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Education, Wuhan, Hubei, China, 5School of Basic Medical Sciences, Hubei University of Chinese
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Chrysanthemum morifolium (CM), renowned for its diverse and vibrant varieties,

holds significant ornamental and medicinal value. Despite this, the core

regulatory mechanisms underlying its coloration, especially in non-petal

tissues (i.e., the parts of CM that do not include petals, such as the

reproductive tissues, receptacle and calyx), have been insufficiently studied. In

this study, we performed transcriptomic and metabolomic analyses on yellow,

gold, and white CM petals, as well as non-petal tissues, to investigate the

molecular processes driving color variation. A total of 90 differential

metabolites were identified, with flavonoids, their derivatives, and lipids

emerging as the predominant components of the metabolic profile. At the

transcriptional level, 38 pathways were significantly enriched based on the

expression of differential genes. The combined metabolomic and

transcriptomic analyses revealed that glycerophospholipid metabolism,

primarily involving lipids, served as a key regulatory pathway for both petal and

non-petal parts across different tissue colors. Notably, white CM exhibited

marked differences from their gold and yellow counterparts at both the

metabolic and transcriptional levels. These findings offer critical insights into

the molecular mechanisms governing CM coloration and provide a foundation

for optimizing future breeding efforts.
KEYWORDS
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1 Introduction

Chrysanthemum morifolium (CM) is a globally significant

ornamental plant, extensively used for culinary and medicinal

purposes, with a history spanning three thousand years (Sharma

et al., 2023; Liu et al., 2024b). Evidence suggests that CM comprises

a multitude of chemical constituents, including flavonoids, phenolic

acids, and lipids (Chen et al., 2021; Zhou et al., 2022b). This diverse

chemical composition endows CM with numerous pharmacological

effects, such as anti-inflammatory, antioxidant, and chronic disease

prevention properties (Li et al., 2022b, 2023c; Chen et al., 2023).

Over time, and with its long history of cultivation, CM has been

diversified into various varieties through hybridization with wild

relatives and artificial breeding (Song et al., 2023). In addition to its

medicinal value, the ornamental characteristics of CM, particularly

its wide range of colors and shapes, have contributed to its

commercial and cultural significance.

Significant differences exist in the composition and content of

nutrients and bioactive substances among various plant varieties

and their parts (Lebaka et al., 2021; Lu et al., 2021b). CM

encompasses a wide range of varieties, each exhibiting distinct

variations in color, shape, and functional properties (Han et al.,

2019). Among these, flower color is a critical ornamental trait,

significantly influencing the commercial value of CM varieties

(Zhang et al., 2019; Wu et al., 2023). Understanding the

mechanisms that regulate flower color in CM is helpful for

advancing breeding strategies and optimizing the ornamental and

medical applications of these varieties. While existing studies

predominantly focus on the differences in petal color among CM

varieties, the non-petal parts—such as the reproductive tissues,

receptacle, and calyx—have received far less attention (Sawada

et al., 2019; Zou et al., 2021). Although these non-petal parts may

not exhibit visible differences across various CM colors, significant

variations could exist at the molecular or metabolic level (Zhou

et al., 2022a). Given that both petal and non-petal parts contribute

to the ornamental and medicinal uses of CM, expanding research

beyond petals offer helpful insights into the broader utility of this

species. Thus, further investigation into the non-petal parts is

warranted to uncover potential differences and their implications.

The advent of high-throughput technologies, including

genomics, transcriptomics, and metabolomics, has greatly

advanced the exploration of the intricate molecular foundations

of plant biology (Guo et al., 2021; Tsugawa et al., 2021; Sun et al.,

2022). These technologies have become particularly valuable in

understanding the genetic and metabolic basis of traits such as

flower color in CM. Metabolic profiling serves as a direct link

between plant phenotypes and genotypes, identifying stage-specific

metabolites and revealing the metabolic mechanisms underlying a

wide variety of traits (Shen et al., 2023). Recent advancements in

omics technologies have led to the increasing integration of

metabolomics with other disciplines, such as transcriptomics.

This synergy facilitates a systematic understanding of complex

plant biological networks and fosters a more comprehensive

biological knowledge base (Liu et al., 2024a; Yang et al., 2024).

Investigating the alterations in plant genes and metabolites will help
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elucidate the molecular mechanisms underlying the non-petal and

petal parts of CM exhibiting various colors.

To investigate the distinct characteristics of non-petal and petal

parts in CM of varying colors and uncover potential regulatory

mechanisms, white, yellow, and gold CM were subjected to

transcriptomic and metabolomic analyses. Metabolomic profiling,

conducted using ultra-high pressure liquid chromatography

coupled with quadrupole time-of-flight mass spectrometry

(UPLC-QTOF-MS/MS), revealed substantial differences between

the non-petal and petal components of these differently colored

CM. To further elucidate the molecular basis of coloration, RNA

sequencing was performed. By integrating transcriptomic and

metabolomic data, the study aimed to identify key regulatory

mechanisms underlying the color-dependent differences in non-

petal and petal parts. This research provides new insights into the

genetic basis of CM, supporting efforts to diversify CM varieties

through informed breeding strategies.
2 Materials and methods

2.1 Materials and reagents

The CM samples gathered from the medicinal botanical garden

at Hubei University of Chinese Medicine were identified and

authenticated by Professor Gong Ling of Hubei University of

Chinese Medicine. Fresh CM samples were immediately imaged

after collection and separated into petal and non-petal tissues for

subsequent analysis, as shown in Figure 1. Non-petal samples were

collected from white, yellow, and gold CM, and were designated as

groups WCNP, YCNP, and GCNP, respectively. The petal samples

from these colors were designated as groups WCP, YCP, and GCP.

Fresh samples were stored at -80°C prior to metabolomics analysis

and RNA extraction. High-performance liquid chromatography-

grade acetonitrile and methanol were acquired from Merck

Chemicals, Darmstadt, Germany.
2.2 Sample extraction for untargeted
metabolomic analysis

The samples were first freeze-dried to a constant weight and

then ground into a fine, uniform powder. To begin the extraction

process, 100 mg of the powdered sample was weighed and

extracted with 3 mL of an 80% methanol solution using

ultrasonic extraction for 10 minutes. This extraction step was

repeated twice: first with 3 mL of a 50% methanol solution and

then with 3 mL of a 95% methanol solution. The three resulting

extracts were combined, and the mixture was centrifuged at 12,000

rpm for 10 minutes. After centrifugation, the supernatant was

carefully filtered and prepared for further analysis. Curcumin was

employed as an internal standard in the samples at a final

concentration of 200 ng mL-1. After filtration, the quality

control (QC) sample was prepared by combining equal aliquots

from all individual samples.
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2.3 UPLC-QTOF-MS/MS-based untargeted
metabolomic analysis

For the analysis of the extracts, an ACQUITY UPLC H-Class

system from Waters (Milford, MA, USA) was utilized, featuring a

Waters ACQUITY UPLC BEH C18 column (2.1 × 100 mm, 1.7

mm). The injection volume was 2.0 mL, the flow rate was maintained

at 0.3 mL min-1, and the column temperature was set to 40°C. The

mobile phase consisted of two solvents: mobile phase A, a solution

of water and formic acid in a 1000:1 (v/v) ratio, and mobile phase B,

acetonitrile. The chromatographic gradient was programmed as

follows: 0 min, 5% (B); 12 min, 35% (B); 18 min, 80% (B); 22 min,

95% (B); 25 min, 95% (B); 26 min, 5% (B); and 30 min, 95% (A) and

5% (B).

Mass spectrometry analysis was carried out using aWaters Xevo

G2-XS QTOF system equipped with an electrospray ionization

source. The parameters were set according to our previously

published reports (Zeng et al., 2023, 2024). The optimal

parameters were as follows: desolvation temperature of 500°C,

cone voltage of 20 V, capillary voltage of 3 KV, source temperature

of 100°C, desolvation gas flow rate of 1000 L h-1, collision energy

range of 30 to 40 eV, and cone gas flow rate of 50 L h-1. The mass

range for full scans was set from m/z 50 to 1500 Da, with a scan

duration of 1.0 s. Data acquisition was conducted in MSE mode,

employing both positive and negative ion electrospray modes.

Metabolomics analysis predominantly utilized positive ion mode,

while structural determination ofmetabolites was achievedwith both

ion modes.
2.4 RNA extraction and
Illumina sequencing

RNA extraction and Illumina sequencing of the samples were

primarily conducted by MetWare Biotechnology Co., Ltd. (Wuhan,

Hubei, China). Total RNA was extracted from plant samples using
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ethanol precipitation and the CTAB-PBIOZOL method, then

dissolved in DEPC-treated water. RNA integrity and

concentration were assessed using a Qubit fluorescence quantifier

and Qsep400 biofragment analyzer (Bioptic Inc., Taiwan, China).

PolyA-tailed mRNAs were enriched with Oligo (dT) magnetic

beads, fragmented, and reverse-transcribed into first-strand

cDNA using random hexamer primers. Strand-specific second-

strand cDNA synthesis was performed with dUTPs to ensure

strand specificity, followed by end repair, A-tailing, and

sequencing adapter ligation. The cDNA was size-selected (250-

350 bp), PCR-amplified, purified, and quantified using Qubit 4.0

(Thermo Fisher Scientific, Massachusetts, USA) and Q-PCR (Bio-

rad, California, USA). Libraries were pooled based on effective

concentrations and sequenced on an Illumina platform,

generating 150 bp paired-end reads via sequencing-by-synthesis.

Raw sequencing data were filtered with fastp, and clean reads were

assembled using Trinity. Corset was then used to remove redundant

isoforms from the assembled transcripts. CDS prediction was

conducted with TransDecoder, and gene function annotation was

performed using DIAMOND and HMMER across databases. The

fragments per kilobase of transcript per million mapped reads

(FPKM) for each gene were subsequently calculated based on the

gene length and the number of reads mapped to it. Transcript

expression levels were quantified using RSEM, with differential

expression analysis conducted using DESeq2 and edgeR, followed

by Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses.
2.5 Data analysis

The raw data from UPLC-QTOF-MS/MS were acquired using

MassLynx v4.1 (Waters, Milford, MA, USA). Following data

acquisition, the open-access software MS-DIAL (Version 4.9) was

utilized for comprehensive data processing, encompassing peak

detection, alignment, spectral deconvolution, identification, and
FIGURE 1

Chrysanthemum morifolium (CM) from three different colors-gold, yellow, and white. Non-petal tissues of CM included the reproductive tissues,
receptacle, and calyx, excluding the petals.
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normalization (Tsugawa et al., 2015). The retention time for the

collected peaks was set between 1 and 30 minutes. Peaks with a

minimum height of 3000 and m/z values ranging from 100 to 1500

Da were selectively retained, guided by the expected component

range, while them/z value for fragment ions was set between 50 and

1500 Da. Mass tolerance parameters were established at 0.015 Da

for MS and 0.02 Da for MS/MS. To determine the elemental

composition of the peaks, common positive ion adducts such as

[M+H]+, [M+Na]+, [M+K]+, [M+H-H2O]
+, and [2M+H]+ were

employed. In negative ion mode, adducts like [M-H]-, [M

+HCOOH-H]-, and [M-H2O-H]- were used to assist in adduct

correction alongside the positive ion adducts. Feature alignment

across all samples was performed with a retention time tolerance of

0.1 and an MS tolerance of 0.015. Furthermore, the deconvolution

value and MS/MS abundance cutoff were set at 0.6 and 100,

respectively, to facilitate peak deconvolution. The response values

of the peaks were normalized using internal standards and the

LOWESS method. Finally, to ensure that the screened metabolites

accurately represented each group, peaks were required to be

present in at least one group, with every sample within that group

exhibiting the corresponding peak.

In the search for characteristic differentially accumulated

metabolites (DAMs) between two groups, we utilized variable

importance in projection (VIP) values exceeding 1.25 and fold

change (FC) thresholds greater than 1.5 or less than 0.67 to identify

potential distinctive peaks. In the transcriptome analysis, to ensure

the genes were both representative and meaningful, we applied the

following criteria to eliminate false positives: (1) the average FPKM

value of the gene in at least one group exceeds 1; (2) the gene’s

detection rate across all samples is greater than 0.167; (3) the gene’s

detection rate in any individual group is above 0.667. For the

differentially expressed genes (DEGs) identified in the comparison

between the two groups, the initial requirement was that genes had

an FPKM > 1 in at least one group and were detected in at least two

samples within any group. Subsequently, based on FPKM

quantitative data, the fold change (FC) for the DEGs had to

exceed 2 or fall below 0.5, with a q-value between the two groups

required to be < 0.05. In the co-enrichment analysis, to identify

pathways that represent both metabolomics and transcriptomics,

we selected pathways containing at least two DAMs and conducted

a comprehensive analysis of the DEGs upstream and downstream of

the DAMs within these pathways.

The SIMCA 14.1 software (Umetrics AB, Umeå, Sweden) was

employed for principal component analysis (PCA) and orthogonal

partial least squares-discriminant analysis (OPLS-DA). Data

visualization was carried out using Origin 2021 (OriginLab

Corporation, Northampton, MA, USA) and R version 4.3.2 (R

Foundation for Statistical Computing, Vienna, Austria). Statistical

analyses were performed with SPSS version 26.0 (SPSS, Inc.,

Chicago, IL, USA). The significance of DAMs was assessed with a

P-value < 0.05 using the Mann-Whitney U test, while DEGs were

evaluated with a q-value < 0.05 using the Benjamini-Hochberg test.

Qualitative analysis of DAMs was conducted by comparing

fragment ions using literature references (Chen et al., 2017), MS-

FINDER version 3.60 (Tsugawa et al., 2016), and public databases

such as the Human Metabolome Database (https://www.hmdb.ca)
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and MassBank (https://massbank.eu/MassBank/). Quantitative

determination of metabolites was achieved using Quanlynx

software version 4.1 (Waters, Milford, MA, USA). For the co-

enrichment analysis of metabolomics and transcriptomics,

metabolic pathways of DAMs and DEGs were primarily

constructed with reference to KEGG.
3 Results

3.1 Untargeted metabolomic analysis

In this study, a total of 6704 features were acquired for all

samples using MS-DIAL based on UPLC-QTOF-MS/MS. As shown

in Figure 2A, the PCA model was applied for unsupervised analysis

of all samples, including quality controls. The first two principal

components accounted for 63.30% and 9.74% of the variance

among the samples, respectively. The results revealed clear intra-

group clustering, demonstrating strong reproducibility within each

sample group. Additionally, the WCNP and YCNP groups

displayed a higher degree of global similarity to each other. The

clustering of the QC sample further confirmed the robust stability of

instrument throughout the analysis.

Furthermore, supervised OPLS-DA was employed to identify

DAMs between the two groups in both petal or non-petal areas

(see Supplementary Figures S1 and S2). The scatter plots derived

from OPLS-DA revealed clear segregation between each pair of

groups. All pairwise comparisons yielded R2Y and Q2 scores

consistently exceeding 0.9. Additionally, the results of the 999

permutation tests showed that the blue regression line of Q2

intersected the vertical axis below zero, confirming the absence of

overfitting in the original OPLS-DA model. Ultimately, 90 DAMs

(P < 0.05) were characterized, with a higher number identified in

the petals than in the non-petal areas. The qualitative information

of these metabolites, including retention time, actual m/z mass of

the quasi-molecular ion peak, tentative identification, molecular

formula, secondary fragments, and classification details, was

provided in Supplementary Table S1. The FC and VIP values of

DAMs across different comparison groups were listed in

Supplementary Table S2. When comparing various petal groups,

WCP vs. YCP had the fewest number of DAMs, while WCP vs.

GCP had the most (Figure 2B). Meanwhile, WCNP vs. GCNP had

the highest number of DAMs among the various non-petal

groups. As illustrated in Figure 2C, the identified DAMs were

mainly categorized into 6 categories: amino acids, flavonoid

glycosides, flavonoids, lipids, other glycosides, and others.

Among these, flavonoid glycosides, lipids, and flavonoids were

predominantly classified in the petal parts, whereas flavonoid

glycosides and lipids were primarily classified in the non-

petal parts.
3.2 DAMs in CMs with different colors

To elucidate variations in the expression levels of these DAMs

across different morphologies of CM, we conducted a relative
frontiersin.org
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quantitative analysis of the corresponding groups with the ratio of

peak area between DAMs and internal standards, as shown in

Figure 3. In the petals of CM, the following metabolite changes were

observed: 8 up-regulated and 21 down-regulated in the WCP vs.

YCP, 14 up-regulated and 20 down-regulated in YCP vs. GCP, and

12 up-regulated and 25 down-regulated in WCP vs. GCP. Similarly,

in the non-petals of CM, 16 up-regulated and 6 down-regulated

metabolites were identified in the WCNP vs. YCNP, 5 up-regulated

and 17 down-regulated in YCNP vs. GCNP, and 11 up-regulated

and 16 down-regulated in WCNP vs. GCNP.

As highlighted in Figure 3, most flavonoid glycosides showed

higher concentrations in white CM, both in non-petal and petal

parts. However, within the flavonoids, the petal part of white CM

exhibited lower contents, while the non-petal part showed higher

contents. Additionally, most lipids within DAMs were found at

lower concentrations in both WCP and WCNP compared to the

other two groups. Conversely, in the petals, most lipids were more

abundant in YCP, whereas in the non-petal parts, they were

predominantly higher in GCNP.
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3.3 Transcriptomic analysis

To gain a more comprehensive understanding of the non-petal

and petal parts across different phenotypes, transcriptomic

sequencing and variance analysis of DEGs were employed to

investigate the underlying molecular mechanisms. After data

acquisition and transcript assembly, a total of 231670 raw

sequencing reads were retained. To reduce false positives while

preserving valid data, 181404 reads were selected for further

transcriptomic analysis. The PCA results revealed that both

yellow and gold CM showed similar trends in non-petal and petal

parts compared to white CM (Figure 4A). Moreover, each sample

displayed a distinct clustering pattern within its respective group.

The first two principal components accounted for 23.16% and

13.49% of the total variance among the samples, respectively.

DEGs between the two groups were identified using criteria of a

FC greater than 2 or less than 0.5, and a q-value less than 0.05. As

illustrated in Figure 4B, the comparisons between WCP and GCP,

andWCNP and GCNP, revealed the highest number of DEGs in the
FIGURE 2

(A) Principal component analysis of metabolomic data from petals and non-petals of Chrysanthemum morifolium (CM) in three distinct colors.
(B) Venn diagram of differentially accumulated metabolites across comparative groups. (C) Primary chemical classification of differentially
accumulated metabolites in various comparisons. Non-petal samples from white, yellow, and gold CM were classified as WCNP, YCNP, and GCNP,
respectively, while petal samples from these colors were designated as WCP, YCP, and GCP. “QC” represented the quality control group prepared
from all samples.
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petal and non-petal groups, respectively. Additionally, fewer

transcriptional differences were observed between yellow and

gold CM.

To further illustrate the differences between the groups, a heat

map was generated from the quantitative data of DEGs, as detailed

in Supplementary Figure S3. Statistical analysis of DEG expression

trends between the two groups, presented in Figure 4C, revealed

that most DEGs exhibited a decreasing trend, particularly in

comparisons between WCNP vs. YCNP and WCNP vs. GCNP.
3.4 DEGs in CMs with different colors

To systematically explore the biological functions of DEGs in

petal and non-petal parts across different flower colors, we

performed KEGG pathway enrichment analysis on the DEGs

from each group separately. As shown in Figure 5, the top fifteen

pathways enriched by DEGs in each comparison group were

selected and visualized in a bubble chart.
Frontiers in Plant Science 06
These pathways fall into several categories, including cellular

processes, environmental information processing, genetic

information processing, metabolism, and organismal systems, with

metabolism representing the largest portion (78.95%). Within the

metabolism category, pathways related to carbohydrate and lipid

metabolism were the most prevalent. Moreover, the three metabolic

pathways with the highest number of DEGs were phenylpropanoid

biosynthesis, pentose and glucuronate interconversions, and

glycerophospholipid metabolism.
3.5 Integrative analysis of CMs with
different colors based on metabolomics
and transcriptomics

To investigate the genetic regulation of CM flower color, this

study conducted a comprehensive analysis of pathways involving

DEGs and DAMs, building on prior metabolomic and

transcriptomic data. In order to identify pathways representing
FIGURE 3

Heatmaps of differentially accumulated metabolites in petals (A) and non-petals (B) of Chrysanthemum morifolium (CM) across various colors. Non-
petal samples from white, yellow, and gold CM were classified as WCNP, YCNP, and GCNP, respectively, while petal samples from these colors were
designated as WCP, YCP, and GCP. The brown horizontal line in the figure indicated that the compound was not differentially accumulated
metabolite between this group and the other groups.
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both the transcriptome and metabolome, only metabolic pathways

containing at least two DAMs were retained for further analysis,

with DEGs included only if located upstream or downstream of the

DAMs. The KEGG codes and pathways, along with the numbers

and lengths of the DEGs involved in the core pathways, were

displayed in Supplementary Table S3.

As shown in Figure 6, glycerophospholipid metabolism and

glycerolipid metabolism, both primarily involving lipids, were the

primary pathways associated with CM flower color. In petal tissues,

the majority of DEGs in WCP exhibited the lowest expression

compared to other groups, particularly EPT1, DAD1, MGD, and

psd (Figure 6A). However, at the metabolite level, only MGDG,

MGMG, and LysoPC (sn-1) showed reduced levels in WCP.

Additionally, compared to YCP, a greater number of DAMs in

GCP displayed a downward trend, including LysoPC (sn-2), PC, PE,

and LysoPE (sn-2).

Likely, in non-petal tissues, a significant number of DEGs,

including MGLL, EPT1, LPCAT1_2, and DAD1, showed reduced

expression in WCNP (Figure 6B). Unlike the DAMs in petal tissues,

the majority of DAMs in WCNPs exhibited significantly lower

levels, particularly LysoPC (sn-1), LysoPC (sn-2), LysoPA (sn-1),

and LysoPE (sn-2). Moreover, a substantial number of DAMs in

GCP showed an upward trend compared to YCP, which contrasts

with the pattern observed in the petal tissues.
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4 Discussion

This study investigated the impact of three distinct colors

(white, gold, and yellow) on both petal and non-petal tissues of

CM, utilizing an integrated approach combining transcriptomics

and metabolomics to uncover the molecular mechanisms and

metabolic processes associated with CM coloration. At the

metabolic level, 90 DAMs were identified, predominantly

flavonoids, flavonoid glycosides, and lipids. Concurrently, 38

significant metabolic pathways were enriched through

transcriptomics, primarily related to metabolism, which provided

potential mechanistic insights into CM coloration. By integrating

metabolomic and transcriptomic data, we identified two central

pathways—glycerophospholipid metabolism and glycerolipid

metabolism—encompassing various lipid compounds. These

pathways emerged as the primary mechanisms through which

flower color influenced metabolism and gene expression in CM.

As a plant with a rich cultivation history, CM has evolved a

diverse range of flower colors, including white and yellow (Lu et al.,

2021a). Flower color plays a pivotal role in shaping the aesthetic

appeal and market demand for CM (Wan et al., 2024). Prior

research on CM predominantly focused on the differential

analysis of petals with notable color variations (Zou et al., 2021;

Wu et al., 2023). However, our study expanded this scope, showing
FIGURE 4

(A) Principal component analysis of transcription data from petals and non-petals of Chrysanthemum morifolium (CM) in three distinct colors. (B)
Venn diagram of differentially expressed genes across comparative groups. (C) Statistics on the variation trends of differentially expressed genes.
Non-petal samples from white, yellow, and gold CM were classified as WCNP, YCNP, and GCNP, respectively, while petal samples from these colors
were designated as WCP, YCP, and GCP.
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that varietal differences extend beyond petals to non-petal regions

as well. While color variations in non-petal tissues are subtler, our

results clearly demonstrated these differences.

Metabolomics, which studies metabolites as the bridge between

genotype and phenotype, plays a critical role in revealing plant-

environment interactions (Le et al., 2023; Shen et al., 2023). Our

analysis revealed that DAMs in different CM color variants

were mainly flavonoids, their derivatives, and lipids. Flavonoids

and their derivatives are known functional compounds and key

pharmacological constituents of CM (Chen et al., 2023; Wu et al.,

2024). WCP exhibited higher levels of flavonoid glycosylation

compared to YCP and GCP, with a reduction in free flavonoids

and an increase in flavonoid glycosides. The decrease in flavonoids

and increase in glycosylation were consistent with previous research

results on white CM and yellow CM (Ouyang et al., 2022). This is

likely because flavonoids contribute to vibrant coloration, offering

protection against microorganisms and insects (Zhu et al., 2012;

Wan et al., 2019). Lipid components, essential to plant cell

composition, regulate environmental adaptability (Li et al., 2023a;

Sharma et al., 2023). These distinctions were evident not only in

petals but also in non-petal regions, suggesting that flower color

may influence the physiological and functional properties of CM
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beyond the petals. Transcriptomics is a valuable tool in studying the

genetic basis of plant diversity and addressing variations within

species (Tyagi et al., 2022; Li et al., 2023b). Our transcriptomic

analysis indicated that WCP and WCNP tissues exhibited

significant differences from gold and yellow CM, with many

DEGs showing a downward trend. This supported the findings of

our metabolomics analysis.

The integration of transcriptomics and metabolomics provided

a robust approach to identifying key pathways across plant species

(Bai et al., 2021; Yuan et al., 2022). Our findings revealed that a

significant number of DAMs and DEGs were co-enriched within

the glycerophospholipid metabolism pathway, predominantly

involving lipids. Glycerophospholipids, as essential components

of cell membranes, played crucial roles in plant growth,

development, and responses to environmental stimuli (Colin and

Jaillais, 2020). Prior studies have noted significant differences in

lipid composition among color variants, suggesting that lipid

accumulation might play a key role in the coloration process

(Middleton et al., 2020; Huang et al., 2024). Notably, white CM

showed clear differences from yellow and gold CM. Previous

studies have also highlighted significant variations in the lipid

composition of CM across different varieties (Zhou et al., 2022b).
FIGURE 5

Analysis of KEGG pathway enrichment of differentially expressed genes in different comparative groups. Non-petal samples from white, yellow, and
gold CM were classified as WCNP, YCNP, and GCNP, respectively, while petal samples from these colors were designated as WCP, YCP, and GCP.
Only the top fifteen pathways identified through the enrichment of differentially expressed genes between the two groups were shown.
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Our analysis further revealed that the expression levels of most

DAMs and DEGs in white CM were lower than in yellow and gold

CM. This suggests that the yellow and gold coloration of CM was

closely associated with the synthesis of lipid metabolites and the

expression of related genes. The upregulation of genes related to

glycerophospholipid metabolism enhances lipid levels and

increases the plant’s resilience to environmental stress (Liu et al.,

2022). Other studies have shown that environmental changes can

alter glycerophospholipid composition, modulating plant

responses and potentially leading to color variation (Zhou et al.,

2022c; Li et al., 2024). Importantly. phospholipase A1 (DAD1) and

acylglycerol lipase (MGLL) were identified as critical enzymes in

mediating plant responses to both biotic and abiotic stress (Zhang

et al., 2021; Zhao et al., 2024). Additionally, lysophospholipids

accumulate in plants under stress conditions, such as freezing,

injury, and pathogen infection (Hou et al., 2016). Since carotenoids

are synthesized in plant chloroplasts and glycerophospholipid

transport also occurred within these organelles, flower color

might be regulated through this indirect pathway (Vishnevetsky

et al., 1999; Benning, 2008). Therefore, the environmental

adaptability of CM likely regulates metabolites and genes

involved in glycerophospholipid metabolism, leading to color

changes. Furthermore, earlier research indicated that yellow CM

exhibited superior adaptability compared to white CM, further

supporting our findings (Chumber and Jhanji, 2022).
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As early as the Tang Dynasty in China, only yellow varieties of

CM were cultivated (Song et al., 2023). Due to their high

ornamental value, years of cultivation and refinement expanded

their colors to include yellow, gold, white, pink, and more (Su et al.,

2019). Understanding the mechanisms behind this coloration had

proven highly beneficial in enhancing their economic value. If the

identified DAMs and DEGs were validated through further

experimental verification, the expression of plant DEGs could be

modulated by altering environmental conditions, introducing

exogenous stimuli, or applying advanced genetic technologies

based on the results. Relevant literature has reported the

modification of plant color through methods such as

environmental changes, introduction of exogenous interference,

and gene silencing (Li et al., 2022a; Yangyang et al., 2022; Zhou

et al., 2022c). This modulation would then regulate DAM

expression, leading to the desired color. This strategy also

represents a key direction for us to further explore through

experiments in the future. While the most apparent differences in

color lay in the petals, identifying distinctions across the entire

plant, including both petals and non-petal parts, provided deeper

insights into the coloration process. The integration of

transcriptomics and metabolomics in this study allowed us to

reveal how metabolic and genetic pathways affect non-petal

tissues. These findings suggested that metabolic and genetic

changes in response to flower color variation were not limited to
FIGURE 6

(A) Key metabolic pathways in the petals of Chrysanthemum morifolium (CM) across three distinct colors. (B) Key metabolic pathways in the non-
petal tissues of CM from the same three colors. Non-petal samples from white, yellow, and gold CM were classified as WCNP, YCNP, and GCNP,
respectively, while petal samples from these colors were designated as WCP, YCP, and GCP. The data used in the drawing were all converted by
z-score normalization.
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petals, where phenotypes varied more, but may also have affected

non-petal tissues. For instance, metabolic pathways involved in

lipid metabolism, such as glycerophospholipid and glycerolipid

biosynthesis, were found to be active in both petals and non-petal

tissues, indicating that flower color regulation not only had a

significant impact on the metabolic processes in petal tissues, but

also on non-petal tissues.
5 Conclusion

This study employed transcriptomic and metabolomic analyses to

elucidate the underlying mechanisms influencing color both in petal and

non-petal tissues of CM. Pairwise comparisons of gene expression and

metabolite levels across different colors revealed that lipids, flavonoids,

and their derivatives were the principal metabolites affected. The

glycerophospholipid metabolism, predominantly composed of lipids,

and its associated gene variations emerged as crucial factors contributing

to color differences in CM. Notably, significant metabolic and genetic

distinctions were observed between white CM and their yellow and gold

counterparts, extending beyond the petals to the non-petal tissues.

Understanding the role of glycerophospholipid metabolism in flower

coloration can provide a scientific basis for developing strategies to

modulate flower color through environmental or genetic interventions.

Furthermore, glycerophospholipids, which play a role in plant stress

response and environmental adaptability, could be leveraged to breed

CM varieties with improved resilience to abiotic stresses, thus

contributing to sustainable cultivation practices. This research

establishes a foundation for further exploration of CM coloration

pathways and provides a scientific basis for quality control, cultivation,

and enhancement strategies for CM.
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