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Meta-QTL mapping for wheat
thousand kernel weight
Chao Tan, Xiaojiang Guo, Huixue Dong, Maolian Li, Qian Chen,
Mengping Cheng, Zhien Pu, Zhongwei Yuan and Jirui Wang*

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan
Agricultural University, Chengdu, China
Wheat domestication and subsequent genetic improvement have yielded

cultivated species with larger seeds compared to wild ancestors. Increasing

thousand kernel weight (TKW) remains a crucial goal in many wheat breeding

programs. To identify genomic regions influencing TKW across diverse genetic

populations, we performed a comprehensive meta-analysis of quantitative trait

loci (MQTL), integrating 993 initial QTL from 120 independent mapping studies

over recent decades. We refined 242 loci into 66 MQTL, with an average

confidence interval (CI) 3.06 times smaller than that of the original QTL. In

these 66 MQTL regions, a total of 4,913 candidate genes related to TKW were

identified, involved in ubiquitination, phytohormones, G-proteins,

photosynthesis, and microRNAs. Expression analysis of the candidate genes

showed that 95 were specific to grain and might potentially affect TKW at

different seed development stages. These findings enhance our understanding

of the genetic factors associated with TKW in wheat, providing reliable MQTL and

potential candidate genes for genetic improvement of this trait.
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Introduction

Wheat breeders are emphasizing trait-based breeding using genotype complementation

with elite agronomic traits to accelerate grain yield improvement (Bustos et al., 2013). The

identification of quantitative trait loci (QTL) associated with molecular markers is essential

for understanding the genetic basis of important traits and is an effective method for

improving selection efficiency in breeding programs (Soriano et al., 2021). Breeding for key

agronomic and physiological traits related to yield may further enhance the genetic gain of

wheat (Tshikunde et al., 2019).

Thousand kernel weight (TKW) is of crucial significance in determining wheat yield, in

conjunction with elements like the number of grains per spike and the number of spikes per

plant (Avni et al., 2018; Campbell et al., 1999). TKW is predominantly influenced by kernel

length (KL), kernel width (KW), kernel thickness (KT), kernel surface area, grain filling rate,

and duration time (Guan et al., 2019; Xie et al., 2015; Zanke et al., 2015; Zhai et al., 2018).
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The inheritance of TKW is relatively stable, exhibiting higher

heritability values compared to overall yield, with moderate to high

heritabilities ranging from 0.6 to 0.8 (Kuchel et al., 2007). Therefore,

the exploitation of genetic variation for TKW and related traits is a

promising approach to improve wheat yield (Würschum et al., 2018).

The availability of resources, such as draft and complete genome

sequences, high-density single nucleotide polymorphism (SNP)

arrays and transcriptomic databases has facilitated a powerful

approach to identify QTL controlling grain size in wheat, including

TKW, KL and KW (Wang et al., 2014a; Winfield et al., 2016; Borrill

et al., 2016; Li and Yang, 2017). Numerous QTL/genes for grain size

have been identified and characterized using traditional bi-parental

linkage mapping and genome-wide association approaches (Cheng

et al., 2015; Hu et al., 2015; Krishnappa et al., 2017; Kumari et al.,

2018; Qu et al., 2021; Fang et al., 2020; Gao et al., 2021; Mir et al.,

2012; Yang et al., 2020), including TaCKX2 (Zhang et al., 2011),

TaSus (Jiang et al., 2011), TaCKX6-D1 (Zhang et al., 2012), TaGW2

(Yang et al., 2012), TaGS-D1 (Zhang et al., 2014), TaGASR7 (Zhang

et al., 2015; Dong et al., 2014), TaCwi (Jiang et al., 2015), TaTGW6

(Hu et al., 2016), TaTGW6-A1 (Hanif et al., 2016), TaGW2-A1

(Simmonds et al., 2016; Jones et al., 2021), TaGS5-3A (Ma et al.,

2016), and TaGL3-5A (Yang et al., 2019).

However, most of the QTL have minor effects and their

expression is highly affected by the environment, the genetic

background and their interactions (Zheng et al., 2021). Meta-QTL

(MQTL) analysis also allows the identification of putative molecular

markers for marker associated selection (MAS) (Soriano et al., 2021;

Arriagada et al., 2020; Welcker et al., 2011). Utilizing the MQTL

approach has led to significant advancements in integrating

different quantitative traits in various crops, such as yield-related

traits and insect resistance in maize (Wang et al., 2013; Badji et al.,

2018), drought tolerance, and yield-related traits in rice (Khowaja

et al., 2009; Raza et al., 2019; Khahani et al., 2020), agronomic and

quality traits in cotton (Said et al., 2015). In common wheat, several

studies have conducted MQTL analysis for various traits including

grain size and shape, grain weight, grain yield, grain protein

content, pre-harvest sprouting resistance, adaptation to drought

and heat stress, quality traits, tolerance to abiotic and biotic stresses,

and resistance against diseases like Fusarium head blight, tan spot,

and leaf rust (Gegas et al., 2010; Ma et al., 2022; Liu et al., 2009;

Soriano and Royo, 2015; Cai et al., 2019; Tai et al., 2021; Venske

et al., 2019; Zheng et al., 2021; Miao et al., 2022; Saini et al., 2022a;

Tyagi et al., 2015; Kumar et al., 2020 and Soriano et al., 2017), as

well as adaptation to abiotic stresses like drought and heat (Liu

et al., 2020a, 2020b). Additionally, phenology, biomass and yield

traits MQTL were also identified in durum wheat from 2008 to 2015

(Soriano et al., 2017).

This study is aimed at identifying genetic factors from diverse

genetic populations with the potential to enhance TKW in wheat.

To compare the differences in TKW QTL among diverse genetic

populations, we gathered 28 double haploid (DH) populations, 16

F2 populations, and 76 recombinant inbred line (RIL) populations

across multiple environmental conditions. By conducting MQTL

analysis using publicly available reference data, we obtained 66

MQTL and subsequently identified 96 candidate genes within these

MQTL regions that might influence TKW.
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Materials and methods

Collection of QTL for TKW and
construction of reference map

For QTL controlling for TKW, a comprehensive collection was

performed using PubMed (http://www.ncbi.nlm.nih.gov/pubmed),

Google Scholar (https://scholar.google.com/) and China National

Knowledge Infrastructure (https://www.cnki.net/). For each initial

QTL, the necessary information was collected: (i) QTL name, (ii)

thousand kernel weight trait, (iii) flanking or closely linked marker,

(iv) position of QTL (peak position and/or confidence intervals), (v)

type and size of lines in the mapping population (F2, DH, RIL and

Backcross), (vi) LOD (logarithm of the odds) value for each QTL,

and (vii) percentage of phenotypic variance explained for each QTL

(PVE or R2). For some QTL for which the LOD and R2 values were

missing in the previous studies, they were respectively assumed to

be 3 and 10% as the common practice (Khahani et al., 2020; Venske

et al., 2019). When the peak position was missing, the midpoint

between the two flanking markers was treated as the peak position

(Yang et al., 2021). In addition, for the initial QTL which were

missing flanking markers and confidence intervals (CIs), the CIs

were recalculated according to the population type and size using

the following standard formula: (i) F2 and backcross population,

CI=530/(N×R2), (ii) recombinant inbred line (RIL) population,

CI=163/(N×R2), and (iii) doubled haploid population, CI=287/

(N×R2). Here, 530, 163, and 287 are the population-specific

constants obtained from different simulations (Darvasi and Seller,

1997; Guo et al., 2006). Where N is the size of the mapping

population used for QTL analysis, and R2 is the phenotypic

variation explained by QTL (Kumar et al., 2020). The primary

markers, including Simple Sequence Repeats (SSR), Diversity

Arrays Technology (DArT), and the 9K/55K/90K/660K iSELECT

SNP markers, have been utilized to construct genetic linkage maps

for QTL mapping studies, as reported in a previous research (Liu

et al., 2020).
Construction of consensus genetic maps

The genetic maps, comprising multiple markers extensively

utilized in various QTL mapping studies, were employed in the

construction of a reference genetic map. (i) “Wheat, Consensus SSR,

2004” and “Wheat, Composite, 2004” (consisting of 4403 SSR,

RFLP, and AFLP markers), as well as “Wheat, Synthetic ×Opata,

BARC”, were all obtained from the GrainGenes website (https://

wheat.pw.usda.gov/GG3/), (ii) “Wheat consensus map version 4.0”

downloaded from the website (https://www.diversityarrays.com),

(iii) A SSR consensus map (1235 SSR markers) (Somers et al., 2004),

(iv) A consensus map (including 3669 DarT & SSR-integrated map)

for durum wheat (Marone et al., 2013), (v) Three SNP genetic maps,

namely those derived from the 9 K iSelect Beadchip Assay (3959

Illumina 9 K iSelect Beadchip Array), iSelect 55 K SNP Assay, and

iSelect 90 K SNP Assay (40268 Illumina iSelect 90 K SNP Array)

based on the Illumina platform, and genotyping by sequencing

(GBS) (Cavanagh et al., 2013; Saintenac et al., 2013; Venske et al.,
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2019; Wang et al., 2014b). The R package LR merge was utilized to

construct the reference map for this Meta-QTL study using the

optimized “synthetic” method, which enables the generation of

genetic maps across multiple populations, as described by Venske

et al. (2019), (vi) A consensus map (AxiomR Wheat 660 K SNP

array) which was made by Cui et al., 2017, (vii) A high-density

consensus map, which integrates 14548 SSR, DarT, 90 K, and 660K

SNP markers sourced from two dense genetic maps (Maccaferri

et al., 2015; Soriano and Alvaro, 2019), was established and served

as a reference map (Bilgrami et al., 2020). This comprehensive map

spans a total length of 4813.72 cM, covering the 21 linkage groups

ranging from 155.6 cM and 350.11 cM. The reference map was used

to project individual QTL identified in separate populations

(Shariatipour et al., 2021), and it served as the reference map for

our research.
Projection of QTL and meta-QTL analysis

The initial QTL data, individual genetic maps from previous

independent studies, and reference genetic maps were utilized as

input files to construct a consensus map. Subsequently, MQTL

analysis was carried out as described by Yang et al. (2021) (Yang

et al., 2021). The projection was conducted using BioMercator v4.2

software (Sosnowski et al., 2012; Arcade et al., 2004). The initial

QTL and the details of each QTL, for example, CI, the peak position,

LOD score and R2, were projected onto a reference map (Arcade

et al., 2004). QTL were discarded when they could not be projected

onto the consensus map or when they mapped to positions outside

the consensus map (Kumar et al., 2020).

After projection, MQTL analysis was performed on each

chromosome using BioMercator v4.2 software via the Veyrieras

two-step algorithm (Sosnowski et al., 2012; Arcade et al., 2004;

Goffinet and Gerber, 2000). Two different approaches were used

based on the number of initial QTL on each chromosome. In the

first approach, when the number of QTL per chromosome was 10 or

fewer, the approach of Goffinet and Gerber (2000) was carried out

(Sosnowski et al., 2012). Based on this approach, the best MQTL

model with the lowest AIC values for QTL integration and

identification of consensus MQTL positions in BioMercator v4.2

software was selected. However, if the number of QTL in a

chromosome was more than 10, the second method proposed by

Veyrieras was used (Veyrieras et al., 2007). In accordance with this

approach, meta-analyses were conducted for individual

chromosomes by using a two-stage approach available in the

software. In the first step, the collected QTL on individual

chromosomes are clustered using default parameters. The number

of potential MQTL per chromosome is then estimated based on the

following five selection criteria, including AIC, AICc, AIC3, BIC

and AWE (AIC = Akaike information criterion, AICc = corrected

Akaikes information criterion, AIC3 = A variant of AIC that uses 3p

as the penalty term, BIC = Bayesian information criterion, and

AWE =approximate weight of evidence).

A QTL model which had the lowest values of the selection

criteria was regarded as the best optimal model for the next step of
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meta-analysis. In the second step, the 95% CI and the positions of

each MQTL was determined in accordance with the optimal model

selected in the previous step. The QTL were integrated in such a way

that the peak position of the initial QTL fell within the MQTL CI

(Daryani et al., 2022), and MQTL with the minimum AIC values

were retained for further analysis.
Identification of putative genes in
MQTL regions

All identified MQTL were subsequently aligned to the wheat

reference genome. The markers located on either side of the MQTL

confidence interval were manually searched. Their respective

flanking or primer sequences were derived from Triticeae Multi-

omics Center (http://wheatomics.sdau.edu.cn), annotated by

IWGSC_v1.1_HC_gene. They were also obtained from resources

like the Illumina company website (https://www.illumina.com),

URGI Wheat (http://wheat-urgi.versailles.inra.fr), GrainGenes

(https://wheat.pw.usda.gov/GG3/), and DArT (https://

www.diversityarrays.com). The putative genes are located within

the regions identified based on the positions of the flanking markers

of the MQTL (or the marker closest to the flanking markers)

(Kumar et al., 2020). The sequence information was then aligned

to the wheat reference genome in the Triticeae Multi-omics Center

(http://wheatomics.sdau.edu.cn). This was done by using the

BLASTN program to find the physical position of flanking

markers (Yang et al., 2021). In addition, the physical locations of

some SSR, SNP and DArT markers provided in the previous

researches were also utilized as reference (Wang et al., 2014b;

Cabral et al., 2018).

Three methods have been used to identify putative genes within

MQTL regions (Venske et al., 2019; Yang et al., 2021). (i) In the first

method, given the leading position of rice in gene function study, the

strategy of wheat-rice orthologous comparison was employed to mine

the key candidate genes in the MQTL region. For this purpose, the

China Rice Data Center (https://www.ricedata.cn/gene/) was manually

utilized to identify the genes for TKW associated traits in rice. In

addition, the homologous genes of wheat were retrieved from the

Triticease-Gene Tribe (http://wheat.cau.edu.cn/TGT/) based on the

IWGSC RefSeq v1.1. The genes located in the MQTL region were

regarded as important candidate genes influencing wheat yield and

yield-related traits. (ii) To further refine the MQTL, those having at

least two overlapping initial QTL with a physical distance of less

than 20.0 Mb and a genetic distance of less than 1.0 cM, which were

referred to as core MQTL, were selected in the second approach.

(iii) The peak physical positions of the remaining MQTL were

calculated using 1-Mb region on each side of the MQTL to identify

relevant genes within the MQTL regions. The peak physical

position of the MQTL was calculated according to the method

proposed by Saini (Saini et al., 2022b). Both the original and

estimated ranges of physical positions were then input into the

search toolbox of the “Gene” in the WheatGmap database to obtain

details of gene models (locus ID information and functional

descriptions) corresponding to MQTL regions (Zhang et al., 2021).
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Expression of candidate genes within
MQTL regions

Gene expression analysis examines how genes are transcribed to

produce functional products such as RNA or proteins (Gudi et al.,

2022) . The GENEDENOVO cloud plat form (https : / /

www.omicshare.com/tools) was used to perform the GO and

KEGG analysis. For transcriptional expression analysis, the

Expression Visualization and Integration Platform (expVIP,

http://www.wheat-expression.com) with expression data from

spike and seed stages was employed in this study (Borrill et al.,

2016; Ramıŕez-González et al., 2018). Only candidate genes showing

at least 2 TPM of expression were considered (Wagner et al., 2013).

The expression characteristics of candidate genes were displayed by

the heat map of TPM using the TBtools software (Chen et al., 2020).
Results

Collection of QTL controlling TKW
in wheat

We undertook an extensive review of 120 studies published between

2008 and 2023, which encompassed 28 double haploid (DH)

populations, 16 F2 population, and 76 RIL populations to collect data

on available QTL (Supplementary Table S1). A total of 233, 81, and 679

initial QTL associated with TKW were identified and distributed across

all 21 wheat chromosomes in the DH, F2 and RIL populations,

respectively. Among the previously identified 993 initial QTL, 37.97%
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were allocated to subgenome A, 39.68% to subgenome B, and only

22.36% to subgenome D (Figure 1A). Only 242 QTL were successfully

projected onto the consensus map, with 114, 42, and 86 QTL for the

DH, F2 and RIL populations, respectively (Figure 1A). The markers

related to the remaining 119, 39, and 593 QTL were either absent in the

consensus map or were characterized by low phenotypic variation

explained (PVE) values or large CI (Figure 1A). Subgenome B had

the largest count of 142 QTL, while subgenome D had the smallest with

only 47 QTL (Figure 1A). In general, the number of QTL per

chromosome ranged from 19 on chromosome 6D to 76 on

chromosomes 2D, with an average of 47 QTL per chromosome

(Figure 1B). The CI of these QTL ranged from 0.02 cM to 56.72 cM,

approximately 55.89% had a CI less than 10 cM and 78.45% had a CI

less than 20 cM (Figure 1C). The PVE values for individual QTL ranged

from 0.7% to 54.0%, with an average of 9.91% (Figure 1D). Only 33.13%

of the initial QTL showed PVE values greater than 10% (Figure 1D).

The 86 QTL that were projected were identified on chromosomes

3B, 5D, and 7B in the RIL population (Figures 2, 3). The 114 QTL

projected were identified on 13 wheat chromosomes, excluding 3A, 3D,

4B, 4D, 5A, 6A, 7B, and 7D in the DH population (Figures 2–4). The 42

QTL projected were identified on 14 wheat chromosomes, excluding

2D, 4B, 5A, 6A, 6B, 6D, and 7B in the F2 population (Figures 2–4).
Construction of a high−density consensus
genetic map

The reference genetic map, which encompassed SSR, DArT, SNP

markers, and a few genes, was employed for subsequent Meta-QTL
FIGURE 1

Analysis of collected 993 QTL. (A) Number of initial and projected QTL in the DH, F2 and RIL population. (B) Number of QTL on each chromosome.
(C) Confidence intervals of the initial QTL in the DH, F2 and RIL population. (D). Individual PVE of QTL in the DH, F2 and RIL population.
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analysis (Supplementary Table S2). Subsequently, 28 DH populations,

16 F2 populations, and 76 individual genetic maps of RIL were aligned

onto the reference map. Ultimately, three high-quality consensus

genetic maps were constructed, comprising 16849, 11999, and 5380

markers, with total lengths of 3828.59 cM, 4537.87 cM, and 858.99

cM, respectively (Supplementary Tables S3–S5). The average length of

each chromosome was 294.51 cM, 266.93 cM, and 286.33 cM in DH,

F2 and RIL populations, respectively (Supplementary Tables S3–S5),

which was consistent with the previous study (Venske et al., 2019).

These markers were distributed unevenly on chromosomes, with

chromosome 4A/7A/7B containing the most markers (1471/980/

2693), forming the longest linkage groups of 815.67 cM, 546.97 cM,

and 348.7 cM in DH, F2, and RIL populations, respectively

(Supplementary Tables S3–S5).

The marker density at the fore-end of the chromosome was

significantly higher than that at the end (Figure 4). This difference

was primarily due to the diverse numbers and types of markers

present in the independent genetic maps used for constructing the

consensus map. Overall, this consensus map was constructed using

a substantial amount of marker information.
Projection of initial QTL and identification
of meta−QTL for TKW

To further narrow down the CI of causal genes, a meta-

analysis was performed using information such as the lowest

model value and a minimum of two overlapping initial QTL

from the 242 projected QTL. As a result, 66 meta-QTL (MQTL)

distributed on all 21 wheat chromosomes were obtained

(Supplementary Table S6). The 95% CI of these MQTL, with an

average of 5.41 cM, exhibited a 3.06-fold reduction compared to
Frontiers in Plant Science 05
the initial QTL (Figure 2; Supplementary Table S6). More

significantly, both genetic and physical locations of these

MQTL-corresponding markers were provided through a

consensus map (Supplementary Table S6). The physical

locations of the 66 MQTL, determined by flanking marker

sequences, ranged from 0.13 Mb (MQTL.DH.7A.1) to 52.66 Mb

(MQTL.RIL.5D.2) (Supplementary Table S6). These MQTL were

then selected for further analysis to identify potential candidate

genes. Among the identified MQTL, 12 were classified as core

MQTL, meeting the criteria for candidate gene search in available

databases (Table 1). The physical distances of the core MQTL

ranged from 0.49 to 14.12 Mb, while their genetic distance ranged

from 0.02 to 0.85 cM (Table 1; Supplementary Table S6).
Putative genes and their
expression analysis

We employed three approaches to identify potential candidate

genes related to TKW in wheat. An extensive search for known rice

genes associated with TKW traits resulted in 106 rice known genes

(Supplementary Table S7), which were then used to identify their

wheat homologs. Among these, only 42 genes were located within

36 MQTL regions (Supplementary Table S8). The development of

grain weight is influenced by various molecular and genetic factors

that lead to dynamic alterations in cell division, expansion,

and differentiation.

Within each MQTL, the number of potential genes ranged from

one to eight, with an average of 2.82 genes per MQTL being

homologous to rice (Supplementary Table S8). A total of 4913

genes were identified within the MQTL regions, encompassing the

42 genes with corresponding rice homologs for TKW, and an
FIGURE 2

Comparison of mean CI for initial QTL and MQTL.
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additional 4844 putative genes after eliminating duplicates in

overlapping MQTL (Supplementary Table S9). The majority of

these potential genes (393 genes) were located within the confidence

region of MQTL.RIL.5D.2 (Supplementary Table S6). In contrast,

only one gene was found in MQTL.DH.1B.3, MQTL.DH.2B.2,

MQTL.DH.2B .3 , MQTL.DH.5B .1 , MQTL.DH.5D , and

MQTL.DH.7A.1 etc being homologous to rice (Supplementary

Tables S6, S8). These identified genes with similar functions

included a diverse assortment of protein families and domains,

including 390 for protein kinases, 153 putative genes for F-box-like

domain proteins, 73 for Glycosyltransferase family proteins, 67 for

cytochrome P450 proteins, 46 for leucine-rich repeat domain

proteins, 45 for Pentatricopeptide repeat-containing protein, and

44 for BTB/POZ domain-containing proteins, etc (Supplementary

Table S9).

To ascertain the functional classification of the identified 95

genes (Supplementary Table S8), we conducted Gene Ontology

(GO) enrichment and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analyses. The KEGG enrichment analysis

indicated that these potential genes play significant roles in Zeatin

biosynthesis, the MAPK signaling pathway in plants, amino sugar

and nucleotide sugar metabolism, and plant hormone signal

transduction, with Metabolic pathways having the largest number

of putative genes (Figure 5A). The most enriched GO terms in

biological processes were associated with metabolic processes and

cellular processes (Figure 5B). The most enriched GO terms in

molecular functions were involved in binding and catalytic activities

(Figure 5B). Concerning cellular components, genes were mainly

enriched in cellular anatomical entities and protein-containing

complexes (Figure 5B). We identified the 95 critical genes that

regulate TKW for subsequent gene expression analysis.

Upon analyzing the expression of candidate genes, we found

that 95 candidate genes had transcripts with TPM > 2 (Figure 6;

Supplementary Table S4). Examining the expression of these genes

in spikes and grains, we discovered that TraesCS3B02G302300,

TraesCS7A02G071100, TraesCS2B02G309500 and other genes

exhibited high expression in spikes and grains, suggesting their

potential impact on TKW and their candidacy as TKW-related

genes (Figure 6).
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Discussion

Identification of key MQTL regions through
meta−analysis

MQTL analysis is a potent strategy for validating consistent

QTL by integrating independent QTL from different trials onto a

consensus or reference map (Goffinet and Gerber, 2000; Saini et al.,

2021). Numerous studies on QTL mapping of yield and other

significant agronomic traits in wheat have been carried out in

recent decades. However, many of the identified QTL in these

studies are associated with long CI and low PVE, making them less

beneficial for marker-assisted breeding. In contrast, MQTL with

narrower CI and relatively high PVE are more convincing in

demonstrating their value for molecular breeding (Saini et al.,

2022b). Additionally, with continuous advancements in molecular

genetics and QTL mapping methods, new QTL are consistently

being added to databases. It is highly crucial to stay updated and

incorporate these new QTL into more stable and reliable MQTL.

In this study, 993 initial QTL were amassed from 120 studies

spanning from 2008 to 2023 to identify genomic regions associated

with TKW in wheat. In comparison to subgenomes A and B, the

subgenome D had fewer QTL (Figure 1A), consistent with previous

MQTL analyses for grain yield and other yield-related traits (Liu et al.,

2020; Saini et al., 2022b; Soriano et al., 2021; Yang et al., 2021). One

potential reason for this observation might be that the subgenome D

has a low degree of DNA polymorphism. Unlike the diploid progenitor

species Aegilops tauschii, extremely low genetic diversity has been

detected for the subgenome D of wheat (Mirzaghaderi and Mason,

2019). Concurrently, there is also a restricted gene flow from Aegilops

tauschii to cultivated wheat (Kumar et al., 2012).

For the 66 MQTL identified in this study, the CI of the identified

MQTL, with an average distance of 5.41 cM, was decreased by 3.06-

fold in comparison to the mean value of the corresponding initial

QTL (Figure 2; Supplementary Table S6). In a similar study, the

discovery of 13 MQTL with an average CI of 13.6 Mb for the initial

QTL and 6.01 Mb for the MQTL was found to have a 2.26-fold

reduction in contrast to that of the initial QTL for drought tolerance

in bread wheat (Kumar et al., 2020). Furthermore, the definite
FIGURE 4

SNPs density in the (A). DH populations and (B) F2 populations.
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physical position of the 66 MQTL in our study was attained through

the publication of the wheat genome reference sequence of Chinese

Spring, where the physical position of the identified 66MQTL ranged

from 0.13 Mb (MQTL.DH.7A.1) to 52.66 Mb (MQTL.RIL.5D.2).

Among them, 35 of the identified MQTL contained a 53% genetic CI

less than 3 cM (Supplementary Table S6).

Twelve core MQTL were selected based on the preferred criteria

of at least two overlapping initial QTL with a physical and genetic

distance < 1.0 cM (Venske et al., 2019)(Table 1). which provided a

higher level of confidence for further analysis and for the

identification of candidate genes. These twelve core MQTL

exhibited a smaller average genetic CI (0.46 cM) compared to

that of the initial QTL (16.57 cM), with a 36.03-fold reduction.

Among these, MQTL.DH.1B.3, MQTL.DH.2A.1, MQTL.DH.2A.3,

MQTL.DH.3B.2, and MQTL.DH.5B.2, etc., were validated by the

MTAs. Regarding the 95 genes obtained through transcriptome and

functional annotation, 18 genes were identified within the regions of

the twelve core MQTL. Some of the notable characteristics of the

twelve core MQTL identified in this study are as follows: They

demonstrated stability across various environments. MQTL.DH.

7B.7 consisted of three initial QTL for TKW, showing an average

PVE of 13.84% across the DH, F2, and RIL populations, suggesting

thatMQTL.DH.7B.7 shows strong stability for the TKW trait. Apart

from the above core MQTL, the other core MQTL also showed high

stability under different environments. Additionally, most MQTL

showed pleiotropic effects.
Potential candidate genes associated with
TKW in meta−QTL regions

To support the location of the MQTL identified in this study, an

extensive literature was carried out to identify known genes within

MQTL regions. In this study, 18 of the 95 candidate genes

homologous to rice genes were found within twelve core MQTL

intervals (Supplementary Table S8). Among the 6 genes in

MQTL.DH.2A.3, TraesCS2A02G417100 and TraesCS2A02G417200

were homologous to the gene GW6a involved in epigenetic

mechanisms in rice. GW6a encodes a GNAT-like histone

acetyltransferase (Osg1HAT1). The overexpression of Osg1HAT1

increases the glume cell number, the grain grouting rate, the grain

size and the TKW (Song et al., 2015). TraesCS2A02G414800,

TraesCS2A02G419800 and TraesCS2A02G419500 were

homologous to the gene GW6 involved in GA pathway in rice.

Two genes of the GAST family, OsGASR9 and GW6, regulate the

grain size and yield and show positive responses to GA treatment

(Li et al., 2019; Shi et al., 2020). TraesCS2A02G413900 was

homologous to the gene OsSPL7/12/16, OsmiR535 is highly

expressed in young panicles and represses the expression of

OsSPL7/12/16 as well as other downstream genes. OsmiR535

modulates plant height, the panicle architecture and grain shape

possibly by regulating rice OsSPL genes (Sun et al., 2019). A key

gene, TraesCS3B02G117300, in the MQTL.RIL.3B.5 interval was

found to be homologous to the gene DST (WL1), which controls the

grain weight in rice through cytokinin phytohormones. Guo et al.

(2020) verified that OsMAPK6 directly interacts with and
T
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phosphorylates DST to enhance the activation of OsCKX2. The

overexpression of IPT under drought conditions delays the drought

stress responses and increases the production yield (Peleg et al.,

2011). A key gene TraesCS3B02G546300 in the MQTL.RIL.3B.8

interval was homologous to the gene CYP96B4 in rice. The

OsmiR396 family members OsmiR396e and OsmiR396f also

reduce GA precursor and CYP96B4 expression independently to

affect the grain size and the plant architecture (Miao et al., 2020).

Among the four genes in MQTL.RIL.7B.3, TraesCS7B02G080300

was homologous to the gene OsOFP8 involved in the BR pathway in

rice (Chen et al., 2021). TraesCS7B02G075300, TraesCS7
Frontiers in Plant Science 09
B02G075400, and TraesCS7B02G075500 were homologous to the

gene GSA1 (UGT83A1) involved in the Auxin pathway in rice.

GSA1 encodes a UDP-glucosyltransferase that regulates the grain

size through flavonoid-mediated auxin levels and related gene

expression. GSA1 is also required for the redirection of metabolic

flux from lignin biosynthesis to flavonoid biosynthesis, which

contributes to the regulation of the grain size and the abiotic

stress tolerance (Dong et al. , 2020). Three key genes

T r a e sC S 7B 0 2G4 7 1 3 0 0 , T r a e sC S 7B 0 2G4 7 1 4 0 0 , a n d

TraesCS7B02G471500 in the MQTL.RIL.7B.7 interval were

homologous to the gene OsCHT14 involved in ubiquitination and
FIGURE 5

(A) KEGG pathway enrichment of 95 candidate genes. (B) GO terms for 95 candidate genes underlying MQTL interval for thousand kernel weight.
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deubiquitination associated with the grain size and the grain weight

in rice. GW2 interacts with chitinase14 (CHT14) and

phosphoglycerate kinase (PGK), both of which are involved in

carbohydrate metabolism by modulating their activities or

stability (Lee et al., 2018).

Another important finding in the present study was that 4913

putative genes related to TKW were identified within the MQTL

regions and exhibited the spatiotemporal and specific expression

pattern (Supplementary Table S9). In wheat, some genes related to

TKW were found in these MQTL regions, such as APP-A1 within

MQTL.F2.1A.1, which is associated with wheat particle size (Niu

et al., 2023). TaAGP-L-B1was found inMQTL.DH.1B.3. TaAGP is an

important rate-limiting enzyme that affects starch synthesis (Kang

et al., 2013; Rose et al., 2016; Hou et al., 2017). TaGS2-2D was in

MQTL.DH.2D.3, the plastidic glutamine synthetase isoform (GS2)

plays a key role in nitrogen assimilation (Li et al., 2011; Hu et al.,

2018). TaCWI-4A was found in MQTL.DH.4A.3, which is related to

TKW, heading date, and number of grains per spike (Jiang et al.,

2015). TaSPL14 was found in MQTL.DH.5B.2, the TaSPL14 gene

knockout in wheat resulted in a decrease in plant height, spike length,

number of spikelet, and TKW, which is similar to the phenotype of

OsSPL14 knockout plants in rice (Cao et al., 2021).

In addition, we annotated 4913 genes using GO or KEGG

analysis (Figures 5, 6). KEGG and GO pathway enrichment analysis

disclosed that these putative genes were highly involved in the

peroxisome, basal transcription factor, tyrosine metabolism,

photosynthesis, and plant hormone signal transduction pathways.
Frontiers in Plant Science 10
Peroxisomes are implicated in photorespiration and the synthesis of

phytohormones, which are crucial for signaling pathways, including

jasmonic acid, auxin, and salicylic acid. Here, a total of 95 putative

genes with TPM > 2 in the robust and stable MQTL regions were

listed based on significant gene expression in grain that might

potentially influence TKW in wheat (Supplementary Table S9).
Conclusion

In this study, we elucidated key genomic regions controlling TKW

in 28 DH populations, 16 F2 populations, and 76 RIL populations across

various environmental conditions in wheat by integrating MQTL

analysis and transcriptome assessment. Initially, 242 QTL were

identified, which were then refined into 66 MQTL and 12 core

MQTL with a mean confidence interval reduction of 36.02-fold

compared to the initial QTL. Through genomic sequence comparison,

we identified a total of 4913 putative candidate genes within the MQTL

regions Moreover, gene expression analysis revealed 95 candidate genes

with TPM > 2, indicating high and specific expression levels. We also

found 5 overlapping MQTL across diverse genetic populations. Our

findings suggest that using diverse genetic populations for TKW QTL

mapping can uncover distinct gene enrichment regions, highlighting the

importance of considering genetic population diversity in breeding

studies. Validation of these key MQTL regions and candidate genes

through biological experiments could significantly contribute to the

molecular genetic enhancement of TKW in wheat.
FIGURE 6

Heatmap showing the differential expression levels of 95 candidate genes.
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