et al . , 2022), leading to biodiversity

homogenization. Dieback of mother trees induced by

Phytophthora may hamper forest succession by reducing the rate

of successful recruitment events, thus compromising the long-term

sustainability of the community (Rodrıǵuez-González et al., 2010).

Moreover, soil and water infestation by Phytophthora species may

impede the successful regeneration of alders, by producing damage

to the embryo and radicle of seeds during germination, as reported

in other Phytophthora-infested ecosystems (Martıń-Garcıá et al.,

2015; Figure 4D). Thus, direct mortality along with indirect effects

on the alder life cycle might lead to non-linear changes in

community composition threatening biodiversity hosted by alder-

dominated forests (Biurrun et al., 2021).
Resistance and tolerance responses
against Phytophthora

Identifying natural resistant genotypes and understanding the

underlying mechanisms of resistance are essential for developing

effective management and conservation strategies (Redondo et al.,

2020). Resistance and tolerance responses of alders to Phytophthora

infection are complex and multifaceted, involving a combination of
FIGURE 3

Representative scheme of the main symptoms observed in alder trees infected by different Phytophthora species.
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genetic, physiological, biochemical and environmental factors

(Gomes Marques et al., 2022; Avila-Quezada and Rai, 2023;

Macháčová et al., 2024). Alders have physical barriers as

structural defenses, like bark and lignified cell walls (Schmitt

et al., 2021). However, Phytophthora can penetrate the host

through its fine roots and then spread upwards to the trunk, or

directly infect the trunk through existing wounds during flooding

(Oßwald et al., 2014). This renders the physical barriers of the alder

trees ineffective against infection by Phytophthora.

Alders have also developed defense mechanisms that define

their tolerance or resistance and the level of pathogenicity of the

oomycete. For example, trees can use tylose production, lignin

deposition and/or callose production and deposition around sieve
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plates to prevent the infection of vascular systems (Redondo et al.,

2015a; van den Berg et al., 2018). On alders, Phytophthora was

found to affect the epidermis, cortex and vascular cylinder of roots,

thus altering fibers and vessels, which leads to a detectable increase

in tylose production (Vieites-Blanco et al., 2023). Indeed, some

authors relate the presence of tyloses to a defense mechanism to

hamper the advance of mycelium (Narayan et al., 2022; Martıń and

López, 2023). However, Vieites-Blanco et al. (2023) considered that

the production of tyloses could be an indicator of damage rather

than of plant resistance. In turn, callose formation in the crib plates

is associated with plant resistance to Phytophthora. Thus, van den

Berg et al. (2018) observed a lack of callose formation on susceptible

roots with invasive hyphae, and Vieites-Blanco et al. (2023) detected
FIGURE 4

(A) Widespread mortality of Alnus glutinosa trees (white arrows) induced by Phytophthora species along Alagón River (Valdeobispo, Spain). (B) Unhealthy
alder trees are prone to fall allowing increased soil erosion. (C) The gap created by tree mortality due to P. ×alni infection will most likely allow rapid
colonization of invasive species, such as Gledistia triacanthos tree on the left. (D) Phytophthora-infested soil might not allow seed germination, impeding
the successful recruitment of alders; the image shows cones full of viable seeds fallen from alder trees in an infested soil where no regeneration has
been registered.
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differences in callose formation in alders infected with less

aggressive pathogens vs. absence of callose with the more

aggressive pathogens.

A direct relationship has been observed between the

geographical distribution of Phytophthora species and subspecies

and the climatic conditions. Efforts to create a comprehensive and

reliable map of the global spread of various Phytophthora species

have revealed that their distribution is related with the abiotic

conditions of the studied areas. For example, in southern Sweden, a

temperature-related barrier separates the survival of two species: P.

uniformis, which can withstand lower temperatures, and P. ×alni

which is only found in southern regions with milder climatic

conditions (Redondo et al., 2015b, Redondo et al., 2020; Teshome

et al., 2020).

In addition, biological barriers, such as microbial communities,

are very important in enhancing plant defenses. Forest trees

mainta in c lose re la t ionships with a wide var iety of

microorganisms that are essential for maintaining tree health,

optimizing nutrient availability and supporting overall ecosystem

functions (Fuller et al., 2023). Compared to crops planted yearly, the

microbes that live around trees, both helpful and harmful, usually

have more steady and stable interactions. This stability is largely due

to the deep root systems of trees, which create a more stable

environment for microbial communities (Mercado-Blanco et al.,

2018). Beneficial microbiota, including plant growth-promoting

rhizobacteria (PGPR), plant growth-promoting fungi (PGPF) and

biocontrol agents, can significantly influence the metabolic

processes of alder trees. These microorganisms enhance growth,

improve performance and increase the trees’ resistance to various

stresses in an economically efficient manner (Tian et al., 2020).

Furthermore, in the search for resistant or tolerant genotypes to the

pathogen Phytophthora, it was observed that progenies of alders

from an area invaded by P. uniformis were less susceptible to P.

×alni than progenies from a pathogen-free zone. This could suggest

an epigenetic regulation in some of the mechanisms of alder

resistance to Phytophthora, as recently described in citrus

(Rodrigues da Silva et al., 2021). Also, these studies provide

valuable information, as they confirm that responses to infection

can be inherited and highlight the importance of studying both

surviving and healthy trees (not just the diseased ones), since they

provide adaptation potential to the future generation. However,

they also stress the need to study the stability of these responses over

time and generations.

Through research, several potential biological control agents

(BCAs) have been identified to reduce pathogenic spread and

associated symptoms including dieback and root rot. The most

commonly used BCAs belong to the genera Pseudomonas,

Bacillus and Trichoderma. For instance, a study by Zaspel et al.

(2014) demonstrated the advantages of root treatment with

Pseudomonas veronii Coroler, Elomari, Hoste, Gillis, Izard,

Leclerc for enhancing alder rooting. The study found that this

bacterium can induce tolerance in some P. ×alni-infected alders,

allowing them to survive without exhibiting symptoms caused by

the pathogen. Moreover, while studies of BCAs on alder are

limited, there are many registered microorganisms with

antagonistic activity on other Phytophthora pathogens whose
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benefits have been successfully demonstrated. For example,

Pseudomonas putida (Trevisan) Migula and P. chlororaphis

(Guignard and Sauvageau, 1894; Bergey et al., 1930) were used

as BCA of Phytophthora root rot in citrus orchids (Steddom

et al., 2002) and in P. palmivora E.J. Butler infected-cacao plants,

respectively (Acebo-Guerrero et al., 2015). In the same way,

Bacillus amyloliquefaciens (Fukomoto) Priest, Goodfellow, Shute

& Berkeley induced systemic resistance against P. cactorum

(Lebert & Cohn) J. Schroüt (Lee et al., 2015). In addition,

Trichoderma virens (J.H. Miller, Giddens & A.A. Foster) Arx,

T. harzianum Rifai, T. asperellum Samuels, Lieckfeldt &

Nirenberg and T. spirale Bissett showed antagonistic effects

against P. palmivora in cacao plants (Mpika et al., 2009). T.

saturnisporum Hammill also showed antagonistic effects against

several Phytophthora spp (Diánez Martı ́nez et al., 2016;

Mercado-Blanco et al., 2018). These findings suggest a

promising avenue for biocontrol against Phytophthora species,

underscoring the importance of investigating the alder

microbiome. Such research aims to identify potential

microorganisms capable of inhibiting or parasitizing the

pathogen decreasing its pathogenicity, thereby enhancing the

host chances of survival and resilience (Redondo et al., 2020).
Breeding programs and approaches to
fight against diseases and pests in
forest tree species that may guide
research on alder

Forest tree breeding is a laborious and time-consuming process,

strongly limited by the long breeding cycle of most tree species. An

important factor in maintaining the long-term viability of the alder

populations in Europe is the development or maintenance of

natural resistance to Phytophthora. Additionally, the presence of

asymptomatic alders surviving in highly affected areas could suggest

the potential resistance to alder dieback in some common alder

genotypes (Jung and Blaschke, 2004). Traditional approaches for

breeding are based on the selection and mating of elite trees

carrying the desirable traits. It is crucial to identify asymptomatic

genotypes, which may be resistant, within natural populations

affected by the pathogen. These genotypes should be tested for

resistance under controlled conditions, typically using a

combination of short- and long-term assessments. This includes

planting the selected genotypes in areas with high disease pressure

and varying environmental conditions (Sniezko, 2006; Sniezko and

Koch, 2017). The confirmed resistant trees can then be used to

develop a pool of resistant germplasm, for reforestation or

restoration purposes, by clonal propagation and/or by crossing

with other resistant trees (Keriö et al., 2019).

Forest biotechnology provides tools for conserving and sustainably

managing of natural genetic resources, as well as for optimizing and

speeding up genetic improvement programs. The development and use

of biotechnological techniques provide, on the one hand, information

for better management of natural resources, through the study of the

genetic variability of forest tree resources and their functional
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characterization, employing molecular biology techniques (Dıáz-Sala,

2014, 2019). On the other hand, in vitro culture techniques make

possible large-scale plant propagation within breeding programs to,

among others, preserve selected outstanding genotypes that are difficult

to conserve by other methods. The application of tissue culture

techniques has also led to the development of cryopreservation, as an

additional strategy for conservation widely used in the agricultural

sector. Vegetative propagation and in vitro propagation allow the

development of clonal trials for phenotypic evaluation, the

multiplication and maintenance of the genotypes of interest, the

regeneration of a high number of plants in breeding programs and

guarantee the health and availability of forest material quickly at any

time and season of the year (Dıáz-Sala, 2016).
Large-scale vegetative propagation

Alders are easily propagated by seeds, and this is the most used

method when a high number of specimens is required. However,

due to the variation resulting from sexual reproduction, the use of

seeds as a means of propagation to produce plants expressing a

desirable trait, such as disease resistance, is limited, and vegetative

propagation methods would be more appropriate. An alternative to

sexual reproduction, for capturing genetic gains, is the vegetative

propagation of trees that show desirable traits. Vegetative

propagation also allows the preservation of non-additive gene

effects, which result from gene interactions. These effects are

usually not passed on through sexual reproduction but can

produce exceptional individuals. In horticulture, mass vegetative

propagation of selected phenotypes has been used for centuries.

However, woody species have specific characteristics that make

mass propagation not widely used in forestry, despite the need to

propagate elite genotypes by these methods (Greenwood and Weir,

1995). The high heterozygosity of forest species, combined with the

significant non-additive genetic effects influencing various traits of

interest, requires the use of vegetative propagation to achieve

optimal genetic gains while preserving the genotype’s identity

and biodiversity.

Alders can be propagated vegetatively by rooting woody

cuttings. However, rooting success is highly dependent on the

genotype, tree age, collection season, type of cuttings and

treatments used. Even though, annual softwood cuttings were

found more appropriate for rooting and vegetative propagation of

mature common alder trees (Radwan et al., 1989; Novotná and

Štochlová, 2012). Also, cuttings collected during the breakdown of

endogenous dormancy of the mother plant (December to

February), or before the onset of dormancy (July to September),

seem to be more successful for rooting of A. glutinosa (Novotná and

Štochlová, 2012).

Alders can also be propagated by using in vitro tissue culture

techniques (Tremblay and Lalonde, 1984; Périnet and Tremblay,

1987; Corredoira et al., 2011, Corredoira et al., 2013; Bajji et al.,

2013; San José et al., 2013). Indeed, in vitro propagation and

conservation of alders have been carried out by somatic

embryogenesis and subsequent cryopreservation of induced

somatic embryos (Corredoira et al., 2013; San José et al., 2015b).
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However, at present, the establishment of axillary micropropagation

systems, by sequential subcultures and subsequent rooting of the

shoots obtained, is the most widely used method, as it guarantees a

rapid large-scale multiplication and genetic stability (Tremblay and

Lalonde, 1984; Périnet and Tremblay, 1987; Corredoira et al., 2011;

San José et al., 2012, San José et al., 2013). However, the effect of the

genotype, the tree age and phytosanitary conditions, the stage of

development and the status of the explant material are major factors

affecting culture establishment (Tremblay and Lalonde, 1984;

Périnet and Tremblay, 1987; Bajji et al., 2013; San José et al.,

2013). Remarkably, the use of explants from forced-to-flush

axillary shoots, from mature branches under controlled

conditions, avoids the huge contamination problems when

explants taken directly from the field are used for the initiation of

in vitro cultures (Corredoira et al., 2011; San José et al., 2013). A

specific culture medium for woody species, supplemented with

cytokinins and auxins, is required for the successful establishment

and multiplication of juvenile and adult tree explants by shoot

cultures (Bajji et al., 2013; San José et al., 2013). In addition, the

carbohydrate source seems to play an important role in both

multiplication and rooting phases of shoots (San José et al., 2011,

San José et al., 2013). In the presence of exogenous auxin, primarily

indole-3-butyric acid, or even in its absence, alder induces

adventitious roots in stems developed in vitro (Corredoira et al.,

2011; San José et al., 2012, San José et al., 2013). Recently, the use of

in vitro systems of temporary immersion in a liquid medium has

been described as an alternative strategy for the improvement of

alder multiplication (San José et al., 2020). In the same way, the use

of double-phase culture systems, by adding liquid medium

(Rodriguez et al., 1991), improves the multiplication rates and

plant vigor, while reducing the management costs. The storage of

A. glutinosa shoot cultures under minimum growth conditions

allows maintaining cultures for extended periods (up to 18

months before subculturing), which results in a cost-efficient

storage of alder germplasm, thus contributing to improved

conservation of alder genetic diversity (San José et al., 2015a).
Recent advances to improve the efficiency
of tree breeding

Although forest tree breeding usually lasts for decades, recent

advancements in methods and strategies have introduced tools to

accelerate and refine this process. Genomic Selection (GS), Marker-

Assisted Selection (MAS), Genome-Wide Association Studies

(GWAS) and Quantitative Trait Loci (QTL) have revolutionized

tree breeding by enabling the precise identification and

manipulation of genes associated with resistance to pests and

diseases (Fan et al., 2024; Fernandes et al., 2024; Jacobs et al., 2024;

Sharma et al., 2024). These approaches have great potential to

augment and help advance tree improvement programs, through

early, indirect selection of improved genotypes (Sniezko and Koch,

2017). Moreover, technologies such as the CRISPR/Cas9 genome-

editing tool allow for precise alterations in tree genomes, opening the

door for obtaining individuals with specific resistances to pests and

diseases. This technology, combined with GS andMAS, could help to
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accelerate breeding cycles and improve the genetic gain per

generation (Poovaiah et al., 2021). In addition, modern High-

Throughput Phenotyping (HTP) technologies, like cameras,

sensors, Unmanned Aerial Vehicles (UAV), robotics and

computers, allow the collection of reliable phenotypic data of

thousands of individuals with unprecedented speed and accuracy,

i.e. automated phenotyping (aka phenomics) (Spalding and Miller,

2013). For instance, these technologies (e.g. UAV) might be used to

identify volatiles or any other chemical signal linked with resistant

phenotypes (Quintana-Rodrıǵuez et al., 2015) and/or with the

maturity stage of the pest (Mamidala et al., 2013; Shen et al., 2021).

For instance, UAVs were used to monitor the health status of trees

affected by alder dieback in Northern Portugal (Guerra-Hernández

et al., 2021). Recent advances in Artificial Intelligence may also

leverage the linking of phenotypes to genomic features (Rairdin

et al., 2022), which is particularly challenging in the current big

data era in plant biology (Deng et al., 2023), as well as the phenotype/

disease identification/diagnosis (Ferentinos, 2018; Wang et al., 2022)

and the GS prediction models (Sharma et al., 2024).
Case studies in breeding against forest
pests and diseases

The Emerald Ash Borer (EAB, Agrilus planipennis Fairmaire)

case, a prime example of an invasive pest introduced through

globalization, is an example of how multiple biotechnological

approaches to genetic breeding can help in disease control in

forest species. Native to Northeast Asia, EAB was first found in the

USA in 2002 and, since then, it has devastated ash populations

(Fraxinus spp.), including green ash (F. pennsylvanica Marsh),

and forested ecosystems, with severe economic and ecological

impacts (Herms and McCullough, 2014). Thus, EAB is the most

damaging invasive forest insect pest ever to have invaded North

America, threatening nearly all native species of Fraxinus with

functional extinction (Poland and McCullough, 2006; Herms and

McCullough, 2014; Aubin et al., 2015; Stanley et al., 2023).

Breeding programs have focused on identifying and propagating

EAB-resistant ash trees. Research has identified specific genetic

markers associated with resistance, enabling the use of MAS to

accelerate breeding efforts (Cobo-Simón et al., 2021; Huff et al.,

2022). In addition, ongoing genomic studies aim to understand

the mechanisms of resistance and enhance the resilience of ash

populations (Huff et al., 2022; Battisti and Larsson, 2023).

However, further knowledge of the ash genome is of vital

importance to understanding the genetic basis of ash resistance.

In this sense, the recently published genomes of F. excelsior L. and

F. pennsylvanica can be very useful (Sollars et al., 2017; Huff et al.,

2022). Another approach has optimized the Agrobacterium-

mediated transformation system to introduce a Bt toxin gene

into transgenic F. nigraMarshall susceptible shoots (Lee and Pijut,

2018). From another perspective, Merkle et al. (2023) reported the

application of somatic embryogenesis to clonally propagate

progeny of lingering F. americana L. and F. pennsylvanica

parents, which could provide EAB-resistant ash varieties for

forest and urban tree restoration. Moreover, transcriptome and
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proteomic analyses also provide information and powerful tools to

advance pedigree-based breeding and selection programs as well

as the management of standing populations (Neale and Kremer,

2011). Recently, Chiu et al. (2023) identified a unique set of genes

linked to three different levels of increasing EAB infestation of F.

pennsylvanica. Moreover, studies on resistance variability and

candidate genes for ash tree stress defense can help breeding for

resistance to EAB (Lane et al., 2016; Kelly et al., 2020). Although

there is still much progress to be made in the fight against EAB,

the combined use of several biotechnological approaches could

offer new hope for the survival of North American

Fraxinus species.

Several other case studies highlight the success of modern forest

breeding programs. For instance, breeding programs for Norway

spruce (Picea abies [L.] H. Karst) and various pine species (Pinus

spp.) have shown significant improvements in growth and

resistance traits using GS techniques (Sharma et al., 2024). These

programs use genetic data to predict and select the best candidates

for breeding, enhancing resistance to common pests and diseases

such as bark beetles (Westbrook et al., 2013), whose impacts are

magnified by climate change. These efforts have resulted in more

resilient tree populations capable of withstanding pest invasions

and environmental stresses (Lenz et al., 2020; Sharma et al., 2024).

American chestnut (Castanea dentata (Marshall) Borkh.) was

nearly eradicated by chestnut blight (Cryphonectria parasitica

(Murrill) Barr). Breeding programs have aimed to restore this

iconic species through hybridization with blight-resistant Chinese

chestnut (C. mollissima Blume). American chestnut is also highly

susceptible to the soil-borne pathogen P. cinnamomi Rands, which

causes root rot. This pathogen is spreading towards northern

regions of North America due to climate change. Breeding

programs aim to combine resistance to chestnut blight and

Phytophthora, by breeding blight-resistant hybrids with P.

cinnamon-resistant American chestnuts. Recent advances in GS,

CRISPR/Cas9 technology (Westbrook et al., 2019a, Westbrook

et al., 2019b; Fernandes et al., 2022; Battisti and Larsson, 2023)

and transcriptomics, particularly comparative transcriptome

analysis (Barakat et al., 2009, Barakat et al., 2012; Nie et al.,

2023), have furthered these efforts, leading to crucial findings to

assist successful breeding and offering hope for the re-establishment

of American chestnut populations.

In European chestnut species, breeding for resistance to ink

disease, caused by P. cinnamomi, allowed for the development of

tolerant hybrid rootstocks in Europe, by crossing the local C. sativa

Mill. with the two Asian tolerant species, C. crenata Sieb. and Zucc.

and C. mollissima (Miranda-Fontaıñ́a et al., 2007; Santos et al.,

2015, Santos et al., 2017). Furthermore, the selection of P.

cinnamomi-tolerant chestnut trees has been evaluated using EST-

SSRs, among which the CsPT_0005 locus could be applied in

marker-assisted selection to predict P. cinnamomi resistance in

non-inoculated C. sativa trees (Alcaide et al., 2020).

In Spain, a breeding program is currently underway to obtain

Quercus ilex L. and Q. suber L. varieties tolerant to P. cinnamomi. It

includes activities such as the identification of trees in affected areas

and selection of symptomless individuals, population variability

studies, propagation of symptomless specimens identified in
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affected areas, evaluation of the suitability of tolerant material as

rootstocks, tolerance trials “in vitro”, in the nursery and the field,

installation of seed orchards of selected clonal materials, search for

molecular markers linked to resistance/tolerance responses, and

studies of the biological component of the soil (Tapias et al., 2006,

Tapias et al., 2008; Pérez et al., 2020; Martıńez et al., 2023).

Genetic improvement has also proven to be effective as a control

tool against the pine wood nematode (Bursaphelenchus xylophilus

(Steiner and Buhrer) Nickle). Designed to combat this pathogen,

the genetic breeding program from the Forestry Research Center of

Lourizán (Spain) has successfully developed resistant varieties of

Pinus pinaster Aiton, that are now offered for sale in nurseries

(Dıáz-Vázquez et al., 2020). For this purpose, researchers studied

variation in susceptibility to the nematode across several pine

species, as well as among P. pinaster provenances from the

Iberian Peninsula and France, and among half-sib families within

the P. pinaster and P. radiata D. Don genetic improvement

programs (Dıáz-Vázquez et al., 2020; Menéndez-Gutiérrez et al.,

2018, Menéndez-Gutiérrez et al., 2021).

The breeding program for Chamaecyparis lawsoniana (A.

Murray bis) Parl. (Port-Orford cedar or Lawson’s cypress)

resistance to P. lateralis Tucker & Milbrath, in the USA, is one of

the most promising resistance selection efforts for forest trees

around the world (Keriö et al., 2019). P. lateralis nearly

decimated C. lawsoniana, a keystone tree species in the Pacific

Northwest and one of the most valued landscape tree species in the

Northern Hemisphere. Currently, containerized seed orchards with

the best parents and progeny are maintained for resistance testing.

Seed production and field plantings indicate high survival rates of

the resistant planting stock (Hansen et al., 2012).
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Unfortunately, there are relatively few examples of tree breeding

programs focused on Phytophthora resistance in wild forest species,

compared to those with higher economic significance, such as

crops. In contrast, agricultural species have benefited from

genomic techniques such as QTL mapping, GWAS, and genome-

wide extreme phenotyping (XP-GWAS). These approaches have

been instrumental in identifying significant QTLs and single

nucleotide polymorphisms (SNPs) associated with resistance to

Phytophthora (Siviero et al., 2006; Siddique et al., 2019; de Ronne

et al., 2022; Ro et al., 2022; Li et al., 2023; Lin et al., 2023). For

example, underway breeding programs have allowed obtaining

citrus rootstocks resistant to P. nicotianae Breda de Hann, and

the use of molecular technologies, linkage maps and QTL

information has improved the efficiency of various citrus breeding

programs, by decreasing evaluation times for a high number of

genotypes and providing study targets (Lima et al., 2018).

Since the disease caused by Phytophthora was first detected in

European alders in the 1990s, it has resulted in severe losses in

timber production, and severe damage to alder stands in forests and

along riverbanks with negative effects on flood defense and

biodiversity loss. Forest management strategies and fungicides are

the usual way of coping with this disease, but the control of the

pathogen with chemical treatments outside nurseries is not allowed.

Therefore, breeding for resistance can be one of the most effective

strategies to control the disease. Furthermore, the need to preserve

genetic diversity and the presence of tolerant alders support the

need for breeding for resistance. However, until recently, the only

known breeding program for common alder resistant to P. ×alni is

the RESISTANT ALDER project, conducted at the Institute of

Forest Genetics in Waldsieversdorf (Germany). This project
FIGURE 5

Program launched in RETAIN and ATLANTES projects to tackle alder decline in Spanish riparian forest ecosystems. Information on the program
launched in the Portuguese ALNUS project can be found at https://www.isa.ulisboa.pt/proj/alnus/project/.
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ended in 2017, resulting in the selection of only four clones with

lower susceptibility to P. ×alni.

In response to the widespread alder mortality in the Iberian

Peninsula, comprehensive programs have recently been launched to

address the alder decline in Spanish and Portuguese riparian forest

ecosystems. The ALNUS project in Portugal (2018-2022; https://

www.isa.ulisboa.pt/proj/alnus/project/) launched the study of alder

populations’ resilience to Phytophthora and climate change. In

Spain, the RETAIN (2022-2024) and ATLANTES (2022-2025)

projects, involving several research groups from different

universities and research institutes, with the collaboration of

public bodies in charge of alder management (Ministry for

Ecological Transition and the Demographic Challenge, River

Basin Authority and Regional Government of Castile-La

Mancha), initiated an ambitious regional and national program to

cope with alder decline in Spanish riparian forest ecosystems

(Figure 5). This program involves, on one side, the determination

of the current distribution and damage of alder dieback, as well as

the characterization of the Phytophthora species complex causing

the disease, to improve our understanding of host-pathogen

interactions. On the other side, it plans to carry out an in-depth

characterization of the existing genetic variability of alders from the

Iberian Peninsula and the interactions in the Alnus-Phytophthora

pathosystem, along with the identification and large-scale

propagation of resistant or less susceptible trees while

maintaining biodiversi ty . The genetic and ecological

characterization of an admixture of species in an Alnus stand, as

well as of their offspring in response to abiotic and biotic factors are

also included in the program. This information will allow, when

planning a restoration program, to consider any genetic structure at

a local scale and differentiation at a river catchment (Rodrıǵuez-

González et al., 2019), provenance region or national scale.

Maintaining genetic diversity within forest populations during

breeding for resistance is crucial to ensure resilience against

future threats (Blows and Hoffmann, 2005; Bijlsma and

Loeschcke, 2012; Hamilton et al., 2017; Sjöman et al., 2024).

Alimpić et al. (2022) concluded that a combination of in situ and

ex situ measures and/or integrative conservation of riparian

ecosystems is the most appropriate option for conserving the

genetic diversity of riparian tree species. In addition, in the

Iberian Peninsula, where two species (A. glutinosa and A.

lusitanica), hard to distinguish, coexist, traceability may be of

particular interest to river managers.
Conclusions and future perspective

Alders play significant ecological, commercial and recreational

roles. However, a strong reduction of alder stands has been detected

in Europe due to infection by Phytophthora spp. Continuous tree

germplasm screening, effective procedures for the evaluation of the

disease, accurate identification of Phytophthora species and

identification of tolerant genotypes for large-scale propagation are

crucial for the development of breeding programs that will preserve
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tree genetic diversity. The advances in genetic screening and genomic

technologies, reference genomes and bioinformatic tools, including the

promising application of Artificial Intelligence techniques in molecular

biology (e.g. AlphaFold; Tunyasuvunakool et al., 2021; Abramson et al.,

2024), as well as the genomics of Phytophtora-alder interactions and

the novel high-throughput phenotyping techniques, will help to

identify resistance gene(s), QTLs and pathogen effectors. This

knowledge will allow the application of genomic-assisted breeding,

gene silencing and gene editing to improve Phytophthora resistance

in alder.
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(2010). Statistical model to detect asymptomatic infectious individuals with an
application in the Phytophthora alni-induced alder decline. Phytopathology 100,
1262–1269. doi: 10.1094/PHYTO-05-10-0140

Eschen, R., Rigaux, L., Sukovata, L., Vettraino, A. M., Marzano, M., and Grégoire, J.-C.
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Havrdová, A., Douda, J., Krak, K., Vıt́, P., Hadincová, V., Zákravský, P., et al. (2015).
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et al. (2024). Response of Alnus glutinosa to Phytophthora bark infections at ambient
and elevated CO2 levels. Front. For. Glob. Change 7. doi: 10.3389/ffgc.2024.1379791

Mamidala, P., Wijeratne, A. J., Wijeratne, S., Poland, T., Qazi, S. S., Doucet, D., et al.
(2013). Identification of odor-processing genes in the emerald ash borer, agrilus
planipennis. PLoS One 8, e56555. doi: 10.1371/journal.pone.0056555
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