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With the growth of the global population and the increasing scarcity of resources,

the sustainability and efficiency improvement of agricultural production have

become urgent needs. The rapid development of nanotechnology provides new

solutions to this challenge, especially the application of nanoparticles in

agriculture, which is gradually demonstrating its unique advantages and broad

prospects. Nonetheless, various nanoparticles can influence plant growth in

diverse manners, often through distinct mechanisms of action. Beyond their

direct effects on the plant itself, they frequently alter the physicochemical

properties of the soil and modulate the structure of microbial communities in

the rhizosphere. This review focuses intently on the diverse methods through

which nanoparticles can modulate plant growth, delving deeply into the

interactions between nanoparticles and plants, as well as nanoparticles with

soil and microbial communities. The aim is to offer a comprehensive reference

for the utilization of functionalized nanoparticles in the agricultural sector.
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1 Introduction

In recent years, with the rapid development of agricultural technology and the

increasing awareness of environmental protection, the demand for new materials and

technologies in the field of agricultural production has become increasingly urgent (Moretti

and Marucci, 2019; Magnabosco et al., 2023). The prolonged use of chemicals, pesticides,

and fertilizers can indeed ease the challenges of food security in the long term. However,

this practice poses risks such as contamination, soil fertility loss, non-target species impact,

disease/insect resistance, biodiversity decline, and harm to humans/animals (Yousef et al.,

2023; Chandrasekaran and Paramasivan, 2024). Consequently, there is an urgent need for
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innovative and efficient agricultural technologies to address the

global challenges of food production and security (Thorakkattu

et al., 2024).

Nanoparticles, often abbreviated as NPs, are regarded as

materials ranging from 1 to 100 nm in size, and have different

sizes, geometry, physical shape, mechanical strength and chemical

composition, which have attracted people attention due to their wide

application prospects (Lowry et al., 2019; Ravichandran et al., 2021;

dos Santos et al., 2022; Garg et al., 2024; Sun et al., 2024).

Nanotechnology has been widely applied across various sectors,

including biomedicine, agriculture, and environmental remediation.

The United Nations Food and Agriculture Organization (FAO) and

the World Bank are actively encouraging the integration of

nanotechnology into agricultural practices, with the development of

sustainable agricultural systems being a central goal of current

nanotechnological applications (De Chiffre et al., 2003; Mishra

et al., 2017; Kah et al., 2019; Ahmad et al., 2022; Wang et al.,

2022). Compared to traditional agricultural technology, nano-

agricultural technology offers numerous advantages, closely linked

to enhancements in production efficiency, reductions in input costs,

and diminished ecotoxicity (Servin et al., 2015; Kah et al., 2019;

Zhang et al., 2024). For example, zinc oxide, silver oxide

nanoparticles had been explored as effective slow-release

nanofertilizers, transport carriers, and bacteriostatic agents to

provide plants with essential nutrients and inhibit pathogens, thus

promoting plant growth and increasing crop yields (Elhaj Baddar and

Unrine, 2018; Sun et al., 2018; Shireen Akhter Jahan et al., 2024). The

application of nanoparticles to soil can influence its physical and

chemical properties, the metabolic richness of plant roots, and the

activity of the rhizosphere microbial community (Dimkpa et al., 2013;

Sarma et al., 2024). Furthermore, the physical and chemical

characteristics of soil, including texture, organic matter content,

and pH level, inherently influence the migration and morphology

of nanoparticles within the soil, which impact the bioavailability of

nanoparticles (Cornelis et al., 2014; Reith and Cornelis, 2017; Gómez-

Sagasti et al., 2019). The ecological functions of nanoparticles and

their environmental impacts are current research focal points.

However, their effects on soil health and agricultural applications

are of greater practical significance. In particular, the influence of

nanoparticles on rhizosphere microorganisms and plant physiology is

crucial for enhancing research into sustainable agricultural

development strategies.

Land plants interact with soil microorganisms through their

roots, making rhizosphere microbial community crucial for soil

health and crop growth (Ding et al., 2019; Zhou et al., 2020; Kusiak

et al., 2022). Compared to the perpendicular soil (soil not connected

to the roots and soil falling after root shaking) (Ding et al., 2019),

rhizosphere soil (the soil within 1 mm of the root surface) is

teeming with a multitude of microorganisms exhibiting high

biological and chemical activity, which is directly linked to the

stability and productivity of agricultural production systems (Kaye

et al., 2005; Edwards et al., 2015). Numerous recent studies have

demonstrated the enhanced efficacy of nanoagents in regulating the

plant rhizosphere microbiome compared to traditional non-

nanometer approaches (Ahmed et al., 2022; Ahmed et al., 2023).
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Moreover, the regulation of microbiomes using nanoagents has the

potential to enhance plant growth through a variety of mechanisms

(Ahmed et al., 2022; Ahmed et al., 2023). Secondly, nanoparticles

can indirectly promote plant nutrient absorption and ultimately

promote plant growth by increasing the richness of rhizosphere

microbiota (Xu et al., 2023). For example, pepper plants treated

with Nano-selenium could significantly enhance the presence of

beneficial microorganisms in the rhizosphere soil, including

Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes,

Gemmatimonadetes, and Deltaproteobacteria, as well as

Anaerolineae (Li et al., 2022). These alterations in microbial

communities lead to a substantial increase in soil enzyme content,

soil metabolites such as fluorescein diacetate, urease,

brassinosteroids, and p-hydroxybenzoic acid, and plant

metabolites like rutin, luteolin, brassinosteroids, and abscisic acid,

which enhanced the contribute to bolstering plant defense

mechanisms and improving plant growth (Li et al., 2022).

Rhizosphere microorganisms promoted plant growth by

providing nutrients and hormones, while the metabolites secreted

by plant roots could also change the species and number of

rhizosphere microbial communities (Hwangbo et al., 2016; Khoiri

et al., 2024). Consequently, the creation and application of suitable

nanoparticles in agriculture are anticipated to not only improve but

potentially supplant the use of chemical pesticides and fertilizers.

This review delves into the utilization of nanoparticles within

agricultural production, examining how these particles can foster

plant growth through various mechanisms: (i) enhancing nutrient

absorption, (ii) facilitating controlled release of nutrients, (iii)

enabling precise delivery of nutrients to targeted locations, and

(iv) augmenting the population of beneficial microorganisms in the

rhizosphere while suppressing those that are pathogenic and

detrimental to plant development. Nanoparticles can stimulate

plant growth both directly, by enhancing physiological processes,

and indirectly, by modulating the beneficial microorganisms in the

rhizosphere and altering soil conditions. Consequently, strategies

driven by nanotechnology offer a promising and sustainable

approach to boost crop growth and bolster crop resilience against

stress factors.
2 Nanoparticles enhance
nutrient absorption

Nanoparticles hold great potential for enhancing nutrient uptake,

and certain nanoparticles can improve plant nutrient utilization

efficiency by employing mechanisms such as directional delivery,

sustained or controlled release (Solanki et al., 2015; Dutta et al.,

2022; Taware et al., 2024) (Figure 1). During the promotion of plant

nutrient uptake, nanoparticles can influence nutrient absorption in

two ways. On the one hand, they can act as carriers for nutrients, and

on the other, they can modulate soil microorganisms to enhance the

plant’s nutrient absorption capabilities (Bortoletto-Santos et al., 2020;

Khan et al., 2022); Conversely, nutrient elements could be precisely

delivered to various regions of plants via nanoparticle carriers, thereby

enhancing the efficiency of nutrient utilization (Fincheira et al., 2021).
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2.1 Nanoparticles function as carriers for
slow-release fertilizers, enhancing the
absorption of nutrients by plant roots.

At present, nanoparticles find extensive application in the

realms of energy, electronics, and architecture, yet their utilization

in agriculture-related domains remains comparatively limited (de

Silva et al., 2020). It possesses the potential for the slow release of

fertilizers, owing to its diminutive size, substantial surface area,

robust adsorption capacity, and the capability to control the release

kinetics at the target site (Ghormade et al., 2011; Zulfiqar et al.,

2019; Al-Mamun et al., 2021). The nanoparticles’ diminutive scale

and elevated reactivity allow them to penetrate the plant cell wall

with greater ease, thereby enhancing the transport and absorption

of nutrients throughout the plant (Chhipa, 2017). Furthermore, it

enhances fertilizer adsorption efficiency and stability, allowing slow,

sustained nutrient release. This fosters plant growth, preserves

beneficial microbiota diversity, mitigates eutrophication runoff,

and prevents pollution (Kalwani et al., 2022).

Research conducted on nanofertilizers in aqueous environments

revealed that a 40% urea-hydroxyapatite formulation demonstrated a

controlled release of nitrogen, capable of sustaining the process for up

to one week., while pure urea depleted within just a few minutes

(Kottegoda et al., 2017). Likewise, the gradual and continuous release

of urea from urea-silica nanohybrids prevents premature depletion of

urea, ensuring effective and precise delivery of nitrogen and silica to

the plant (de Silva et al., 2020).

Nanoparticles can also exert their slow-release function within

soil media, markedly enhancing the efficiency of nutrient utilization.

For instance, in the study of indigenous wheat irrigated nanohybrid,

it was found that urea molecules were slowly released in doped Zn
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and Mg hydroxyapatite nanohybrids for up to two weeks, and this

nanocompound containing only a 50% nitrogen dose maintained

wheat crop yield and nitrogen nutrient uptake (Sharma et al., 2022).

The recent research had revealed that a nanocarrier with a core and

shell structure, composed of urea-loaded Metal-Organic

Frameworks (MOFs) and silica, can facilitate the sustained release

of nitrogen to crops. When utilizing urea/MIL-100(Fe)/silica

heterojunction nanomaterials to treat potted rice, the nitrogen use

efficiency of the rice was found to be 34.7% greater than that

achieved with traditional urea treatment (Wu et al., 2024).

During the growth cycle of rice, urea-coated hydroxyapatite

nanoparticles (urea coated hydroxyapatite nanoparticles, UHA)

were released more slowly than conventional urea (Bhavani et al.,

2020). Nano U-NPK(containing Ca, P, K, NO3 and urea multi-

nutrient nanofertilizer) not only ensures the slow release of the most

crucial plant macronutrients(N, P, K), but also has the potential to

reduce the nitrogen supply to plants by 40% (Ramıŕez-Rodrıǵuez

et al., 2020). Potassium-based nanoparticles (K2SiO3-NP,

K18Mo8O33-NPs) compared with traditional potassium fertilizer, its

utilization efficiency was about 40% higher in soybean growth, mainly

due to the slow release effect of the nanoparticles, which can provide

potassium ions for a longer time, effectively avoiding the toxic effect

of large dose rapid delivery (Wang et al., 2024). The montmorillonite

nano-hybrid composite was capable of decelerating the release rate of

nitrogen across various pH conditions, extending its duration to

foster plant growth (Madusanka et al., 2017). The latest study found

that a special slow-release fertilizer: milk, could be made into high-

fertilizer fertilizer rich in fulvic acid and potassium. The pot

experiment results showed that the slow-release fertilizer was slow

and more significant fertilizer effect than the traditional organic

fertilizer and potassium fertilizer, and had good acid soil
FIGURE 1

Nanoparticle-based protective agents or carriers are designed to regulate the discharge of active compounds, enhance stability, and control the
release rate, thereby achieving sustainable agricultural practices.
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restoration effect (Zhu et al., 2024). In conclusion, tailored

nanofertilizers have the potential to not only enhance plant growth

but also to improve the soil’s physiochemical properties, playing a

pivotal role in the advancement of sustainable agriculture.
2.2 Nanoparticles are capable of precisely
delivering nutrients

Nanoparticles had improved the nutrient uptake in plants

through the precise application of chemical fertilizers and plant

growth regulators, thereby fostering innovation within the

agricultural sector and offering a novel strategic approach for

precision agriculture (Ghosh et al., 2023; Saberi Riseh et al., 2024;

Singh et al., 2024). Research had indicated that a seed coating

composed of a zinc and urea hydroxyapatite nanohybrid can more

precisely deliver plant nutrients and enhance the efficiency of nutrient

utilization (Abeywardana et al., 2021). Under acidic soil conditions,

innovative phosphate hydroxyapatite nanofertilizers, specifically

Hydroxyapatite nanoparticles (HA-NPs), were administered to

sunflower crops, demonstrating a significantly faster and more

efficient phosphate uptake compared to conventional phosphate

and triphosphate fertilizers (Xiong et al., 2018). The design of

nanocarriers represents a pivotal avenue for future research into

the precise delivery of nanoparticles. The strategic development of

nanocarriers that can target tissues and organs within plants and

organic matter will facilitate precise control over plant absorption,

decrease input requirements, and minimize energy wastage.
3 The Impact of nanoparticles on
rhizosphere microbial communities

Nanoparticles engage in a range of physical, chemical, and

biological processes, such as vulcanization, flocculation,

precipitation, and adsorption, which enable them to interact with

soil organic matter, plants, and root microorganisms (Chang et al.,

2024). The study indicated that parameters including soil texture,

pH, redox potential, organic matter content, and cation exchange

capacity influence the chemical properties of nanoparticles (Ben-

Moshe et al., 2013; Gao et al., 2019). When nanoparticles enter the

soil system, they start to regulate the physiological, biochemical and

genetic mechanisms of soil microorganisms; after entering the plant

system, they were transferred to xylem tissue and then transported

to other tissues to regulate the adaptability of the plant environment

(Ahmed et al., 2023). In this section, we primarily explore the

function and potential applications of nanoparticles in enhancing

the rhizosphere soil microenvironment and fostering interactions

among rhizosphere microbes.
3.1 Nanoparticles for enhancing the soil
microenvironment in the rhizosphere

Research indicated that nanoparticles could alter soil structure

by decreasing the surface energy and enhancing the water
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repellency of soil particles, while also increasing soil water

conductivity and aggregate stability (Chen et al., 2022). These

changes could impact the soil water cycle, influencing aspects

such as water retention and evaporation rates. Concurrently,

alterations in soil structure could also modulate the distribution

of soil pH levels and nutrient elements, subsequently influencing

the beneficial microbial community within the rhizosphere (Wang

et al., 2020). For example, the newly developed biochar-enriched

phosphorus-doped aqueous solutions, in conjunction with iron ore

nanoparticles, had the capability to alter the soil pH balance,

concurrently enhancing the soil’s organic matter and phosphorus

concentrations (Li et al., 2022). Nanoparticles alter the structure,

content, and diversity of advantageous microbial communities

within plants, influencing the interaction within the plant-soil-

microbial community system, and a robust soil structure further

enhances the activity and nutrient cycling of soil microorganisms

(Schjønning et al., 2011; Das et al., 2023; You et al., 2023; Zhang

et al., 2023). Research had indicated that the application of carbon

nanoparticles (CNPs) to soil could improve its water retention

capacity, but also positively influence the functionality of soil

microorganisms, thereby indirectly supporting plant growth (Xin

et al., 2022). Concurrently, CNPs, which infiltrate plant roots via

stomatal penetration or adhere to the epidermis, can stimulate soil

microorganisms and enhance enzyme activities (Xin et al., 2022).

This, in turn, can improve soil fertility and quality (Figure 2).

Nanoparticles have the potential to foster the proliferation of

microbial community diversity by altering the elemental

composition of the soil (Karimian and Samiei, 2023). CNPs can

significantly enhance the soil’s nitrogen and phosphorus content,

thereby fostering a thriving environment for microbial growth-

related enzymes, which in turn promotes soil health and fertility

(Zhao et al., 2021). Biologically synthesized nanoparticles exert a

beneficial influence on organic carbon and microorganisms within

soils used for corn cultivation, thereby accelerating plant growth

(Haider et al., 2015). Innovative semi-polymer nanocomposite

particles possess the capability to significantly augment the

concentrations of both organic carbon and active organic carbon,

thereby fostering the vigorous growth and development of plants

(Zhao et al., 2019). The aforementioned studies indicate that

nanoparticles have the potential to enhance soil structure, pH

levels, and various other properties, which in turn can influence

the interactions among plants, soil, and microbes. However, the

precise manner in which these soil properties impact the interplay

between these three elements warrants further investigation.
3.2 Nanoparticles promote the interaction
between rhizosphere microorganisms
and plants

The rhizosphere is regarded as the soil’s most abundant

reservoir of organic matter, serving as the primary zone for

microbial proliferation and activity (Reinhold-Hurek et al., 2015).

The rhizosphere microbial communities play a pivotal role in

various beneficial plant growth processes, including nitrogen

fixation, nutrient decomposition, and the synthesis of bioactive
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metabolites (Bi et al., 2021; Chauhan et al., 2023). Owing to their

minute particle dimensions, surface functionalization, and unique

chemical properties, nanoparticles are employed to enhance plant

nutrient absorption and stress tolerance (Lv et al., 2019). Presently,

the majority of research into the utilization of nanoparticles is

centered on the plants alone, overlooking the impact of

nanoparticles on soil microorganisms and their metabolites

during this process.

The interaction between rhizosphere secretions and rhizosphere

microorganisms is bidirectional, indicating that the metabolites

excreted by plant roots play a role in shaping rhizosphere

microbial communities; conversely, rhizosphere microorganisms

are intimately connected to plant growth and health (Staley et al.,

2017; Hu et al., 2018; Trivedi et al., 2020). Nevertheless, a

considerable amount of uncertainty persists regarding the

interplay between secretions and microbes in the rhizosphere.

The interaction between nanoparticles and plants can significantly

promote the generation of metabolites in plant cells and the increase of

rhizosphere secretions (Francis et al., 2024). These bioactive substances,

once in contact with nanoparticles, indirectly have a profound impact

on their key properties such as dispersion stability, aggregation state,

and solubility, which has been confirmed in relevant research

(McManus et al., 2018; Cervantes-Avilés et al., 2021). Specifically,

biomolecules in plant cell metabolites and rhizosphere secretions

(amino acids, sugars, phenolic compounds, and other secondary

metabolites), Its functional groups have high reactivity and can

quickly adsorb onto the surface of nanoparticles through competitive
Frontiers in Plant Science 05
interactions, forming a surface ecological corona (eco-corona) (Nasser

and Lynch, 2016; Wheeler et al., 2021). This ecological corona not only

changes the physical and chemical properties of nanoparticles, but also

further affects their migration, transformation, and biological effects in

the soil environment, thus forming a complex ecological interaction

network (Kang et al., 2024). This ecological corona phenomenon has a

significant impact on the bioavailability of nanoparticles by crops, and

its effect exhibits duality. In certain specific contexts, it may have a

positive impact, promoting crop uptake and utilization of nanoparticle

nutrients; However, in other cases, it may also have adverse effects,

interfering with the normal physiological processes of crops. When

ecological corona enhances the dispersion and stability of nanoparticles

in soil or rhizosphere environment, it helps crop roots to more

effectively contact and uptake these nanoparticles, thereby improving

bioavailability and promoting crop growth and development. The

organic acids in soybean rhizosphere secretions bind to the surface

of nanoparticles (CeO2, Mn3O4, Cu(OH)2, MoO3), greatly reducing the

bioavailability and delivery efficiency of these agricultural nano

chemicals (Cervantes-Avilés et al., 2021). However, if ecological

corona leads to an increase in the aggregation degree or a decrease

in the solubility of nanoparticles, it may hinder the effective absorption

of nanoparticles by crops. For example, the rhizosphere secretion of

wheat increases the solubility of CuO nanoparticles in alkaline soil,

thereby enhancing their bioavailability by crops (Hortin et al., 2020).

Therefore, when using nanoparticles for agricultural production, it is

necessary to fully consider the impact of ecological corona

phenomenon on crop bioavailability. Through scientific and
FIGURE 2

Nanoparticles are transported to the soil.
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reasonable nanoparticle design and application strategies, the positive

effects can be maximized while minimizing potential risks, in order to

achieve sustainable development of agricultural production.

Research has indicated that nanoparticles frequently influence

rhizosphere microorganisms by stimulating the secretion of root

metabolites. For instance, the adsorption of zinc oxide nanoparticles

(ZnONPs) and their aged counterpart, s-ZnONPs, onto the epidermis

of legume roots triggers a stress response that results in the production

of numerous root metabolites, including amino acids and terpenoids

(Liu et al., 2023). These metabolites could directly impact soil organic

matter or activate microbial decomposition of organic carbon, thereby

enhancing the release and breakdown of organic carbon within the

rhizosphere (Liu et al., 2023). Selenium nanoparticles (Se NPs)

enhanced organic acid biosynthesis and transport genes in plants,

directly enhance malate and citric acid secretion in rice roots, and then

recruit sphingomonas and Streptomyces, to enhance their interaction

with rice and promote the growth of rice (Jiao et al., 2023). The

application of Silica dioxide nanoparticles (SiO2 NPs) stimulated the

synthesis, transport, and secretion of organic acids in rice roots, which

provided a rich carbon source for rhizosphere microorganisms,

increases the abundance of beneficial microorganisms such as

Proproteobacteria and Actinobacteria in the rhizosphere by 15.2-

80.5%, promotes the optimization of the bacterial community, and

facilitates the absorption and growth of nitrogen in plants (Yue et al.,

2023). It has been reported that compounds released by root exudates

and rhizosphere microorganisms can form complexes with metal ions,

thereby influencing their bioavailability to plants and microorganisms

(Chen et al., 2017). Fe3O4 nanoparticles encapsulated in citrate (CA)

release a higher solubility of iron and interact with root exudates, which

modulate plant hormones to stimulate root elongation, thereby

enhancing plant growth (Sun et al., 2023). Consequently,

nanoparticles can be employed to modulate rhizosphere secretions,

thereby influencing the metabolic processes and community dynamics

of rhizosphere microorganisms, which in turn can facilitate the

emission of plant root exudates (Steinauer et al., 2016). The studies

conducted clearly indicate that nanoparticles have the capacity to

modify the rhizosphere microbiome, thereby enhancing the

population of beneficial microbes. To fully harness the agricultural

benefits, it is imperative to gain a more profound and holistic

comprehension of how nanoparticles influence the interplay between

root exudates and the rhizosphere microbiome.
3.3 Nanoparticles suppress plant
pathogenic microorganisms

Plant diseases can pose a formidable threat to the productivity

and quality of plants. Certain nanoparticles, harnessing their

exceptional cell penetration abilities and unique surface

properties, demonstrated a promising potential for inhibiting a

diverse array of pathogenic microorganisms, thereby ultimately

fulfilling the objective of managing and controlling plant diseases

effectively (Gordienko et al., 2019; Gao et al., 2023; Rahimizadeh

et al., 2023; Scandolera et al., 2024). The most widely studied
Frontiers in Plant Science 06
nanoparticles currently are those of silver, copper, zinc, silicon,

etc. These particles usually possess special physical and chemical

properties that enable them to interact effectively with plant

pathogens (directly destroying the cell membranes of plant

pathogenic bacteria, causing lysis of the pathogenic cells and a

decrease in pathogenic activity) and inhibit their growth and

spread, thereby effectively reducing the incidence and severity of

plant diseases (Andleeb et al., 2021; Jaithon et al., 2022). Figure 3

enumerated the application of nanoparticles in five common

plant diseases.

Research has indicated that nanoparticles predominantly

contribute to the management of plant diseases by disrupting the

morphological structure, sporulation capacity, and adhesion behavior

of pathogens (Table 1). Silver-associated nanoparticles currently stand

out as the most effective in combating pathogenic microorganisms,

with their antibacterial properties being particularly evident in

organisms such as Ustilaginoidea virens, Ralstonia solanacearum, and

Xanthomonas perforans (Pisárčik et al., 2021). The antimicrobial

efficacy of these silver nanoparticles was intricately linked to their

unique physicochemical characteristics, including concentration,

particle size, pH, and other factors (Pisárčik et al., 2021). For

example, the growth inhibition of rice false smut fungus by

nanosilver was concentration-dependent, and nanosilver at a median

effective concentration could significantly inhibit the sporulation and

pathogenicity of the fungus. In addition, Ag NPs reduced the

H3K27me3 modification mediated by UvKmt6, leading to the

upregulation of genes involved in biosynthesis of oryzalide, and the

decrease in H3K27me3 levels is associated with the inhibition of

mycelial growth (Wen et al., 2023). In addition to combating fungal

and bacterial pathogens, silver nanoparticles could also diminish the

concentration of Bean Yellow Mosaic Virus (BYMV) and alleviate

disease severity in broad beans (Abdelkhalek et al., 2023). Nano

biotechnology has revealed that copper nanoparticles, particularly

tobacco-derived copper oxide nanoparticles (CuO NPs), exhibit a

pronounced antibacterial effect that is concentration-dependent.

Scanning electron microscopy (SEM) and transmission electron

microscopy (TEM) observations have shown that CuO NPs can

disrupt the hyphal cell wall, resulting in a rough and convex surface

(Chen et al., 2022). Additionally, there is evidence of significant partial

collapse and bending of the hyphae (Chen et al., 2022). This

phenomenon occurs because CuO NPs aggregate and adhere to the

hyphal cell wall, and may even penetrate the cell membrane (Chen

et al., 2022). The direct contact between nanoparticles and the hyphae

leads to the accumulation of reactive oxygen species (ROS) and a

corresponding increase in hyphal superoxide dismutase (SOD) enzyme

activity (Chen et al., 2022). A recent study showed that copper

nanoparticles (Cu NPs) also play an important role in the inhibition

of bacterial fruit spot disease in watermelon, also by inducing oxidative

stress and destroying cell integrity (Noman et al., 2023). Table 1 offers a

comprehensive overview of the utilization of nanoparticles as

antimicrobial agents.

In conclusion, the antimicrobial properties of nanoparticles are

derived from their unique physical structure and chemical

reactivity. Nonetheless, despite their demonstrated efficacy in
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TABLE 1 Effect of various nanofertilizer/nanoparticles on pathogenic microbes and microbial functions.

Nanomaterials/
Nanoparticles

Particle
size

Dose and
mode
of
application

Effect on
Pathogenic
microbes

Effect on Pathogenic
microbes functions/
Effect on plant

Reference

Metal Silver
(Ag) related

2 nm 2.16 mg/mL,
direct
application
to soil

Both the surface and intracellular organelles of
Ustilaginoidea virens were disrupted, and affect mycelial
growth, conidiation, and virulence of U. virens

Affects several energy
utilization and metabolic
processes in
Ustilaginoidea virens

(Wen
et al., 2023)

21/29 ±
5 nm

400 mg/mL,
direct
application
to soil

Ralstonia solanacearum envelope is damaged, the cells
bulge and form small pits.

The cellular metabolic activity
and surface adhering ability
of R. solanacearum were
completely lost

(Haroon
et al., 2019)

18 nm 100 ppm, direct
application
to soil

Led to cell deformation and loss of the rod-shaped
structure of the Xanthomonas perforans

Significantly reduced the
severity of bacterial
spot disease

(Ocsoy
et al., 2013)

5-35 nm 20 µg/mL,
direct
application
to soil

Ralstonia solanacearum cell wall and plasma membrane
rupture, as well as nucleic acid material leakage

Inhibit the growth,
community and swimming
movement of
Ralstonia solanacearum

(Abd Alamer
et al., 2022)

(Continued)
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FIGURE 3

The inhibitory effects of different nanoparticles on different plant diseases.
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inhibiting pathogenic microorganisms, practical applications must

take into account their stability, biocompatibility, environmental

impact, and cost-effectiveness.
3.4 Nanoparticles boost the efficacy of
probiotic microorganisms

Numerous nanoparticles have the potential to improve nutrient

transport and soil fertility by modulating the function, species

diversity, or population size of the microbial community within

the rhizosphere (Wei et al., 2020). Foliar application or direct

application of nanoparticle solutions could influence the function

of rhizosphere microbial communities in plant root nutrient uptake,

nitrogen regulation, and the regulation of related enzyme activities,
Frontiers in Plant Science 08
thereby impacting plant growth and development (Figure 4) (Wu

et al., 2023).

Throughout the phase of accelerated plant growth, the high

nutrient demand entices a larger concentration of rhizosphere

microorganisms, which play a crucial role in the plants’ nutrient

absorption (Chaparro et al., 2014). Simultaneously, the interplay

between nanoparticles and rhizosphere microorganisms could

enhance plant growth and improve soil health (Tripathi et al.,

2024). The research indicated that in the developmental phase of

rice seedlings, selenium nanoparticles (Se NPs) enhance the

abundance of sphingomonas and various other bacterial species,

while also encouraging the secretion of root exudates (Jiao et al.,

2023). These combined influenced synergistically modulate nutrient

uptake and foster the growth of rice plants (Jiao et al., 2023).In

Brassica chinensis L., there exists a comparable regulatory function
TABLE 1 Continued

Nanomaterials/
Nanoparticles

Particle
size

Dose and
mode
of
application

Effect on
Pathogenic
microbes

Effect on Pathogenic
microbes functions/
Effect on plant

Reference

Metal copper
(Cu) related

10-100 nm 100 mg/L,
direct
application
to soil

Cell wall damage of, such as rough and convex cell
envelope, accompanied by obvious local collapse
and distortion

Activated a series of defense
enzyme activities in tobacco

(Chen
et al., 2022)

29.11-
78.56 nm

100 µg/mL,
foliar spray

Induced oxidative stress, biofilm inhibition and cell
integrity destruction in Acidovorax citrulli

Regulate host’s active
immune response to inhibit
watermelon
bacterial fruit blotch

(Noman
et al., 2023)

200-
500 nm

0.5 mg/mL,
direct
application
to soil

Damage the cell membrane of Fusarium oxysporum f. sp.
lycopersici, altering the permeability of the cell membrane,
leading to the disintegration of the cell membrane, and
eventually to cell death

Effectively treats Fusarium
wilt while promoting the
growth of tomato plants

(Lopez-Lima
et al., 2021)

Metal iron
(Fe) related

86 nm 250 mg/mL,
foliar spray

Xanthomonas oryzae pv. oryzae cell membrane
destruction, ROS formation, DNA damage, protein and
enzyme degeneration, and leakage of intracellular contents
ultimately lead to cell death

Maintaining ionic
homeostasis,and improving
the photosynthetic profile

(Ahmed
et al., 2022)

Metal zinc
(Zn) related

30 nm 200 mg/L,
direct
application to
soil or
foliar spray

Direct antifungal activity against M. oryzae by inhibiting
its conidiation and appressorium formation

Fight against blast disease,and
enhance the tolerance of rice
seedlings to abiotic stress

(Qiu
et al., 2023)

0.323 nm 100 mg/mL,
foliar spray

Destroyed Pseudomonas syringae pv. tomato DC3000
membrane and induces deformation of the contents of the
cytoplasm, leading eventually to cell death

Protect tomato against the
bacterial speck pathogen,and
promote plant growth

(Elsharkawy
et al., 2020)

Silica (Si) related 5-15 nm 0.2 g/L,
foliar spray

Fusarium oxysporum f. sp. lycopersici and Alternaria
solani showed disturbed and fragmented mycelium

Enhance plant growth,
photosynthetic pigments and
reduce the disease indices

(Parveen and
Siddiqui,
2022)

80-100 nm 300 mg/L,
foliar spray

Phytophthora infestans structurally distorted with terminal
deformity and local shrinkage

Prevented the appearance of
small brown spots and aerial
mycelium on the
potato tubers

(Chen
et al., 2023)

Chitosan
nanoparticles

NA 1g/L,inoculated
into the ginger
rhizomes
wound

Inhibited the mycelial growth and spore germination of
Fusarium solani

The antioxidant defense
system of ginger at a high
level in response to hence
reduced disease indices

(Zhang
et al., 2024)
#NA, Not available.
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throughout the growth process (Wang et al., 2022). The symbiotic

relationship between rhizosphere microorganisms and plants

enhanced the bioavailability of nutrients within the rhizosphere

soil, thereby augmenting the plants’ nutrient uptake capabilities (Xu

et al., 2023). The application of zinc oxide quantum dots (ZnO

QDs) during the growth phase of pumpkins aids in enhancing

beneficial microorganisms within the endophytic and rhizosphere

environments, thus promoting nutrient uptake and plant growth

(Xu et al., 2023). It has been shown that the 50 mg/kg of Fe7(PO4)6
nanoparticle treatment of tomato will increase the relative

abundance of beneficial microorganisms associated with nutrient

accumulation, which will accelerate nutrient accumulation (Jiao

et al., 2024).

Numerous studies have demonstrated that the availability of

soil nitrogen and the uptake of nitrogen by plants play a crucial role

in determining crop yield. Concurrently, the absorption, excretion,

and transformation of soil nitrogen are largely contingent upon the

interactions within the rhizosphere microbial communities (Yang

et al., 2019; Yu et al., 2019). The effective and sustainable supply of

nitrogen in the rhizosphere soil mainly depends on specific

rhizosphere microbial communities that convert inert nitrogen

into nitrogen compounds. Therefore, nitrogen transformation

driven by rhizosphere microbial communities was a significant

determinant of plant nitrogen uptake (Moreau et al., 2019). For

example, the application of FeNPs to alfalfa increased the diversity

of the rhizosphere microbial community, further enhancing the

nitrogen-fixing ability of the roots (Zhang et al., 2024). Silver

nanoparticles (AgNPs) enhanced the population of rhizosphere

bacteria, including Saccharimonadia (also known as Plant Growth

Promoting Rhizobacteria, or PGPR) (Sellstedt et al., 2013; Francioli

et al., 2021). Certain strains of these bacteria facilitate atmospheric

nitrogen fixation, while others contribute to plant growth and aid in
Frontiers in Plant Science 09
nutrient transformation (Sellstedt et al., 2013; Francioli et al., 2021).

Table 2 offers a comprehensive overview of the enhancement of

diverse nanoparticles on various beneficial microbes within the

rhizosphere, along with their affirmative impacts on plant growth.

Although numerous studies have extensively reported the positive

effects of nanoparticles on plant and rhizosphere microbial

community diversity, there are still some studies suggesting that the

effects of nanoparticles on plants and microorganisms may exhibit

dose-dependent effects, especially under high concentration

conditions, where they may have inhibitory effects on plant growth

and some rhizosphere microbial communities (Saghaï et al., 2022; Ren

et al., 2024). For example, in plant growth experiments, low

concentrations of ZnO nanoparticles promoted the growth of Vigna

radiata and Cicer arietinum seedlings. Treatment concentrations of

nanoparticles higher than 20 ppm and 1 ppm, respectively, would

inhibit plant growth (Mahajan et al., 2011). At the same time, 1.2 mM

low concentration ZnO nanoparticles can also promote the

germination and metabolic activity of Solanum lycopersicum, while

the germination and metabolic activity of plants above this

concentration are inhibited (Singh et al., 2016). High concentrations

of nanoparticles not only affect seed germination and plant growth

rate, but also affect the level of edible nutrients. Low concentrations of

TiO2 nanoparticles (50 mg/L) can increase the level of nutrients in

Coriandrum sativum L., while high concentrations can reduce the

decrease in edible nutrient content and inhibit growth. In terms of

microbial activity, it usually follows a dose-dependent pattern, which

is also related to the type of nanoparticles (Yang et al., 2021; Lin et al.,

2022). Low dose nanoparticles may have beneficial effects on soil

rhizosphere microorganisms by promoting metabolism and energy

conversion. For example, treating Medicago truncatula with 5 mg/kg

of Ag and 50 mg/kg of Zn, and Ti nanoparticles significantly increased

the types and total amount of soil rhizosphere microorganisms (Chen
FIGURE 4

Nanoparticles enhance the activity of beneficial microbes within the rhizosphere, modulate soil metabolic processes, and subsequently foster plant
growth and development.
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TABLE 2 Effect of various nanoparticles on rhizospheric microorganisms and microbial functions.

Nanoparticles Particle
size

Name
of
the
plant

Dose and
mode
of
application

Effect on rhizo-
sphere
microorganisms

Effect on rhizo-
sphere microor-
ganisms
functions

Effect on plant Reference

Metal Silver
(Ag) related

20 nm Rice 1 mg/kg,
direct
application
to soil

Increase the number of
putative beneficial soil
bacteria, eg, Frankiales,
Rhizobiales,
Chitinophagales,
and Saccharimonadia

Improved
biogeochemical cycling
of nitrogen, carbon etc.

Promote tillering and
increase grain yield

(Yan
et al., 2022)

30-60 nm Triticum
aestivum

10 ppm,
direct
application
to soil

Increase the number of
putative beneficial soil
bacteria, such as
Pseudomonas spp. and
Arthrobacter spp.

Enhanced
nitrogen fixation

Increased growth and
yield of plant

(Przemieniecki
et al., 2024)

Metal copper
(Cu) related

28 ± 14 nm Triticum
aestivum

0.5 mg/kg,
direct
application
to soil

The abundance of
Sphingobacterium,
Pseudomonasand other
bacteria
communities increased

Improved nitrogen
fixation and reduced
denitrification process

Enhance
plant photosynthesis

(Guan
et al., 2020)

Metal iron
(Fe) related

83 nm Tomato 50 mg/kg,
direct
application
to soil

Enhance the abundance of
beneficial genera in the
rhizosphere, particularly
Nitrospira, Sphingomonas,
Massilia, Bryobacter,
Chithonibacter, RB41
and Rubellimicrobium

Enhanced
nitrogen fixation

Significantly
enhanced nutrient
uptake, improved
flowering
development, and
ultimately increased
nutritional quality
and tomato yield

(Jiao
et al., 2024)

4–10 nm Glycine
max

30 mg/L,
foliar spray

Enhanced
rhizobial activity

Enhanced
nitrogen fixation

Improved the
soybean yield and
promoted the
nutritional quality

(Cao
et al., 2022)

NA Medicago
sativa L.

10 mg/L, seed
soaking or
foliar spray

Increase the number of
putative beneficial soil
bacteria, such as
Proteobacteria, Firmicutes,
Actinobacteria,
and Bacteroidetes

Improved nitrogen
fixation and reduced
denitrification process

Enhance
photosynthesis and
promote growth

(Zhang
et al., 2024)

Metal zinc
(Zn) related

4.06 nm Cucurbita
moschata
Duch.

0.61 mmol/L,
foliar spray

Increased abundance of
Steroidobacter
and Paenibacillus

Improve
nitrogen metabolism

Promote plant
growth, nutrient
absorption, and
tolerance to stress

(Xu
et al., 2023)

22-28 nm Medicago
truncatula

100 mg/kg,
direct
application
to soil

Increase the number of
putative beneficial soil
bacteria,such as
Haliangium, norank_f:
BIrii41, Gaiella, norank_f:
Gemmatimonadaceae
and Lysobacter

Improve the
underground carbon
cycle and the
breakdown of cellulose

Promote
plant growth

(Liu
et al., 2023)

18 nm Sorghum
bicolor
var. 251

5 mg/kg, direct
application
to soil

Microbial quantity and
activity were enhanced

Improve
nitrogen metabolism

Accelerate plant
growth and
increase yield

(Christian
et al., 2019)

Selenium
(Se) related

3–18 nm Oryza
sativa L.

0.1 mg/kg,
direct
application
to soil

Increase the number of
putative beneficial soil
bacteria, such as
Streptomyces
and Sphingomonas

Improves the adhesion
of beneficial bacteria
to roots

Promote
plant growth

(Jiao
et al., 2023)

Silica (Si) related 20 nm Brassica
chinensis
L.

Each dose is 1
mg,foliar spray

Increased abundance of
Paenibacillus,
Rhodobacteraceae,
Chaetomium while

Improved
biogeochemical cycling
of nitrogen, carbon

Promote root growth (Tian
et al., 2020)

(Continued)
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et al., 2017). Low dose (10 mg/kg) ZnO nanoparticles promote the

proliferation of Cyanobacteria in the rhizosphere of Lactuca sativa L.,

but 100 mg/kg ZnO has no significant effect on this colony under the

same treatment (Xu et al., 2018). Therefore, excessive application of

nanoparticles is likely to disrupt the balance of soil ecosystems. In

order to fully utilize the benefits of nanoparticles and reduce their

potential risks, it is necessary to conduct in-depth research on the

interaction mechanism between nanoparticles and microorganisms,

and explore reasonable usage methods and dosages. At the same time,

it is necessary to strengthen the environmental risk assessment and

supervision of nanoparticles to ensure their safe application.

There are also specific effects between microbes and soil enzymes

(Philippot et al., 2024). A variety of soil enzymes play a crucial role in

biochemical processes, facilitating the breakdown of complex organic

matter and the mobilization of nutrients, while also influencing the

functionality of certain microorganisms (Wen et al., 2024). In soils rich

in organic matter, a greater abundance of microorganisms correlates

with heightened enzyme activity, thereby enhancing the interaction

between these two components (Donald et al., 2018). The utilization of

ZnO nanoparticle to mung bean plants increased the diversity of soil

phosphatase and phytase activities and microorganisms, and improved

the level of phosphorus acquisition, while also enhancing soil health

and nutrient cycle (Raliya et al., 2016). Studies have shown that the

absorption of nitrogen, phosphorus and potassium in 200mg/kg CNPs

was significantly increased by 185%, 30.4% and 193%, respectively (Xin

et al., 2022). The increase of plant roots was higher than that of

branches, and carbon nanoparticles enhanced the activity of most soil

enzymes, thus affecting the soil microbial function, thus indirectly

regulating plant growth (Xin et al., 2022). These studies enable us to

gain deeper insights into the ways in which nanoparticles can enhance

plant nutrient absorption. However, the mechanisms underlying the

complex interactions among nanoparticles, plant roots, and soil have

yet to be fully investigated.
4 Conclusion

The above research results indicate that nanoparticles play an

important role in promoting plant nutrient absorption and

rhizosphere microbial communities. There is a close connection

and synergistic effect between the two, jointly affecting the growth

and development of plants, as well as the stability and sustainability
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of ecosystems. Nanoparticles can promote plant nutrient absorption

by loading nutrients and accurately deliver nutrients to different

parts of the plant, thereby improving nutrient utilization efficiency.

Concurrently, nanoparticles also play a pivotal role in modulating

rhizosphere microorganisms. They not only foster plant growth and

enhance yield by combating pathogenic microorganisms that are

detrimental to plants, but also alter the composition of the

rhizosphere microbial community by modifying soil physical and

chemical properties and root exudates, ultimately influencing the

growth and development of plants.

Nanoparticles enhance plant growth and development by

facilitating nutrient uptake, modulating rhizosphere microorganisms,

and enhancing soil physiochemical properties, among other benefits,

with a focus on their positive effects on plants. Further research into the

interactions between roots and microbes in the rhizosphere influenced

by nanoparticles will elucidate the mechanisms behind plant phenotypic

alterations induced by nanoparticles. This will also shed light on the

manipulation of the plant rhizosphere microbiome by nanoparticles,

paving the way for more sustainable agricultural practices.

Various types of nanoparticles have played important roles in

plant growth, but metal nanoparticles have the widest application

prospects in agricultural production. They can serve as pesticide

carriers, improve pesticide utilization, and reduce environmental

pollution; At the same time, it can also serve as a trace element or

plant growth regulator, promoting plant growth and improving

yield and quality. In addition, metal nanoparticles have shown great

potential in environmental monitoring and biosensing, providing

timely and accurate environmental data for agricultural production.

Although there are still some challenges in practical applications,

such as assessing environmental effects and biosafety, as well as

optimizing production costs, with the continuous development and

improvement of nanotechnology, the application of metal

nanoparticles in agriculture will become more extensive and in-

depth, making important contributions to agricultural production

and sustainable development.

Nanoparticles have the potential to directly influence plant

growth and indirectly affect the surrounding ecological

environment, thereby ensuring the sustainable development of

agriculture and fostering the green revolution. Moving forward, it

is imperative to conduct additional research to uncover the effects of

nanoparticles (NPs) on higher plants, particularly crops and

vegetables, when applied to soils with varying properties. This
TABLE 2 Continued

Nanoparticles Particle
size

Name
of
the
plant

Dose and
mode
of
application

Effect on rhizo-
sphere
microorganisms

Effect on rhizo-
sphere microor-
ganisms
functions

Effect on plant Reference

abundance of silicate
Rhodoplane was reduced

8 nm O.
sativa L.

50 mg/kg,
direct
application
to soil

Increase the number of
putative beneficial soil
bacteria,such as
Proteobacteria,
Actinobacteriota etc.

Improved nitrogen
fixation and reduced
denitrification process

Promote the growth
and yield of rice
through
enhancement
of tillering

(Yue
et al., 2023)
#NA, Not available.
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should include an exploration of the molecular mechanisms of NPs

uptake, transformation, and its impact on growth parameters, as

well as the interaction mechanisms between NPs and rhizosphere

microbes. Concurrently, greater focus should be placed on the

interplay among rhizosphere microbial communities, soil, NPs,

and plants. Further studies are necessary to ascertain the

beneficial effects of NPs. Moreover, long-term investigations into

cereal crops and other key crops are essential to establish

correlations between NP dosage, soil type, and ecological impacts.

Such research is crucial for reducing reliance on chemical pesticides

and fertilizers and for securing the future sustainable development

of agriculture.

In summary, this review encapsulates the outcomes of

nanoparticles in enhancing plant growth and modulating the

rhizosphere microbiome via various mechanisms, offering a

foundation for the synergistic integration of future research

endeavors in the realms of nanoscience, sustainable agriculture,

and environmental science.
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Silver nanoparticles stabilized with phosphorus-containing heterocyclic surfactants:
synthesis, physico-chemical properties, and biological activity determination.
Nanomaterials 11 (8), 1883. doi: 10.3390/nano11081883
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