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Grassland is an important vegetation type in Xinjiang, China, playing a crucial role

in the terrestrial carbon cycle. Previous studies have shown that both climate

change and human activities significantly impact grassland growth. However,

research quantifying the contributions of these two factors to grassland changes

is still not thorough enough. This study utilized remote sensing data, i.e.,

Normalized Difference Vegetation Index (NDVI), to analyze the spatial trends of

grassland changes from 1982 to 2015, and the correlation between NDVI and

climate factors. Then, relative contributions of climate change and human

activities to grassland changes were explored across Xinjiang. The results

indicated that there was a significant spatial heterogeneity in the interannual

variations of NDVI in the study area, showing an overall increasing trend (covering

62.5% of the study area). This was mainly attributed to the warming and

humidifying trend of Xinjiang’s climate in recent decades, where increased

precipitation and rising temperatures promoted grassland growth. The main

regions with increased NDVI included the western part of Changji Hui

Autonomous Prefecture, the southern part of Tacheng Prefecture, and the

northwestern part of the Tarim Basin; while the areas with decreased NDVI

were mainly located in the western part of the study area, e.g., the Ili River basin,

and the Tekes River basin. Compared to precipitation, NDVI showed a stronger

correlation with temperature, which was related to temperature promoting

organic matter decomposition and enhancing vegetation nutrient utilization

efficiency. NDVI was negatively correlated with VPD, mainly due to the effects

of transpiration and surface evaporation. In terms of grassland growth, climate

change (52%) contributed as much as human activity (48%). For the grassland

reduction, human activities played a larger role. Overall, in mountainous and flat

areas, human activities contributed more (64.29%) than climate change (35.71%),

including activities such as grazing and urbanization.
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1 Introduction

Grassland is an important component of the terrestrial

ecosystem in our country, with functions such as sand fixation,

dust prevention, water conservation, climate regulation, and playing

a key role in biodiversity conservation and carbon sink function

maintenance (Xu et al., 2022). Climate change and human activities

are the main driving factors for changes in terrestrial ecosystems

(Zhang et al., 2024), which have always been the focus of fields such

as ecology (Zheng et al., 2019). Climate change includes

temperature, precipitation, and vapor pressure deficit (VPD)

(Yuan et al., 2019). Among them, temperature and precipitation

are the dominant factors affecting processes such as seed

germination and seedling growth, and have important impacts on

vegetation distribution and carbon balance (Xu et al., 2019, 2016).

VPD is defined as the difference between saturated water vapor

pressure and actual water vapor pressure at a specific temperature,

and is an important driving factor for plant demand for

atmospheric water (Rawson et al., 1977). The impact of human

activities on grasslands has also been widely studied (Hilker et al.,

2013; Li et al., 2017). For example, the “settled pastoralists project”

and the “national grazing ban and grassland restoration project”

have improved the grassland areas in Xinjiang, China, but

overgrazing has led to grassland degradation in the Ili River

Valley and Tacheng area (Yang et al., 2014). Accurately assessing

the impact of climate change and human activities on grassland

ecosystems will help the government formulate ecological

protection policies and provide theoretical basis for grassland

management, utilization, and protection.

Normalized Difference Vegetation Index (NDVI) has been widely

used in vegetation remote sensing (Defries and Townshend, 1994;

Detsch et al., 2016; Huang et al., 2010), gradually maturing in the

analysis of vegetation growth, yield estimation, and land

desertification research, becoming an important tool for analyzing

changes in land surface cover and their response to climate change

and human activities (Li and He, 2009; Jiang et al., 2021; Li et al.,

2022). NDVI is sensitive to global climate change, especially in arid

and semi-arid areas where it exhibits high sensitivity to precipitation

(Eklundh, 1998; Piao et al., 2004, 2003). Human activities also have a

strong impact on NDVI (Hilker et al., 2013).

Currently, many scholars have conducted extensive research on

the factors of climate change and human activities inducing NDVI

changes using remote sensing methods, but further research is

needed to quantify the contributions of climate change and human

activities to vegetation changes (Sun et al., 2015; Wang et al., 2015;

Xie et al., 2016). Residual analysis is a common quantitative analysis

method that quantifies the contribution of climate change by

establishing an equation between NDVI and climate factors (Li

et al., 2017; Wang et al., 2015). This method has achieved good

results in distinguishing and quantifying the climatic and

anthropogenic impacts on vegetation dynamics in the central and

northern regions of China and the Yulin region in northwest China

(Sun et al., 2015; Jiang et al., 2017).

Xinjiang Uygur Autonomous Region is a hotspot for global

climate change research. Grasslands, as an important vegetation

type, play a crucial role in maintaining ecological balance and
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ensuring the region’s climate and economic health. Considering

the impact of climate change and human activities on grasslands,

this study takes Xinjiang’s grasslands as the research object, using

the GIMMS NDVI3g dataset, GLASS-GLC dataset, and Vegetation

Continuous Fields (VCF) time series data to analyze the changing

trends of Xinjiang’s grasslands, elucidate the driving factors of

grasslands and their correlations, and explore the quantitative

contributions of climate change and human activities to

grasslands. This will contribute to the rational utilization of

grassland resources in Xinjiang and the protection of the

ecological environment, while providing a scientific basis for

understanding vegetation evolution and predicting the changing

characteristics of vegetation under climate and human influences.
2 Materials

2.1 Study area

Xinjiang Uygur Autonomous Region is located between 73°40′
to 96°18′ east longitude and 34°25′ to 48°10′ north latitude. It is the

largest provincial-level administrative region in China with a total

area of approximately 1.6649 million square kilometers, accounting

for one-sixth of China’s land area. It is a region with diverse and

harsh environments (Zhang and Zhang, 2023). The Altai

Mountains are in the north, while the Kunlun Mountains, Altun

Mountains, and Tianshan Mountains are in the south. The

Tianshan Mountains run through the central part, forming the

Tarim Basin in the south and the Junggar Basin in the north.

Xinjiang is located deep inland, surrounded by high mountains

on all sides, far from the ocean, which limits the arrival of

maritime air currents and forms a distinct temperate continental

climate. Under this climate condition, Xinjiang experiences large

temperature variations, significant day-night temperature

differences, abundant sunshine, low precipitation, and a dry

climate. In Xinjiang, grasslands serve as an important vegetation

type, playing a crucial role in ecosystem services such as soil and

water conservation, and climate regulation. However, occurrences

of drought and overgrazing have negative impacts on Xinjiang’s

ecosystems. Therefore, analyzing the changes in Xinjiang’s

grasslands and their driving factors is of great significance for

studying global and regional changes.

The study area consists of pixels of grassland that appeared at

least once from 1981 to 2015 (OOGP) (referred to below), mainly

distributed in regions above 40° north latitude, located near the

Tianshan Mountains and Altai Mountains, on the edge of the

Gurbantünggüt Desert, and the western edge of the Taklimakan

Desert (Figure 1). The study area covers the main distribution areas

of grasslands in Xinjiang, reflecting the interannual variation trends

of grasslands in Xinjiang.
2.2 GIMMS 3g NDVI dataset

The vegetation index is an indicator that reflects the relative

abundance and activity of green vegetation through quantified
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radiation values. It is commonly used to describe the physiological

status, green biomass, and productivity of vegetation in a study area,

and is highly sensitive to vegetation growth (Tucker et al., 1986).

The GIMMS NDVI3g.V1 dataset (https://ecocast.arc.nasa.gov/data/

pub/gimms/3g.v1/) is a long time series of NDVI data obtained by

the Advanced Very High Resolution Radiometer (AVHRR) sensor

from NOAA. This dataset is global in scope, covering the time range

from 1981 to 2015, with a spatial resolution of 1/12° and a temporal

resolution of 15 days. This is the NDVI data product with the

longest time span currently, widely used in long-term vegetation

change studies in different regions. Compared to early AVHRR

products, GIMMS NDVI3g has higher accuracy and is less affected

by factors such as atmospheric water vapor and volcanic eruptions,

hence it has been widely applied in research. Previous studies

suggested that the GIMMS NDVI data performed well in

detections of grass changes across Xinjiang, China (Liu et al.,

2018; Du et al., 2015; Yao et al., 2018).
2.3 GLASS-GLC dataset

The GLASS-GLC dataset (https://doi.pangaea.de/10.1594/

PANGAEA.913496) records the annual dynamic changes in

global land cover from 1982 to 2015 for the first time at a

resolution of 5 kilometers. This dataset is generated using the

latest version of GLASS CDRs and the Google Earth Engine

(GEE) platform. Compared to earlier global land cover products,

GLASS-GLC has higher consistency, more details, longer temporal

coverage, and more detailed categories. It includes seven categories

such as cropland, forest, grassland, shrubland, tundra, barren land,

ice, and snow, with an average overall accuracy of 82.81% over 34

years. GLASS-GLC is suitable for long-term analysis of land cover
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changes, application in Earth system modeling, and promoting

research on vegetation dynamics (Liu et al., 2020).

Based on GLASS-GLC data, this article obtained the annual

land cover types in Xinjiang from 1982 to 2015. By comparing the

land cover types of each pixel over 34 years, it identified pixels

where the land cover type has always been grassland (CGP) and

pixels where grassland has appeared at least once in the 34

years (OOGP).
2.4 Climatic data

The climate data used in this study includes near-surface air

temperature (°C), surface precipitation rate (mm h−1), near-surface

air pressure (Pa), and near-surface specific humidity. These data are

sourced from the China Meteorological Forcing Dataset (CMFD,

https://poles.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-

965612652c49/) (1979-2018). The CMFD is produced by

integrating conventional meteorological observation data from the

China Meteorological Administration with existing international

Princeton reanalysis data, GLDAS data, GEWEX-SRB radiation

data, and TRMM precipitation data as background fields. The data

is in NETCDF format, with a temporal resolution of 3 hours and a

horizontal spatial resolution of 0.1°. Compared to internationally

published reanalysis data, CMFD has higher spatiotemporal

resolution, more comprehensive integration of ground

observation data, continuous time coverage, and stable quality.

Therefore, it exhibits superior performance in regional climate

research and is one of the most widely used climate datasets in

China (He et al., 2020).

The formula for calculating VPD (vapor pressure deficit) based

on climate data is as follows:
FIGURE 1

Grassland pixel over the Xinjiang from 1981 to 2015.The colors represent three types of grassland pixels. Light green pixels represent pixels where
grassland has appeared at least once from 1981 to 2015 (OOGP), pink pixels represent approximated pure grassland pixels (PGP), and dark green
pixels represent pixels that have always been grassland (CGP). The frequency histogram displaying the areal proportions (%) of corresponding regions
is inset.
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q = 0:622
e
P

(1)

PS = 610:78exp
17:269T
237:3 + T

� �
(2)

VPD = PS − e (3)

In the formula, q represents specific humidity, p represents air

pressure, e represents actual water vapor pressure, PS represents

saturated water vapor pressure, T represents temperature, and VPD

represents atmospheric vapor pressure deficit (Singh et al., 2002).

3 Methods

3.1 Statistical analysis

Maximum Value Composition (MVC) is commonly used for

synthesizing satellite images with revisit cycles to reduce or

eliminate the impact of clouds, weather, or other factors on the

data (Huete et al., 2002). By processing NDVI data using the MVC

method, NDVI raster images at the annual scale of Xinjiang from

1981 to 2015 can be obtained. At the pixel scale, using a simple

linear regression method, the annual variation rate of NDVI from

1981 to 2015 can be calculated to depict its temporal trend and

change intensity (Gao et al., 2022). This method comprehensively

considers the NDVI data of each year within the study period, and

the calculation formula is as follows:

q slope =
n�on

i=1(i� NDVIi) − on
i=1i

� �� on
i=1NDVIi

� �
n�on

i=1i
2 − on

i=1i
� �2 (4)

In the formula, n represents the length of the study period

(NDVI data in this study is from 1981 to 2015, n=35); i is the serial

number of the study year, with 1981 corresponding to i=1, and so

on, up to 2015 corresponding to i=35; NDVIi represents the NDVI

value in year i of the study period; qslope is the interannual change
rate of NDVI. If qslope > 0, NDVI shows an increasing trend, if qslope
< 0, NDVI shows a decreasing trend.

In order to quantify the relationship between NDVI and

temperature, precipitation, and VPD, this study uses Pearson

correlation analysis to calculate the single correlation coefficients

of NDVI with temperature, precipitation, and VPD at the pixel

scale. The calculation formula is as follows:

Rxy =
on

i=1½(xi − �x)(yi − �y)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(xi − �x)2on
i=1(yi − �y)2

q (5)

In the formula, Rxy represents the correlation coefficient; xi is

the NDVI for the i-th year; yi is the temperature, precipitation, and

VPD for the i-th year; �x is the mean value of NDVI during the study

period; �y is the mean value of temperature, precipitation, and VPD

during the study period. When Rxy

�� ��>0.8, it is highly correlated;

0.5< Rxy

�� ��<0.8 is moderately correlated; 0.3< Rxy

�� ��<0.5 is weakly

correlated; generally, Rxy

�� ��<0.3 is uncorrelated (Chen et al., 2023).

The partial correlation coefficients between NDVI and

concurrent temperature, precipitation, VPD, assuming two
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variables remain constant, the relationship between NDVI and

the other variable is calculated as follows:

Rxy�z =
Rxy − RxzRyzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1 − R2
xz)(1 − R2

xz)
p (6)

In the formula, Rxy�z represents the partial correlation

coefficient between x and y under the assumption that variable z

remains unchanged, and so on.

In order to analyze the fluctuation pattern of vegetation

coverage, this study adopted the coefficient of variation method

(Milich and Weiss, 2000). The calculation formula is as follows:

CVNDVI =
sNDVI

NDVI
(7)

In the formula, CVNDVI refers to the coefficient of variation of

NDVI values at a certain time sequence. s represents standard

deviation, and NDVI represents the mean, used to evaluate the

stability of NDVI in the time series. A larger CVNDVI value indicates

a more dispersed data distribution, greater fluctuation, and unstable

time series; conversely, a smaller value indicates a more

concentrated data distribution and a relatively stable time series.

Using the F test to determine the significance of interannual

variation rate, the formula is as follows:

F = K � (n − 2)
M

(8)

Among them, K and M are the regression sum of squares and

residual sum of squares respectively, with n being the total number

of years, which is 35.
3.2 Vegetated area of interest

This study aims to establish a purely climate-induced grassland

NDVI model using approximated pure grassland pixels (Zhou et al.,

2022). For each pixel, this study ignores areas with sparse or non-

existent grassland vegetation (areas with annual average NDVI less

than 0.1) (de Jong et al., 2011; Weiss et al., 2010). The model is then

applied to the entire study area, specifically to pixels where

grassland has appeared at least once (OOGP). Finally, the NDVIc

derived from the model (the NDVI values influenced by climate

change) is subtracted from the observed NDVI data (NDVIo) to

obtain the NDVI values influenced by human activities (NDVIh),

studying the impact of Climate Change (Cc) and Human Activities

(Ha) on grassland vegetation in the study area. The detailed

methodology framework of this study is shown in the figure below.

Step 1: Extract approximated pure grassland pixels (PGP)

(Figure 2). Based on the GLASS-GLC dataset and vegetation

continuous field (VCF) time series data, a method for extracting

approximated PGP was developed by combining grassland pixels

(CGP) and coefficient of variation (CV) from 1982 to 2015. CV is the

ratio of the standard deviation to the mean of the VCF time series at

each pixel, widely used as an indicator to measure the degree of

fluctuation, distinguishing grassland pixels affected by climate from

those not affected by climate. Therefore, it can be assumed that pure

grassland pixels are only influenced by climate change.
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Step 2: Establish a multiple regression model (Figure 2). Based on

the selected PGP, import four climate variables from CMFD:

precipitation, near-surface air temperature, surface air pressure, and

near-surface air specific humidity. VPD is calculated from temperature,

pressure, and specific humidity (Singh et al., 2002). Establish a multiple

regression model between NDVI and climate variables (precipitation,

temperature, and VPD). Based on this, the NDVIc of each pixel was

simulated. Where NDVIc represents climatic grassland; P, T, V

represent annual average precipitation, temperature, and VPD, with

units in mm, °C, and hPa respectively; a, b, g represent the regression
coefficients of multiple linear regression; d is the error term.

Step 3: Calculate the impact of human activities on grasslands

(Figure 2). Based on GIMMS NDVI3g data, obtain observed NDVI

(NDVIo). The difference between NDVIc and NDVIo is the

residual (NDVIh), indicating the response of grasslands to human

activities. Quantitatively analyze the impact of climate change and

human activities on grasslands in Xinjiang.

According to the above method, over the past 35 years, the

grassland pixel (CGP) has mainly been distributed above 43°N

(Figure 1). Because the smaller the CV value, the more stable it is.

Among the pixels that have always been grassland, the CV values

range from 0.6% to 28%. Sorting the CV values from small to large,

the 5th percentile is chosen as the threshold (Zhou et al., 2022).

Therefore, approximated PGP with CV values less than 4% are

selected for modeling (Figure 1). Compared to the model based on

CGP, the NDVIc obtained from the multiple linear regression

model based on PGP (i.e., NDVI induced by Cc) can better

reflect the impact of climate on grassland NDVI.
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According to the indicators provided in the literature, the

correlation coefficient (CC) of the model is 0.496, the bias (BIAS) is

-1.2%, and the root mean square error (RMSE) is 0.185 (Mentaschi

et al., 2013). Therefore, it can be considered that the model is

reasonable and reliable in the study area, and can be used to

distinguish the impact of human activities (Ha) and climate change

(Cc) on NDVI during the study period. Further analysis revealed that

if modeling is done on the same modeling pixel without considering

VPD, the CC is 0.475, BIAS is -0.836%, and RMSE is 0.132. If

modeling is done using pixels where grassland has appeared at least

once in 35 years and considering VPD factors, the CC is 0.6, BIAS is

1.0141e-06, and RMSE is 0.0708; if VPD factors are not considered,

the CC is 0.49, BIAS is 2.9364e-06, and RMSE is 0.077. Overall, the

model considering VPD factors performs better in terms of

correlation and error, making it more suitable for distinguishing

the effects of different factors on NDVI during the study period.
3.3 Quantitative evaluations

Usually, we use correlation coefficient (CC), relative bias (Bias),

and root mean square error (RMSE) to verify the accuracy of the

model. The changing trends of NDVIc, NDVIh, and NDVIo are

obtained at the pixel scale to determine the spatial distribution and

impact of Cc and Ha on grasslands in the study area. Based on these

trends, six response patterns of NDVI to Cc and Ha were further

determined along with their contribution rates (Supplementary

Table 1) (Zhou et al., 2022; Guo et al., 2021).
FIGURE 2

Step 1: Extraction of approximated pure grassland pixels (PGP) (A). Initially, grassland pixels with a value of 30 were extracted from the GLASS-GLC
dataset to obtain pixels that were consistently grassland from 1981 to 2015 (Constant Grassland Pixels, CGP). Then, the CV (Coefficient of Variation)
values of the CGP were calculated using VCF data, and approximated PGP were identified based on a specified threshold. Step 2: NDVIc was
calculated using a multiple regression equation based on precipitation, temperature, and VPD (B). Step 3: In the GIMMS NDVI3g dataset, data greater
than 0.1 were considered as observed NDVI (NDVIo). NDVIh represents the difference between NDVIo and NDVIc (C).
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Using the partial correlation analysis method, the partial

correlation coefficients between NDVIo and various meteorological

factors are used to identify the impact of each Cc factor on grassland

changes (Supplementary Table 2) (Zhou et al., 2022). The

contribution rates of each driving factor are gradually stripped

away in various scenarios.
4 Results

4.1 Spatiotemporal patterns of
grassland changes

Supplementary Figure 1 shows the fluctuation status of NDVI

in Xinjiang from 1981 to 2015, categorizing the fluctuation status of

NDVI into five levels. Among them, 8% of pixels are in a low

fluctuation state, 66% of pixels are in a relatively low fluctuation

state, with low fluctuation areas mainly located in the Taklimakan

Desert, Kumtag Desert, and eastern Xinjiang; 4% of pixels show a

higher fluctuation state (0.2> CVNDVI >=0.15), and 3% of pixels

show a high fluctuation state (CVNDVI >=0.2). Specifically, areas

with higher fluctuations are mainly located in the Tianshan

Mountains, Altai Mountains, and Kunlun Mountains, while other

regions have lower NDVI fluctuations.

Figure 3 shows the spatial variation trend of NDVI. From 1981

to 2015, the interannual regression coefficient distribution of NDVI

in the study area ranged from -0.004 to 0.012/a. Among them,

62.5% of the regions showed an increasing trend in NDVI,

indicating that NDVI gradually increased over time, while the

remaining 37.5% of the regions exhibited a decreasing trend,

meaning that NDVI gradually decreased over time, mainly

concentrated in the western part of the study area, including the

Ili River and Tekes River basins. Supplementary Figure 2 shows that

50% of the study area’s pixel NDVI trend passed the significance

test, with significant increases and decreases in NDVI distributed
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across the entire study area. Specifically, 36% of the regions showed

a significant increasing trend in NDVI (P<0.05), with the

distribution range highly overlapping with the areas where NDVI

trend >0.001 in Figure 3; 14% of the regions exhibited a significant

decreasing trend in NDVI, mainly located in the central and

western parts of the study area. Generally, there was a significant

spatial heterogeneity in the interannual variations of NDVI in the

study area, showing an overall increasing trend.
4.2 Correlations between NDVI and
climate variables

Using precipitation, temperature, and VPD as control variables,

the correlation coefficient and partial correlation coefficient between

NDVI and precipitation, temperature, and VPD were calculated.

Supplementary Figure 3 show the spatial distribution of the

correlation coefficients between NDVI and precipitation,

temperature, and VPD. The main relationship between NDVI

and precipitation is positive (r>0), meaning that NDVI increases

with increasing precipitation. The highest correlation coefficient is

0.76, the lowest is -0.62, with 29% of the study area pixels being

significant. 78% of the pixels in the study area show a positive

correlation, with the majority having correlation coefficients less

than 0.3, mainly distributed in mountainous areas. Similarly, the

dominant relationship between NDVI and temperature is positive,

meaning that NDVI increases with rising temperatures. The highest

correlation coefficient is 0.78, while the lowest is -0.72. 25% of the

pixels in the study area show significant performance, with 69%

exhibiting a positive correlation, mostly falling within the range of 0

to 0.3. 31% of the pixels show a negative correlation, indicating that

NDVI decreases as temperature rises, generally exceeding -0.3,

mainly concentrated in the Tacheng region. As for VPD, the

number of pixels showing positive and negative correlations with

NDVI is roughly equal, with the highest correlation coefficient

being 0.78 and the lowest being -0.81. 30% of the pixels show

significant correlation. Among these, 57% exhibit a negative

correlation, where the trend of NDVI and VPD changes

oppositely, primarily distributed in the western part of the study

area, the central part of the Tianshan Mountains, and the southern

part of the Altai Mountains. 43% of the pixels show a positive

correlation, where the trend of NDVI and VPD changes in the same

direction, with 64% of the pixels falling within the range of -0.3 to

0.3 overall.

In addition, the partial correlation coefficient is used to measure

the relationship between NDVI and precipitation, temperature, and

VPD. Figure 4 shows the spatial distribution of the corresponding

partial correlation coefficients. The partial correlation coefficient

between NDVI and precipitation ranges from -0.67 to 0.81,

indicating a positive correlation in the study area, accounting for

69% of the area. The partial correlation coefficient between NDVI

and temperature ranges from -0.59 to 0.82, showing a positive

correlation, accounting for 83%. As for VPD, the minimum partial

correlation coefficient is -0.85, and the maximum is 0.79, indicating

a negative correlation between NDVI and VPD, accounting for 73%

of the area. Overall, NDVI showed a stronger correlation with
FIGURE 3

Spatial distribution of the interannual variation trend of NDVI in the
study area from 1981 to 2015.The frequency histogram displaying
the areal proportions (%) of corresponding coefficients is inset.
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temperature compared to precipitation, and was negatively

correlated with VPD.
4.3 Attributions of grassland changes

By establishing the grassland NDVI model, the values and spatial

distribution of NDVIc and NDVIh in the study area from 1981 to 2015

were calculated. Figure 5 shows the spatial distribution of the changing

trends of NDVIc and NDVIh. NDVIc overall shows a gradually

increasing trend over time, accounting for 77.7% of the study area,

mainly distributed in the southern Tianshan Mountains and northern

Altai Mountains; the remaining 22.3% of pixels show a decreasing

trend year by year, with the declining areas evenly distributed within

the study area. In contrast to NDVIc, NDVIh exhibits a widespread

decreasing trend, covering 60% of the study area. The remaining 40%

of pixels show an increasing trend year by year, mainly distributed in

the western part of Changji Hui Autonomous Prefecture, downstream

of the Yarkant River, and near Kashgar City.

This study identified six response patterns of grassland NDVI to

climate change and human activities through the interannual

variation trends of NDVIc, NDVIo, and NDVIh. The spatial

results are shown in Figure 6. In terms of grassland growth, the
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promotion effects of climate change-induced pattern (Cc), human

activities-induced pattern (Ha), and climate change combined with

human activities-induced pattern (Cc-Ha) on grasslands account

for 37%, 28%, and 35% of the increased area, respectively. In terms

of grassland reduction, it is mainly influenced by human activities

(Ha), accounting for 85% of the reduced area. Other patterns Cc

and Cc-Ha account for 5% and 10% of the reduced area, mainly

distributed near the Tekes River and Ili River. The entire study area

is dominated by an increase in grassland NDVI, accounting for

62.5% of the area. The remaining 37.5% of pixel grassland growth is

inhibited, leading to a decrease in grassland NDVI, with grassland

NDVI responding most significantly to pattern Ha, accounting for

32% of the study area. Overall, climate change contributed as much

as human activity in terms of grassland growth, while the later one

played a larger role for the grassland reduction.
4.4 Contributions of Cc and Ha to
grassland changes

According to Supplementary Table 2, the contribution rates of

climate change (Cc) and human activities (Ha) to grassland changes are

obtained. Figure 7 shows the spatial distribution of the contributions.
FIGURE 4

Spatial distribution of partial correlation coefficients between NDVI and climate variables. (A–C) represent the partial correlation coefficients
between NDVI and precipitation, temperature, and VPD, respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1497248
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rui et al. 10.3389/fpls.2024.1497248
FIGURE 5

Spatial distribution of the interannual variation trends in grassland NDVI in Xinjiang from 1981 to 2015. (A, B) reflect the variation trends of NDVIc and
NDVIh, respectively. The frequency histogram displaying the areal proportions (%) of corresponding coefficients is inset.
FIGURE 6

Spatial distribution of grassland NDVI response patterns. (A–C) reflect the overall situation of NDVI decrease, increase, and total change, respectively.
In these panels, IH, IC, and ICH represent grassland increase caused by human activities, climate change, and the combined effect of climate change
and human activities, respectively; DH, DC, and DCH represent grassland decrease caused by human activities, climate change, and the combined
effect of climate change and human activities, respectively. The frequency histogram displaying the areal proportions (%) of corresponding regions
is inset.
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The results indicate that form 1981-2015, climate change mainly affects

32% of pixels, where grassland changes show an increasing trend,

meaning that the contribution rate of Cc is greater than Ha, promoting

grassland growth. The main contribution area of Cc to grassland

decrease is small, accounting for 3%, mainly concentrated in the Ili

River Basin. For human activities, in both cases of grassland growth

and decrease, the number of pixels making the main contribution is

roughly the same. 29% of pixels contribute to grassland growth, with
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Ha’s contribution rate greater than Cc, indicating a growth trend in

grassland; while pixels contributing mainly to grassland decrease

account for 35%. Overall, Cc and Ha contribute 35.71% and 64.29%

respectively to the total amount of grassland changes during the entire

study period (Figures 7A, B). It should be noted that the contributions

of climatic variables and human activities to grassland changes varied

with time, because of enhanced climate changes and developments of

the projects and policies. Hence, a temporal difference of the
FIGURE 7

Spatial distribution of the relative contribution of climate change (left panels) and human activities (right panels) to interannual variation in grassland
NDVI in Xinjiang during 1981-2015 (A, B), 1981-2000 (C, D) and 2001-2015 (E, F). A positive contribution rate indicates a trend of grassland increase,
while a negative contribution rate indicates a trend of grassland decrease. The frequency histogram displaying the areal proportions (%) of
corresponding coefficients is inset.
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contributions was further explored before and after the 2000 year. The

results showed that the positive contributions of climate change

obviously enhanced from 80s-90s to 20s-21s (Figure 7C, E). The

main contributing area (relative contribution > 50%) accounted for

78% of the study area after the 2000 year. Meanwhile, the negative

contributions of human activities also reduced from 80s-90s to 20s-21s,

especially in the areas with Ha< 50% (Figure 7D, F). The positive Ha is

widespread across the study area after 2000, but most of them had a

low contribution of between 0 and 20%.

Based on the partial correlation coefficients of temperature,

precipitation, VPD with NDVI and their identification criteria

(Supplementary Table 2), the spatial patterns of driving factors

were plotted as shown in Figure 8. In the case of grassland growth,

the range of the combined impact of temperature and precipitation

(TP) is greater than other climatic variables, accounting for 32% of

the study area, mainly distributed in the Tianshan Mountains,

northern part of the Kaidu River, near the Ili River, downstream

of the Yarkant River, and around Kashgar City; followed by the

composite pattern of temperature, precipitation, and VPD (TPV),

accounting for 12%. For grasslands showing a decreasing trend,

they are mainly driven by precipitation and VPD (PV), accounting

for 18% of the study area, concentrated in the southern part of the

Bortala Mongol Autonomous Prefecture. In general, human

activities contributed more than climate change, including grazing

and urbanization, in mountainous and flat areas.
5 Discussion

5.1 Spatiotemporal patterns of NDVI,
NDVIc, and NDVIh

Based on the fluctuation status of NDVI, the results of this study

show that the NDVI in the research area mainly remains in a low

fluctuation state and a relatively low fluctuation state, indicating
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that from 1981 to 2015, the fluctuation degree was low, data

distribution was concentrated, time series were stable, and

reliability was high. This helps to improve the accuracy and

effectiveness of data analysis, as well as the credibility

and interpretability in practical applications. Precipitation in

Xinjiang is generally low, and the arid and semi-arid climate

suppresses vegetation growth, resulting in sparse vegetation cover,

low and relatively stable NDVI values (Liu et al., 2016). The

fluctuation status in the Tianshan Mountains and Altai

Mountains is higher due to sufficient moisture and higher

temperatures in these areas, which extend the vegetation growth

period, leading to more luxuriant vegetation during the growing

season, with greater fluctuations between the maximum and

minimum NDVI values (Liu et al., 2016).

50% of the research area pixel NDVI change trend was tested

for significance, indicating a large magnitude of data change and

strong reliability. The entire research area exhibits spatial

heterogeneity in NDVI, showing an overall upward trend. The

areas with increasing NDVI mainly include the western part of

Changji Hui Autonomous Prefecture, the southern part of Tacheng

Prefecture, and the northwestern part of the Tarim Basin,

accounting for 62.5% of the research area. The decreasing areas

are mainly distributed in the western part of the research area, as

well as the Ili River and Tekes River basins, accounting for 37.5% of

the research area. This is mainly attributed to the warming and

humidifying trend of the climate in Xinjiang in recent years, where

increased precipitation and rising temperatures have promoted

grassland growth (Li et al., 2018; Zhang et al., 2021; Yao et al.,

2018). Research by Zhang et al. (2018) on the dynamic response of

grassland to climate change and human activities in Xinjiang shows

that the grasslands in the Ili River Valley are experiencing a

degradation trend, similar to the results of this study (Zhang

et al., 2018). Furthermore, it indicates that the degraded grassland

area is gradually spreading towards the western part of the Tianshan

Mountains in terms of spatial distribution. Additionally, the
FIGURE 8

Spatial distribution of climatic drivers of grassland NDVI and frequency histogram of area proportions. The red colors indicate an increasing trend,
and the blue colors indicate a decreasing trend. (P-V) represents the combined effect of precipitation and VPD, (T-V) represents temperature and
VPD, (T-P) represents temperature and precipitation, and (T-P-V) represents the combined effect of temperature, precipitation, and VPD.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1497248
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rui et al. 10.3389/fpls.2024.1497248
turning-point has been detected for the NDVI series over the study

area. It shows that the increasing trend of NDVI changed after the

year of 2000. However, there was a little difference between the

slopes before and after the turning point, and thereby it was not

considered in the present work.

Through the grassland NDVI model, the spatiotemporal

patterns of NDVIc (NDVI affected by climate change) and

NDVIh (NDVI affected by human activities) in the study area

were analyzed. The results show that NDVIc generally increases

over time, indicating a growing role of climate change in promoting

grassland growth year by year, accounting for 77.7% of the study

area, with 41.7% of pixels greater than 0.0005/a. The growth areas

mainly include the Tianshan Mountains, Altai Mountains, Irtysh

River Basin, Tacheng area, and Bortala Mongol Autonomous

Prefecture. This may be related to climate change and

topographical fluctuations in Xinjiang: on the one hand, there has

been a trend of warming and increased humidity in Xinjiang in

recent years (Wang et al., 2020), with increased precipitation and

thereby soil moisture helping meet the water needs of grassland

growth, rising temperatures promoting grassland photosynthesis,

improving photosynthetic efficiency, and thus enhancing grassland

growth; on the other hand, the closer to mountainous areas or the

larger the mountains, the greater the trend of increasing annual

precipitation, as moist air forced to rise when passing through

mountains leads to cooling with altitude, making water vapor in the

air more likely to condense into precipitation, promoting grassland

around mountainous and basin areas, thereby improving

degradation (Yao et al., 2022).

In contrast to NDVIc, NDVIh mainly shows a decreasing trend,

indicating that human activities are increasingly inhibiting

grassland growth year by year, accounting for 60% of the study

area. About 37% of the pixels have a decrease rate of less than

-0.0005/a, which is lower than the increase rate of NDVIc. The

remaining 40% of pixels show an increasing trend. The areas where

NDVIh is increasing year by year are mainly distributed in the

western part of Changji Hui Autonomous Prefecture, downstream

of Yarkant River, Aksu City, Xinhe City, Korla City, and near

Kashgar City. This is related to land use changes, conservation and

restoration projects, and water resource management: human

activities have led to changes in land use, such as an increase in

parks, green spaces, or protected areas; at the same time, irrigation

systems or other water projects have a restorative effect on the

ecological environment, promoting grassland growth.
5.2 Effects of climatic variables to
grass growth

In order to eliminate the influence of other variables, partial

correlation coefficients were used to measure the relationship

between NDVI and precipitation, temperature, and VPD. The

results show that compared to the correlation coefficient, in the

study area, NDVI is mainly positively correlated with precipitation.

That is, in areas with higher precipitation, the NDVI values are also

higher, accounting for a relatively low proportion of 69%, with a

distribution range roughly the same, mainly distributed in
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mountainous areas. Moreover, the number of pixels showing a

negative correlation in the southern part of the mountains

increases, indicating that moisture conditions are an important

factor affecting the variation of grassland NDVI, as soil moisture is

one of the essential resources for plant photosynthesis and growth,

and an increase in soil moisture leads to an increase in NDVI values

(Liang et al., 2015). It should be noted that NDVI is calculated from

the reflectance values of the near-infrared and red visible light

bands, with the near-infrared band being a strong absorption region

for water bodies. When precipitation causes significant changes in

soil moisture content, the NDVI values decrease. Therefore, in some

areas, there is a negative correlation between NDVI and

precipitation (Li et al., 2011).

NDVI is mainly positively correlated with temperature,

accounting for 83%, slightly higher than the correlation coefficient

of 69%, and the correlation strength is stronger than that with

precipitation. The number of negatively correlated pixels in the

western part of Tacheng region is smaller, mainly located in its

southern part. Specifically, it reflects the sensitivity of vegetation

activity in mid-high latitude zones to heat factors: on the one hand,

most areas in the study area belong to arid or semi-arid climates,

with relatively low precipitation. Under such climatic conditions,

the impact of temperature on vegetation growth is more significant

than that of precipitation, promoting organic matter decomposition

and improving the effectiveness of vegetation nutrient utilization;

on the other hand, the increase in temperature leads to the

evaporation of soil moisture in water-rich areas, maintaining high

air humidity, improving local microclimates, and increasing NDVI

(Huang et al., 2022).

For VPD, unlike the correlation coefficient, it is mainly

negatively correlated with NDVI. That is, NDVI increases as VPD

decreases and decreases as VPD increases, accounting for 73%,

much higher than the correlation coefficient of 57%. Moreover, the

number of pixels showing a negative correlation in the southern

Altai Mountains and the Tianshan Mountains has significantly

increased. The reason is that when VPD is low, the air is humid,

which can suppress transpiration and surface evaporation,

beneficial for soil moisture retention and organic matter

accumulation (Huang et al., 2022), thereby promoting grassland

growth. In regions where NDVI is positively correlated with VPD,

high VPD is usually associated with clear and dry weather

conditions, meaning sufficient sunlight and suitable temperatures.

Compared to the inhibitory effect of VPD, these weather conditions

have a stronger promoting effect on plant growth.

In summary, the changes in precipitation, temperature, and

VPD are closely related to the variation of NDVI in the study area.

Considering the individual impacts of precipitation, temperature,

and VPD, NDVI is mainly positively correlated with precipitation

and temperature, and negatively correlated with VPD. Among

them, the region where NDVI is positively correlated with

temperature has a larger area and a stronger relationship,

indicating that temperature has a greater impact on the

vegetation coverage of grasslands in the study area.

For the same pixel, the partial correlation coefficient and the

correlation coefficient show different relationships, indicating that

there are complex composite relationships between NDVI and
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precipitation, temperature, and VPD. After controlling for other

variables, the direct relationship between NDVI and the remaining

variables may exhibit an opposite trend. To further explore the

impact of climate variables on grassland NDVI changes, identify the

individual and composite contributions of climate variables, and

generate spatial pattern maps of driving factors. The results indicate

that grasslands in the study area are more influenced by the

combined effects of multiple climate variables than by the effects

of a single climate variable. Combining the contribution rates of

climate variables to grassland changes (Figure 7), it is mainly found

that Cc promotes grassland recovery. In terms of individual climate

variables, the influencing factors from largest to smallest are

temperature, VPD, and precipitation, meaning that temperature

has a greater impact on grassland changes, which is consistent with

the above conclusion.

In regions where there is a growing trend in grassland, the main

factor is the combined influence of temperature and precipitation

(TP). That is, the composite pattern of temperature and

precipitation is the main factor for grassland improvement, as

grass growth depends on both water and temperature, and

neither can be lacking.

In areas showing a decreasing trend in grassland, the main

influence is from the combined effects of precipitation and VPD

(PV), meaning that the composite pattern of precipitation and VPD

has the most significant driving effect on grassland degradation. As

most parts of Xinjiang are in arid or semi-arid climates with low

annual precipitation, high VPD indicates strong air absorption

capacity for moisture, leading to rapid evaporation of soil

moisture and exacerbating water stress in grasslands.
5.3 Relative contributions to
grassland changes

Based on the spatial distribution map of six response modes to

climate change and human activities based on grassland NDVI, it

can be seen that for grassland growth, it is influenced by both

climate change and human activities, with a relatively equal degree

of impact. The contributions of climate change and human

activities are 52% and 48%, respectively. Regions with higher

contributions from climate change are mainly distributed in the

Altai Mountains, western Tacheng area, Kaidu River Basin, as well

as the junction of Turpan City and Changji Hui Autonomous

Prefecture; regions with higher contributions from human

activities are located in the northern part of the Tianshan

Mountains, western Tarim Basin, and the northern part.

Grassland growth on the edge of the Tarim Basin and the

southern edge of the Junggar Basin mainly benefits from human

activities. The sand control and desertification control projects

implemented after the National Sand Control Conference in 1991,

including the construction of a sand control system with shrubs and

grasses and measures such as fencing and enclosure of desert

grasslands, have improved soil quality, provided suitable growth

environments, and promoted grassland growth. The ecological

governance project around the Tarim Basin launched in 2009 and

the sand control and desertification control project in the Junggar
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Basin further accelerated the recovery of grasslands. In addition, the

settlement project for herdsmen implemented in 1986, the national

grazing ban and grassland restoration project in 2002, the grassland

ecological compensation incentive mechanism in 2011, all played a

role in promoting grassland growth (Cai et al., 2022).

Human activities (Ha) are the main driving factor for the

reduction of grasslands, such as urban expansion, mining,

grazing, and agricultural activities, which inhibit grass growth,

leading to a decrease in biomass, and they also occupy the largest

area of the entire study area (32%). In this study, the main cause of

grassland degradation and desertification is grazing (Yang et al.,

2014). The Altai Mountains, Tacheng region, and Ili River Valley

are regions with high grazing rates in Xinjiang (Huang et al., 2018),

so they are also concentrated areas where human activities lead to a

decrease in NDVI. Notably, our present approach could

technologically distinguish the contributions of the climatic

variables and non-climatic variables to the variations of NDVI

over the grasslands. However, it is difficult to identify what kind of

human activities dominates contribution without corresponding

driving data. Hence, we tried to investigate the relationship between

the contribution of human activities and the grazing intensity

obtained from a recently released data (Wang et al., 2024). We

found that the negative contributions were quite consistent with the

increasing grazing intensity across the study area. In contrast, the

positive contributions were mainly associated to the reducing

grazing. This generally support our results and infer.

Based on the results of the relative contributions of climate

change and human activities to grassland NDVI changes, it is

shown that human activities contribute more (64.29%) to

grassland changes than climate change (35.71%). These results are

generally consistent with the previous studies which investigated

grassland dynamics in response to climate change and human

activities in Xinjiang or the (semi-) arid areas of China (Zhang

et al., 2018; Yang et al., 2017; Xue et al., 2023). This is because the

study area is mainly composed of mountains, river basins, and

oases. For mountainous areas, due to the complex and varied terrain

in mountainous regions, as well as significant differences in climate

and human environment between the southern and northern

slopes, grasslands are more driven by non-climatic factors than

climatic factors (Zhang et al., 2018). In river basins and oasis areas,

due to the fact that the river valleys and areas around oases are the

main grazing and pasture areas, human activities are significant, so

human activities contribute more to grassland changes (Huang

et al., 2022).
5.4 Uncertainties and further studies

Although the aims were generally achieved, there remain some

limitations in our work. First, the GIMMS dataset offers a spatially

continuous and long temporal span NDVI data, its spatial

resolution is relatively coarse, which may impact the detections of

vegetation growth to some extent. Remotely sensed data with a

higher spatial resolution would be needed for a finer analysis.

Second, the relative contributions of climate change and human

activities were quantified, while the approach adopted in this study
frontiersin.org

https://doi.org/10.3389/fpls.2024.1497248
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rui et al. 10.3389/fpls.2024.1497248
is still an empirical-based statistical analysis. Finally, it could not

identify what kind of human activities dominates the contribution.

A robust casual analysis or model simulation may be helpful to

crack these nuts.
6 Conclusions

This article systematically studied the spatiotemporal patterns

and fluctuation status of grasslands in Xinjiang from 1981 to 2015,

revealing the correlation between NDVI and precipitation,

temperature, and VPD. By combining six response modes of

NDVI changes, it quantitatively analyzed the contributions of

climate change and human activities to grassland changes. The

study found that the NDVI of Xinjiang grasslands exhibits spatial

heterogeneity, with an overall upward trend. This is mainly

attributed to the warming and humidifying trend of Xinjiang’s

climate in recent years, where increased precipitation and higher

temperatures have promoted grass growth. The regions with

increasing NDVI are mainly concentrated in the western part of

Changji Hui Autonomous Prefecture, the southern part of Tacheng

area, and the northwestern part of the Tarim Basin; while the

decreasing areas are mainly distributed in the western part of the

study area, the Ili River, and the Tekes River basin. Further analysis

shows that temperature and precipitation (TP) have the most

significant impact on grassland growth, while precipitation and

VPD (PV) have the greatest impact on grassland reduction. For

grassland growth, the contributions of climate change and human

activities are roughly equivalent; however, for grassland reduction,

the influence of human activities is more pronounced. Overall, in

mountainous and flat areas, human activities have a greater

contribution to grassland changes than climate change. Therefore,

when predicting future trends in grassland ecosystem changes, it is

necessary to consider the quantitative impacts of both climate

change and human activities simultaneously.
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