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Accurate counting of crop plants is essential for agricultural science, particularly

for yield forecasting, field management, and experimental studies. Traditional

methods are labor-intensive and prone to errors. Unmanned Aerial Vehicle (UAV)

technology offers a promising alternative; however, varying UAV altitudes can

impact image quality, leading to blurred features and reduced accuracy in early

maize seedling counts. To address these challenges, we developed RC-Dino, a

deep learning methodology based on DINO, specifically designed to enhance

the precision of seedling counts fromUAV-acquired images. RC-Dino introduces

two innovative components: a novel self-calibrating convolutional layer named

RSCconv and an adaptive spatial feature fusion module called ASCFF. The

RSCconv layer improves the representation of early maize seedlings compared

to non-seedling elements within feature maps by calibrating spatial domain

features. The ASCFF module enhances the discriminability of early maize

seedlings by adaptively fusing feature maps extracted from different layers of

the backbone network. Additionally, transfer learning was employed to integrate

pre-trained weights with RSCconv, facilitating faster convergence and improved

accuracy. The efficacy of our approach was validated using the Early Maize

Seedlings Dataset (EMSD), comprising 1,233 annotated images of early maize

seedlings, totaling 83,404 individual annotations. Testing on this dataset

demonstrated that RC-Dino outperformed existing models, including DINO,

Faster R-CNN, RetinaNet, YOLOX, and Deformable DETR. Specifically, RC-Dino

achieved improvements of 16.29% in Average Precision (AP) and 8.19% in Recall

compared to the DINOmodel. Our method also exhibited superior coefficient of

determination (R²) values across different datasets for seedling counting. By

integrating RSCconv and ASCFF into other detection frameworks such as Faster

R-CNN, RetinaNet, and Deformable DETR, we observed enhanced detection and

counting accuracy, further validating the effectiveness of our proposed method.
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These advancements make RC-Dino particularly suitable for accurate early

maize seedling counting in the field. The source code for RSCconv and ASCFF

is publicly available at https://github.com/collapser-AI/RC-Dino, promoting

further research and practical applications.
KEYWORDS
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1 Introduction

The precise and prompt quantification of early maize seedlings

is of paramount importance to a plethora of agricultural operations,

including yield forecasting, field management, and experimental

research. As agricultural practices become increasingly

sophisticated, the need for rapid, efficient, and precise acquisition

of seedlings information has become paramount. Historically, the

assessment of seedlings counts has been predominantly conducted

through manual observation, a method that is inherently time-

consuming, prone to human error, and increasingly unsuitable for

meeting the demands of contemporary large-scale agricultural

systems (Liu et al., 2016; Weiss et al., 2016a; Madec et al., 2019;

Maheswari et al., 2021).

In recent years, the development of computer vision, machine

learning, deep learning, and other technologies has provided novel

approaches to addressing the challenge of seedling counting in

agriculture. In the field of computer vision, traditional image

processing techniques, including superpixel generation, threshold

segmentation, and morphological operations, have been extensively

employed in plant phenotyping (Xiong et al., 2017). Despite the

automation of the seedling counting process to a certain extent,

these methods remain susceptible to complex backgrounds and

variations in lighting conditions. The application of machine

learning techniques, in particular random forests and support vector

machines, has led to notable improvements in the accuracy and

efficiency of seedling counting. This is achieved by extracting

features from images and constructing predictive models (Peng

et al., 2023). However, these methods typically necessitate the

provision of a substantial amount of manually labelled data and can

be computationally expensive when dealing with high-resolution

images. Deep learning methods, such as Convolutional Neural

Networks (CNNs) and Mask R-CNN, employ an end-to-end

learning framework that enables the automatic extraction of intricate

features, thereby achieving high-precision seedling detection and

counting (Hasan et al., 2018; Peng et al., 2023). These methods

demonstrate remarkable efficacy when processing large-scale

datasets, yet they require substantial computational resources.

Moreover, alternative methodologies, such as video-based tracking

techniques (Tan et al., 2023) and ensemble learning methods (Zhao

et al., 2023), have exhibiteddistinctive capabilities in seedling counting,
02
effectively addressing the challenges posed by dynamic environments

and complex backgrounds. The advancements in these technologies

provide diverse options for achieving rapid and accurate seedling

counting, thereby advancing the progress of modern

agricultural technology.

Two principal categories of object detection algorithms are

distinguished: two-stage detectors, exemplified by Faster R-CNN

(Ren et al., 2017), and single-stage detectors, represented by

methods such as YOLOX (Zheng et al., 2021) and RetinaNet (Lin

et al., 2020). In detection-based approaches, the counting outcomes

are typically derived through the aggregation of detected bounding

boxes across images (Zhang and Li, 2023), or by enumerating

foreground objects within video sequences (Shen et al., 2023).

These methodologies often necessitate manual parameter tuning

for components such as non-maximum suppression (NMS) and

anchor design, which can significantly influence their accuracy.

In 2020, Carion et al. (2020) introduced DETR, a transformer-

based model that eliminates the necessity for manual adjustment of

components such as NMS and anchors. This approach achieved

competitive performance with Faster R-CNN on the COCO dataset.

However, it should be noted that DETR displays a certain degree of

limitation in terms of its capacity to detect smaller objects, in

comparison to Faster R-CNN. To address this shortcoming, Zhang

et al. (2022) proposed the Dino model, an enhancement of DETR.

This model incorporates several innovations, including a multi-

head attention mechanism, a multi-scale fusion module, and

contrastive denoising training (CDN), which collectively address

challenges associated with multi-scale feature integration and

optimization efficiency. The Dino model demonstrates improved

counting performance over its predecessor.

Despite the significant advancements in computer vision

techniques for handling larger objects, there remain notable

limitations when applying these technologies to specific domains

such as corn production. Existing methods struggle particularly

with the detection and counting of small targets like early maize

seedlings in large-scale agricultural images captured by drones

flying at a higher flight altitude. As the flight altitude increases, the

image features of early maize seedlings become more small,

imposing higher demands on object detection algorithms. These

small features are prone to being overlooked during the feature

extraction process, leading to a notable decrease in counting
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accuracy. Consequently, this limitation restricts the potential

application of drone technology in modern agriculture.

To address the aforementioned challenges, this paper proposes

an improved version of the Dino model, termed RC-Dino, aimed at

enhancing the accuracy and efficiency of early maize seedlings

detection. The primary innovation of our model lies in the

adoption of RSCconv convolution, a spatial self-calibration

convolution technique inspired by Liu et al. (2020), which enables

more precise calibration and localization of features in the spatial

domain. This capability effectively distinguishes early maize

seedlings from the background and other non-target objects.

Furthermore, to optimize feature representation across different

scales, we integrate an Advanced Spatial Contextual Feature Fusion

(ASCFF) module into the Neck section of the model. This module is

an enhanced version of the Adaptive Spatial Feature Fusion (ASFF)

proposed by Liu et al. (2019), designed to better integrate multi-

scale features extracted from the backbone network, thereby

strengthening the feature representation of early maize seedlings.

Lastly, by employing transfer learning strategies and leveraging pre-

trained backbone network weights, we not only accelerate the

training process but also improve the generalization ability and

ultimate detection accuracy of the model.

To evaluate the efficacy and seamless integration of this model,

we conducted an assessment of its performance in detection and

counting using RSCconv, ASCFF, and the transfer learning

approach. Subsequently, in the same task, we conducted a

comparative analysis of our model’s performance with several

classic models. Then, we introduced RSCconv and ASCFF into

object detection models such as Faster R-CNN, RetinaNet and

Deformable DETR and conducted a comparative analysis. In

consideration of the environmental conditions that prevail in the

northern provinces of China, where maize is extensively cultivated

in arid and semi-arid regions with low annual rainfall and fewer
Frontiers in Plant Science 03
instances of cloud formation, resulting in a higher proportion of

sunny days, this study concentrated exclusively on the model’s

counting performance under sunny conditions with high

light intensity.
2 Materials and methods

2.1 Data acquisition

The experimental data were collected at the Ningxia Center for

Irrigation Experiments located in Xixia District, Yinchuan City,

Ningxia Hui Autonomous Region, China. This center is located in

the arid inland region of Ningxia, characterized by a typical temperate

continental climate with an annual average precipitation of 195 mm

and an annual sunshine duration ranging from 2,800 to 3,000 hours.

The experimental plot features sandy soil.

The experimental site comprises two areas, with area Ameasuring

3,776 m2 and area B measuring 5,016 m2. Data collection was

conducted using DJI Mavic 3M UAV on May 25, 2023, and June 1,

2024, between the hours of 11:30 AM and 2:00 PM for both sub-plots.

Figure 1 provides an illustration of the distribution of these sub-plots.

In order to minimize the influence of light intensity on the

detection effect, data was gathered in conditions of clear skies and

minimal wind, at a time when all the maize plants had reached the

seedlings stage. The UAV were equipped with a 20-megapixel

camera and were set to stationary hover capture, with a flight

height of 12 m (Area A), 20 m (Area B) and 24 m (Area A), an

overlap rate of 80% for the side and heading, a pixel resolution of

0.32 cm (Area A), 0.54 cm (Area B) and 0.64 cm (Area A), and an

image resolution of 5,280 × 3,956 pixels. A total of 876 images of

early maize seedlings were obtained. For illustrative purposes, an

example of early maize seedlings images is provided in Figure 1.
FIGURE 1

General situation of maize and experimental field. (A) The star represents the growing site of maize of accessions (Xixia District, Yinchuan City,
Ningxia Hui Autonomous Region, China). (B) Close-up and aerial images of field experiments.
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2.2 Data preprocessing and augmentation

2.2.1 Data preprocessing
The UAV images of the area were processed using

Pix4Dmapper version 4.4.9 (Pix4D SA, Lausanne, Switzerland)

image stitching software. However, due to the considerable

dimensions of the images and the limited extent of the early

maize seedlings, direct training and detection proved to be

impractical. Following the removal of irrelevant areas, the images

of the research area were automatically cropped to a size of 512 ×

512 pixels. A total of 1,233 early maize seedlings images were

obtained. All early maize seedlings images were randomly divided

into three sets: the training set, the validation set and the test set, in

a ratio of 7:2:1. In order to assess the model’s ability to count at

varying heights, 24-meter-high early maize UAV images were

incorporated exclusively into the test set. Representative images

from the Early Maize Seedling Detection (EMSD) dataset are

presented in Figure 2.

The manual annotation of early maize seedlings was conducted

using Labelme software (Russell et al., 2008) resulting in a total of

83,404 annotated seedlings. In accordance with the classification

criteria for large, medium-sized, and small objects proposed by

Lin et al. (2014), objects with an area of less than or equal to 32×32

pixels are classified as small, while those with an area greater than

32×32 pixels are classified as medium-sized. Pixels with an area of

less than or equal to 96×96 are classified as medium-sized, while
Frontiers in Plant Science 04
those larger than 96×96 are categorized as large. The distribution of

small, medium and large objects in EMSD are shown in Table 1:

2.2.2 Data augmentation
In order to address the issue of model overfitting, which arises

from the limited volume of data, an augmentation of the training set

images and corresponding marking files is conducted utilizing

techniques of data augmentation. This approach initially conducts

random flipping operations, horizontally or vertically flipping the

image with a 50% probability to facilitate the model’s adaptation to

objects in various orientations. Subsequently, it adjusts the image

size through a sequence of scale transformation operations,

encompassing randomly selecting a scale from a predefined list

for resizing the image, randomly cropping an area of the image, and

once again randomly selecting a scale for resizing the image to a

fixed size. These operations not only simulate diverse scenes and

distances but also aid in enabling the model to capture more varied

local features. Upon completion of these procedures, all data is

amalgamated and incorporated into the dataset as the ultimate

training dataset.
2.2.3 Experimental configuration
The experiments in this study were conducted using an Ubuntu

18.04 LTS 64-bit operating system. The hardware setup consisted of

four NVIDIA GeForce 3090 RTX graphics card and 128GB of
FIGURE 2

Illustrative image of dataset with featuring annotated information (512×512).
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memory. The CUDA version employed was 11.1, and the CUDNN

version was 8.3.2. The object detection model was trained using the

Python programming language and the PyTorch deep learning

framework. For the training process, an initial learning rate of 0.002

was set. The AdamW optimizer was utilized to optimize the loss

arising during the training process. The model was trained for 12

epochs with a batch size of 8. A weight decay of 0.0001 was applied.

The learning rate for the Backbone was set to 0.1 times the initial

learning rate.

2.2.4 Counting performance evaluation methods
for test dataset

In the EMSD dataset, compared to the training dataset and

validation dataset, the test dataset contains drone images taken at

higher flight altitudes. Through the analysis of the test dataset (see

Figure 3), we observed that the number of early maize seedlings in the

images had two significant distribution characteristics: one type of

images had less than 80 seedlings, while the other type had more than

80 seedlings. In order to more accurately evaluate the model’s early

maize seedlings counting performance at different flight altitudes, we

divide the test dataset into two subsets: Test Dataset A (images with

80 or less seedlings, total 2773 seedlings) and Test Dataset B (images

with more than 80 seedlings, total 8315 seedlings).
Frontiers in Plant Science 05
In the counting task, for Test Dataset A, a method based on

mosaic of large image blocks was used to improve the accuracy of

counting, and a 50% overlap rate was set to ensure that early maize

seedlings in the edge region were not missed. For Test Dataset B,

due to the low target density in the image, the model is used directly

for inference without additional overlapping areas, thus simplifying

the processing and improving computational efficiency.
2.3 RC-Dino structure and
implementation details

Given the characteristics of the datasets in this study, such as

high proportions of small and medium-sized objects, low-resolution

early maize seedlings images, and limited early maize seedlings

features, Dino, a representative algorithm in the DETR model

family, is selected as the baseline model.

The Dino model encompasses five crucial components:

Backbone, Neck, Encoder, Decoder, and Prediction Heads. The

Backbone harnesses the Resnet50 model (He et al., 2016), generate

feature maps from Level 2, 3, and 4. Subsequently, the Neck

together feature maps of disparate scales originating from the

Backbone, passing them along to the Encoder. The role of the
FIGURE 3

Data distribution in the test dataset of the EMSD.
TABLE 1 Number and proportion of large, medium and small objects in EMSD.

Datasets
Small Objects Medium-sized Objects Large Objects

numbers per numbers per numbers per

Train 44433 88.92% 5534 11.08% 0 0%

Val 12851 88.82% 1617 11.18% 0 0%

Test 10358 93.42% 730 6.58% 0 0%

Total 75523 89.56% 7881 10.44% 0 0%
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Encoder is to refine and streamline the feature maps obtained from

the Neck. Following this, the Decoder amalgamates the processed

feature maps with their corresponding real tags for decoding.

Ultimately, the Prediction Heads output the conclusive results of

the target detection. For illustration purposes, see Figure 4.

This section illuminates the construction and application of

RSCconv and ASCFF, in addition to the employment of transfer

learning techniques via pre-trained weights integrated into the

Backbone, all aimed at enhancing the model’s detection and

counting efficacy.

2.3.1 RSCconv
To improve feature extraction for small objects such as early

maize seedlings, we analyzed the ResNet50 backbone in the Dino

model and found that its feature extraction for each relies mainly on

3×3 convolutions. Inspired by SCConv proposed by Liu et al. (2020),

we designed RSCconv, a new convolutional structure that effectively

detects and enhances the features of small objects. RSCconv’s internal

communication mechanism enhances the early features of early

maize seedlings, thus improving feature extraction for small objects

without adding complexity.

The design process is illustrated in Figure 5. The feature map is

initially duplicated into three groups, with each group being

inputted into a distinct path in order to collect different types of

contextual information. The first group receives no treatment and is

directly multiplied with the second and third groups. In this group,

the residual connection concept from the ResNet model is

employed to preserve the original information present in the

feature maps, thereby preventing the loss of small object

information that would otherwise occur during the feature

extraction process. The second group employs a convolutional

neural network with a 3*3 kernel for feature extraction and

refinement of the early maize seedlings feature map. This
Frontiers in Plant Science 06
enhances the features of small objects that have been extracted.

The third group employs bilinear interpolation to upscale the early

maize seedlings feature map, thereby increasing the spatial

dimensions of the feature map and doubling the length and width

in comparison to the original scale space. Following up sampling,

the Conv(3x3) method is employed to refine the early maize

seedlings feature map. This is then down sampled in order to

map the feature map back to the original feature space. Finally, the

feature maps from the first, second and third groups are fused

through multiplication, thereby calibrating and highlighting the

features of early maize seedlings after different processing steps.

The calibration operation in RSCconv enables each spatial

position to adaptively incorporate its surrounding contextual

information, thereby enhancing the expression of early maize

seedlings features from the original scale space. The self-

calibration function effectively enhances the representation of

small objects, avoids contamination from irrelevant regions, and

introduces different feature map information, which collectively

serve to enhance the features of early maize seedlings.

2.3.2 ASCFF
In the DINO model, the neck employs the ChannelMapper

module. The module in question retrieves feature maps from levels

2, 3, and 4 of the backbone network, which are referred to as Level-

1, Level-2, and Level-3 feature maps, respectively. Subsequently,

each feature map is subjected to a convolutional process for the

purpose of extracting features, after which a reduction in the

number of channels is conducted, resulting in a total of 256

channels. Furthermore, the Level-3 feature map is convolved,

down sampled, and channel-reduced to generate an output

feature map with 256 channels and a size that is half that of the

Level-3 feature map. However, due to the larger area of non-early

maize seedlings in EMSD images compared to early ones, the
FIGURE 4

The architecture of the proposed of Dino Model.
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feature extraction process frequently fails to identify small object

features, which has a detrimental impact on the model’s ability to

detect and count early maize seedlings.

To address this issue, the model introduces an improved

Adaptive Spatial-Channel Feature Fusion (ASCFF) mechanism, the

details of the ASCFF module are shown in Figure 6. The ASCFF

mechanism replaces the simple convolution operations performed by

the ChannelMapper on all level feature maps. Initially, the Level-1,

Level-2, and Level-3 feature maps are aligned to a uniform resolution.

Subsequently, the model incorporates a spatial-channel attention

mechanism that replaces the original adaptive algorithm for

different feature maps, thereby enabling the adaptive adjustment of

the relative importance of different feature maps. This facilitates a

greater focus on more significant features, whereby the most

informative features are highlighted while reducing noise, thereby

enhancing target detection capabilities. This process not only
Frontiers in Plant Science 07
strengthens early maize seedlings features but also suppresses non-

maize seedlings features, thus enhancing the representation of early

maize seedlings. The detailed steps are as follows:
Step 1: Harmonization of feature maps

The feature maps obtained from the backbone at Levels 1, 2,

and 3 are initially harmonized through up-sampling or down-

sampling, ensuring that they possess identical spatial dimensions.

Subsequently, the number of channels is standardized across these

levels, facilitating subsequent processing.

Step 2: Fusion of aligned feature maps

Following the harmonization process, the aligned feature

maps from Levels 1, 2, and 3, which now possess consistent

spatial dimensions and channel numbers, are concatenated.

This concatenated feature map then undergoes a spatial-

channel attention mechanism, which achieves feature fusion
FIGURE 6

Structure diagram of ASCFF.
FIGURE 5

Structure diagram of RSCconv.
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Fron
by emphasizing informative regions and channels while

suppressing less relevant ones.

Step 3: Final feature processing

The fused feature map, augmented with attention-enhanced

data, is subjected to further processing through a feature extraction

layer, resulting in the generation of the final output. This output

encapsulates the salient information across multiple scales.
These operations permit the neck to retain high-resolution

features from the superficial layers and high-semantic information

from the deeper layers, enhancing key features while suppressing

irrelevant ones, thereby enabling adaptive fusion. This results in an

enhanced feature representation of the early maize seedlings, which

effectively enhances the model’s detection accuracy.

2.3.3 Transfer learning
In this study, we employed transfer learning, originally

introduced by Weiss et al. (2016b), whereby pre-trained ResNet50

weights from ImageNet were transferred to the RC-Dino Backbone.

By leveraging pre-trained backbone weights, we were able to reduce

the time, data, and computational resources required for training,

while also mitigating the overfitting issues that are commonly

observed in small datasets and deep neural networks.

The 3x3 convolutions within each residual block of the

backbone were replaced with RSCconv, which was designed to fit

seamlessly into the original architecture and inherit the pre-trained

weights. The backbone weights were kept unfrozen and initialized

with pre-trained weights (where 3x3 convolution weights were

inherited by RSCconv), which resulted in accelerated convergence

and enhanced detection performance.
2.4 Evaluation metrics

In this study, a series of evaluation metrics were employed to

assess the performance of deep learning algorithms. These included

recall at different Intersection over Union (IoU) thresholds, average

precision (AP) from 50% to 95%, and specific average precisions for

small objects (APS, with an area less than 322) and medium-sized

objects (APM, with an area between 322 and 962). The

aforementioned evaluation metrics were derived from the Dino

model, as proposed by Zhang et al. (2022).

In the context of statistical analysis, the term ‘recall’ is defined as

the probability of correctly predicting positive samples among all

actual positive samples. This serves as an overall measure of

prediction accuracy. The calculation is as follows:

recall =
TP

TP + FN
(1)

In this context, true positives (TP) represent the accurate

identification of early maize seedlings, while false positives (FP)

encompass instances where background or other features are

erroneously classified as early maize seedlings. Conversely, false

negatives (FN) refer to cases where early maize seedlings targets are

incorrectly classified as other features.
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The average precision (AP) is the mean value across all

categories. In the case of the EMSD dataset, which contains only

one category, AP represents the precision for that single category.

AP is defined as the probability of actual positives among all

samples predicted as positives. It measures the accuracy of

positive sample predictions. The calculation is as follows:

AP =
Z 1

0
P(R)dR (2)

Where precision (P) computed as follows:

precision =
TP

TP + FP
(3)

The average precision (AP) at intersection over union (IoU)

thresholds ranging from 0.5 to 0.95 with a step size of 0.05 (AP50:95)

is calculated as follows:

AP50 : 95 =
1
10

(AP50 + AP55 + AP60 +⋯+AP90 + AP95) (4)

In this study, the coefficient of determination (R²), root mean

squared error (RMSE), mean absolute error (MAE), and mean

absolute percentage error (MAPE) were employed as evaluation

metrics to comprehensively assess the counting performance of the

model. These metrics were selected on the basis of previous studies

conducted by Barreto et al. (2021); Chen et al. (2023) and Xue et al.

(2024) on the subject of crop counting performance. The R² value

represents the proportion of the variance in the observed data that

can be explained by the model. A value of R² closer to 1 indicates a

superior fit and counting performance of the model. The RMSE is a

measure of the magnitude of the discrepancies between the model’s

predictions and the actual observations, with greater weight given to

larger errors. A lower RMSE value indicates superior model

performance. The MAE reflects the mean of the absolute

differences between the true and predicted counts. As a non-

negative value, a smaller MAE suggests enhanced model

performance. The MAPE is a normalized version of MAE,

facilitating comparisons across different scales. Lower values of

RMSE, MAE, and MAPE indicate enhanced model performance in

terms of counting accuracy.

R2 = 1 − o
n
1(mi − pi)

2

on
1(mi −mi)

2 (5)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

1(mi − pi)
2

n

s
(6)

MAE =
1
no

n

1
mi − pij j (7)

MAPE =
1
no

n

1

mi − pi
mi

����
����� 100% (8)

In the equations above, mi represents the actual count of early

maize seedlings in the images, mi represents the average actual

count of early maize seedlings in the images, pi represents the count
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of early maize seedlings predicted by the model, and n represents

the number of the images.
3 Results

3.1 Ablation experiment

In order to evaluate the effectiveness of RC-Dino, we conducted

ablation studies in this section, in which we tested various

modifications to the Dino model on the EMSD dataset. The

results of these experiments are presented in Table 2, where the

presence of checkmarks (✓) indicates the activation of a

convolutional layer or module.

As evidenced by the results presented in Table 2, the proposed

modifications to the Dino model have led to the following

improvements: The introduction of pre-trained weights for the

backbone accelerates the convergence of the model, increasing This

resulted in an increase in AP50:95 by 3.9% and Recall by 5.6%.

Furthermore, the replacement of 3x3 convolutions with RSCconv in

the backbone enhances and refines the features of early maize

seedlings, resulting in an increase in AP50:95 by 1.1% and recall by

2.9%. Finally, replacing ChannelMapper with ASCFF in the Neck

integrated features at different scales of early maize seedlings,

resulting in an increase in AP50:95 by 1.5% and Recall by 0.9%.
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3.2 Model evaluation for detection

In order to comprehensively evaluate the performance of our

improved network model in terms of detection and technical

aspects, we conducted comparisons with several state-of-the-art

network models. These included two-stage algorithms such as

Faster R-CNN, single-stage algorithms like YOLOX and

RetinaNet, as well as end-to-end algorithms such as Deformable

DETR (Zhu et al., 2020). The parameter settings for these models

were maintained in accordance with their original source code. The

results of these experiments are presented in Table 3.

The Faster R-CNN, RetinaNet, Deformable DETR, and Dino

models all utilized ResNet50 as the underlying foundation. In the

case of both Faster R-CNN and RetinaNet, feature maps were

extracted from the backbone at Levels 1 to 4. Subsequently, a

Feature Pyramid Network (FPN) was employed to perform

feature extraction and spatial scaling on the aforementioned

feature maps, which were then subjected to classification and

localization tasks by means of different detection heads. In

contrast, Deformable DETR and Dino extracted feature maps

from Level 2 to Level 4. Subsequently, a ChannelMapper was

employed for the purpose of fusing the aforementioned feature

maps and adjusting the channel dimensions. Subsequently, a

Transformer-based detection head was employed for both

classification and localization tasks. In contrast, YOLOX
TABLE 2 Model ablation experiment.

Modification 1
Transfer
learning

Modification 2
RSCconv

Modification 3
ASCFF

Epoch Recall AP50:95 APS APM

– – – 12 0.720 0.614 0.654 0.714

√ – – 12 0.759 0.670 0.711 0.770

√ √ – 12 0.770 0.699 0.735 0.809

√ √ √ 12 0.779 0.714 0.752 0.824
TABLE 3 Comparison of target detection algorithms.

Model Epoch Recall AP50:95 APS APM

YOLOX 300 0.663 0.592 0.615 0.674

RetinaNet 12 0.474 0.378 0.374 0.410

RetinaNet + RSCconv+ ASCFF 12 0.496 0.408 0.399 0.476

Faster R-CNN 12 0.666 0.605 0.592 0.687

Faster R-CNN + RSCconv+ ASCFF 12 0.713 0.668 0.650 0.790

Deformable DETR 50 0.707 0.640 0.626 0.753

Deformable DETR + RSCconv
+ ASCFF

50 0.724 0.659 0.643 0.774

Dino 12 0.720 0.614 0.654 0.714

RC-Dino 12 0.779 0.714 0.752 0.824
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employed CSPDarknet as its backbone, extracting feature maps

from Level-3, Level-4, and Level-5. The Path Aggregation Feature

Pyramid Network (PAFPN) conducted up sampling and down

sampling operations on these feature maps to obtain three

distinct scales of feature maps. However, this fusion method is

more susceptible to the omission of features associated with early

maize seedlings.

In comparison to the Deformable DETR and Dino models, the

Faster R-CNN and RetinaNet models offer the additional benefit of

shallow feature maps in the neck component. However, due to the

absence of calibration and optimization of the early maize seedlings

features in the backbone, in addition to the failure to integrate multi-

scale features in the neck, the deep feature maps generated by the

neck contain a sparser representation of the early maize seedlings

features than the shallow feature maps. This has an impact on the

detection capabilities of these models. The Deformable DETR and

Dino models demonstrate superior recall performance compared to

the Faster R-CNN and RetinaNet models, which can be attributed to

their utilization of multi-head self-attention and deformable attention

mechanisms during the detection process.

As demonstrated in Table 3, the outcomes of these experiments

indicate that RC-Dino exhibits superior performance compared to the

other evaluated detection algorithms in terms of recall, average precision

(AP), and its constituent subcategories. In comparison to the Dino

model, RC-Dino exhibits a notable enhancement, with an 16.29%

improvement in AP50:95 and an 8.19% increase in recall. Moreover,

the integration of RSCconv and ASCFF with the object detection model

demonstrates that RSCconv and ASCFF effectively enhance the

performance of the Faster R-CNN, RetinaNet and Deformable DETR

models in recall, AP50:95 and the subcategories of AP.

In light of the aforementioned experiments, it can be posited

that the incorporation of RSCconv into the backbone facilitates the

amplification, calibration, and optimization of early maize seedlings

features within the feature maps. This results in an enhanced

representation of small object features in the output of the

backbone. Furthermore, the incorporation of ASCFF in the neck

enables the adaptive spatial-channel fusion of multi-scale features.
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This fusion process enhances the representation of early maize

seedlings features in deeper feature maps while preserving

information in shallower feature maps. Consequently, the

subsequent classification and localization detection heads exhibit

higher precision in identifying and localizing small objects.
3.3 Model evaluation in counting

The aforementioned models have previously been employed in

ablation studies and for evaluating target detection. They were also

utilized to assess the number of early maize seedlings in the EMSD

test dataset. In this context, early maize seedlings with a confidence

score exceeding 0.5 were deemed to have been successfully

identified. The resulting counts were then compared against the

actual number of early maize seedlings. The counting results are

presented in Tables 4 and 5.

A total of 2,773 early maize seedlings were annotated in Test

Dataset A. The RC-Dino model demonstrated a high degree of

accuracy in counting the 2,368 early maize seedlings, with an R²

value of 0.7909, an RMSE of 2.9245, an MAE of 2.3684, and a

MAPE of 6.5510. In comparison to the Dino model, the RC-Dino

model demonstrated a notable improvement in its R² value, shifting

from a negative correlation of -1.5526 to a positive correlation of

0.7909. This signifies a substantial enhancement in the linear

relationship between the model’s predictions and the actual

values. Additionally, the RMSE exhibited a 78.57% reduction, the

MAE an 80.63% reduction, and the MAPE a 77.73% reduction.

A total of 8,315 early maize seedlings were annotated in Test

Dataset B. The RC-Dino model was able to successfully count 7,934

early maize seedlings, achieving an R² value of 0.8305, an RMSE of

8.1186, anMAEof6.7193, andaMAPEof4.6576. Incomparison to the

Dino model, the RC-Dino model exhibited a notable enhancement in

predictive accuracy, as evidenced by an improvement in the R² value

from-2.9712 to0.8305.This resulted in a transformation fromnegative

to positive correlation. Furthermore, the RMSE decreased by 78.57%,

the MAE by 80.63%, and the MAPE by 77.73%.
TABLE 4 Counting performance of different models in test dataset A.

Model Epoch
Ground
Truth

Inference
Value

R2 RMSE MAE MAPE

YOLOX 300 2773 3169 0.0537 6.2218 5.2368 14.513

RetinaNet 12 2773 2810 0.5944 4.0733 2.9605 8.0561

RetinaNet + RSCconv+ ASCFF 12 2773 2860 0.7803 2.9978 2.2763 6.2506

Faster R-CNN 12 2773 2926 0.7572 3.1519 2.3553 6.6846

Faster R-CNN + RSCconv+ ASCFF 12 2773 2922 0.7597 3.1351 2.2389 6.5986

Deformable DETR 50 2773 2547 0.5825 4.1327 3.2632 8.6407

Deformable DETR + RSCconv+ ASCFF 50 2773 2570 0.6381 3.8474 3.2500 8.8912

Dino 12 2773 2059 -1.5526 10.2187 9.3947 25.3888

RC-Dino (Dino + Transfer-learning +
RSCconv +ASCFF)

12 2773 2334 0.7909 2.9245 2.3684 6.5510
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The results of the counting assessment indicate that RC-Dino

exhibited the highest accuracy in counting early maize seedlings.

Figures 7 and 8 illustrate the statistical distributions of the counting

results for different models. The black dots represent the number of

overlapping grey dots, with darker points indicating a greater degree

of overlap among the grey dots.
4 Analysis

This paper introduces RC-Dino, an early maize seedlings counting

method based on adaptive spatial-channel feature fusion and self-

calibrated convolution. An Early Maize Seedlings Dataset (EMSD) was

created using images captured by drones at an altitude of 12m, 20m and

24 m thereby ensuring a large annotation scale and high annotation

accuracy. The effectiveness and plug-and-play capability of the proposed

RSCconv and the ASCFF module were validated by applying them to

other models, thereby enhancing the generalizability of our approach.
4.1 Model performance for detection and
counting tasks

Combining the results in Table 4, it can be seen that the

application of RSCconv and ASCFF to the object detection model

such as Faster R-CNN, RetinaNet and Deformable DETR, improves

the models’ performance metrics, R², RMSE, MAE and MAPE, on

the Test Dataset A and Test Dataset B.
4.2 Feature loss of detection model

Figure 9 depicts the counting performance of the RC-Dino

model. As illustrated in Figures 9B, C, E, and F, the RC-Dino model

exhibits enhanced detection capabilities for smaller objects in

comparison to the Dino model. This improvement in detection
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enables more accurate counting of early maize seedlings. The

incorporation of RSCconv and ASCFF has augmented the

model’s capacity to refine, identify, and localize early maize

seedlings. Furthermore, the introduction and initialization of pre-

trained weights for the backbone have expedited the convergence of

the model, thereby enhancing its performance in feature extraction,

detection, and the counting of early maize seedlings.

As illustrated in Figure 9, our analysis reveals that the majority

of counting errors can be attributed to the failure to detect early

maize seedlings. The potential reasons for Dino’s failure to detect

early maize seedlings can be attributed to the following: the deep

feature maps generated by the Backbone are unable to effectively

locate the seedlings, which results in the exclusion of seedlings

features in the deep feature maps passed to the Neck, in the absence

of RSCconv. Consequently, within the Neck, the absence of deep

information containing early maize seedlings features negates the

presence of such features in the shallow information. This results in

either the complete absence of early maize seedlings in subsequent

detections or the identification of only those with low confidence

due to the absence of early maize seedlings features in the feature

maps. After integrating RSConv with the ASCFF module into the

Faster R-CNN, RetinaNet and Deformable DETR models (see

Figures A1–A3 in Appendix for specific illustrations), the

resulting feature maps not only significantly improve the feature

representation of early maize seedlings, but also effectively suppress

the feature responses of non-early maize seedlings. This

improvement significantly improves the model’s ability to detect

actual early maize seedlings and further optimizes the

counting performance.
4.3 The NMS of detection model

In the counting results derived from the test dataset, we

observed that the Faster R-CNN, YOLOX and RetinaNet models

detected a higher number of early maize seedlings compared to the
TABLE 5 Counting performance of different models in test dataset B.

Model Epoch
Ground
Truth

Inference
Value

R2 RMSE MAE MAPE

YOLOX 300 8315 8844 0.5811 12.7616 10.3684 7.0831

RetinaNet 12 8315 8371 0.7752 9.3490 7.4386 5.1938

RetinaNet + RSCconv+ ASCFF 12 8315 8264 0.8292 8.1488 6.6491 4.7160

Faster R-CNN 12 8315 8703 0.7181 10.4697 8.4912 5.9029

Faster R-CNN + RSCconv+ ASCFF 12 8315 8600 0.8083 8.6318 7.1053 4.8918

Deformable DETR 50 8315 7919 0.7812 9.2224 7.8246 5.4921

Deformable DETR + RSCconv+ ASCFF 50 8315 8011 0.8295 8.1413 6.807 4.805

Dino 12 8315 6123 -2.9712 39.2924 38.4561 26.2798

RC-Dino (Dino + Transfer-learning +
RSCconv +ASCFF)

12 8315 7934 0.8305 8.1186 6.7193 4.6576
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ground truth values (see Figure 10). This phenomenon suggests

that these models produced an excessive number of bounding

boxes, which represent false positives (FPs). A significant part of

this problem can be attributed to suboptimal NMS settings. In

light of the influence that NMS exerts on counting performance,

coupled with the necessity for human expertise and experimental

validation when establishing NMS parameters, it is evident that

inappropriate NMS settings have the potential to compromise the

reliability of counting performance in Faster R-CNN, YOLOX,

and RetinaNet.
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5 Discussion and conclusion

5.1 Comparison with existing studies

The RC-Dino model proposed in this study demonstrates

superior detection accuracy compared to existing classic models

such as Faster R-CNN, RetinaNet, and Deformable DETR. Testing

on the Early Maize Seedlings Dataset (EMSD), which comprises

1,233 images and 83,404 annotated seedlings, the results

show that the RC-Dino model achieves a 16.29% improvement
FIGURE 7

Count statistics for the baseline of the different models and their improved versions for the Test Dataset A: (A) UAV images with Yolox (R²=0.0537);
(B) UAV images with Retinanet (R2=0.5944); (C) UAV images with Retinanet+RSConv+ASCFF (R2=0.7803); (D) UAV images with Faster R-CNN
(R2=0.7572); (E) UAV images with Faster R-CNN+RSConv+ASCFF (R2=0.7597); (F) UAV images with Deformable-Detr (R2=0.5825); (G) UAV images
with Deformable-Detr+RSConv+ASCFF (R2=0.6381); (H) UAV images with Dino (R2=-1.5526); and (I) UAV images with RC-Dino (R2=0.7909). Each
subplot presents ground truth versus predicted counts with corresponding statistical metrics (R2, RMSE, MAE, and MAPE) for model evaluation on
counting range 0-100.
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in AP and an 8.19% improvement in recall. These findings

indicate that the RC-Dino model exhibits higher accuracy and

robustness in small object detection tasks, particularly in the

identification and localization of early maize seedlings, even in

complex backgrounds.

The RSCconv and ASCFF modules are designed to be

independent of the backbone network, allowing them to be

seamlessly integrated into various deep learning models.

Experimental results demonstrate that incorporating these

modules into models such as Faster R-CNN, RetinaNet, and

Deformable DETR leads to s ignificant per formance

improvements. This suggests that the RSCconv and ASCFF
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modules possess good generalizability and flexibility, making

them suitable for a wide range of tasks and applications.

Additionally, the use of pre-trained weights accelerates model

convergence, effectively reducing training time and computational

resource requirements.

RSCconv enhances the distinction between early maize

seedlings and other background elements by adaptively

calibrating spatial domain features, thereby reducing noise

interference. ASCFF, on the other hand, retains more local detail

information through multi-scale feature fusion, further enhancing

the model ’s feature representation capabil ities. These

improvements ensure that the model maintains high detection
FIGURE 8

Count statistics for the baseline of the different models and their improved versions for the Test Dataset B: (A) UAV images with Yolox (R2=0.5811);
(B) UAV images with Retinanet (R2=0.7752); (C) UAV images with Retinanet+RSConv+ASCFF (R2=0.8292); (D) UAV images with Faster R-CNN
(R2=0.7181); (E) UAV images with Faster R-CNN+RSConv+ASCFF (R2=0.8083); (F) UAV images with Deformable-Detr (R2=0.7812); (G) UAV images
with Deformable-Detr+RSConv+ASCFF (R2=0.8295); (H) UAV images with Dino (R2=-2.9712); and (I) UAV images with RC-Dino (R2=0.8305). Each
subplot presents ground truth versus predicted counts with corresponding statistical metrics (R2, RMSE, MAE, and MAPE) for model evaluation on
counting range 0-250.
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accuracy across images captured at different drone flight altitudes,

effectively addressing the issue of unstable image resolution caused

by variations in flight height.

In terms of the dataset, we have created the Early Maize

Seedlings Dataset (EMSD) using images captured by drones at a

height of 12 m, 20 m and 24 m, ensuring a large scale of

annotation and high annotation accuracy. The EMSD contains

accurate manual annotations for a total of 83,404 early maize

seedlings. In contrast, previous studies (Jin et al., 2017; Ghosal

et al., 2019; Kitano et al., 2019; Pang, 2020; Vong et al., 2021;

Barreto et al., 2021; Chen et al., 2023) reported limited counting

accuracy, possibly due to lower drone flight heights (mostly

between 3-10 m, with two papers using 20 m and one using 30

m) and smaller dataset sizes.
5.2 Study limitations

First, the EMSD used in this study was derived from a single

data source, which may limit the generalizability of the model.

Furthermore, since the EMSD mainly consists of annotated

information for early maize seedlings under specific varieties

and growing conditions, the generalizability of the model to

different varieties and different environmental conditions
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requires further validation. Future research could consider

training and validating the model with multi-source data to

improve its generalizability.

Secondly, the robustness of the model to factors such as lighting

variation and occlusion needs to be improved. Lighting variations

are a common challenge in practical applications and can affect the

counting accuracy of the model. To improve the robustness of the

model, future work could introduce more advanced light

invariant algorithms.

Third, for early maize seedlings with significant morphological

variation, the proposed method may not accurately identify

and count them. Morphological variation can result from

differences in growth processes, pest or disease effects, or other

factors. To improve counting accuracy in such scenarios, future

research could consider incorporating more morphology-related

features or using morphology-adaptive algorithms to refine

counting accuracy.

Finally, although the method is primarily focused on the task of

counting early maize seedlings, there is room for further exploration

in terms of classification of early maize seedlings and analysis of

other growth parameters. Future research could integrate it with

tasks such as maize growth monitoring and yield prediction to

broaden the scope of the method and provide more comprehensive

technological support for agricultural production.
FIGURE 9

Comparison of detection between Dino and RC-Dino. [Annotated Data are (A, D), Inference Results of Dino are (B, E), Inference Results of RC-Dino
are (C, F)].
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5.3 Conclusion

This paper presents a deep learning-based method, the RC-Dino

model, for accurate detection and counting of early maize seedlings

under field conditions. The model improves the accuracy of small

object detection by incorporating RSCconv in the backbone network,

using pre-trained backbone weights, and introducing ASCFF in the

neck. The RC-Dino model excels in early maize seedlings detection,

achieving higher accuracywithin the same training cycle. Thismethod

has significant potential applications in earlymaize seedlings counting

using UAV, planting density estimation, yield prediction and

intelligent field management. In particular, the RC-Dino model is

not limited to the detection and counting of earlymaize seedlings from

UAV images, but can be extended to other common cropswith similar

characteristics. Moreover, the RSCconv convolution and ASCFF

modules in RC-Dino not only improve the accuracy of the Dino
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model’s detection, but also have the potential to improve the detection

and enumeration capabilities of a variety of other object

detection models.
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FIGURE 10

Performance of three models: Faster R-CNN, RetinaNet and YOLOX on the test dataset with default NMS settings.
frontiersin.org

https://github.com/collapser-AI/RC-Dino
https://github.com/collapser-AI/RC-Dino
https://github.com/collapser-AI/RC-Dino
https://doi.org/10.3389/fpls.2024.1496801
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2024.1496801
Author contributions

ZS: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Project administration, Resources,

Software, Validation, Visualization, Writing – original draft. ZY:

Funding acquisition, Supervision, Writing – review & editing. YD:

Supervision, Writing – original draft. BS: Investigation, Resources,

Writing – original draft. SL: Investigation, Resources, Writing –

original draft. ZG: Investigation, Resources, Writing – original draft.

LZ: Funding acquisition, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported in part by the National Key Research & Development

Program of China (No. 2021YFC3201201), the National Science

Foundation of China (No. 52269015), the independent research

project of Water Conservancy Research Institute of Ningxia Hui

Autonomous Region (No.SKY-ZC- 2024-177).
Frontiers in Plant Science 16
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1496801/

full#supplementary-material
References
Barreto, A., Lottes, P., Ispizua Yamati, F. R., Baumgarten, S., Wolf, N. A.,
Stachniss, C., et al. (2021). Automatic UAV-based counting of seedlings in sugar-
beet field and extension to maize and strawberry. Comput. Electron. Agric. 191, 106493.
doi: 10.1016/j.compag.2021.106493

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S.
(2020). End-to-End Object Detection with Transformers (Ithaca, New York:
Cornell University Library, arXiv.org: Ithaca). Available at https://arxiv.org/abs/2005.
12872.

Chen, Y., Xin, R., Jiang, H., Liu, Y., Zhang, X., and Yu, J. (2023). Refined feature
fusion for in-field high-density and multi-scale rice panicle counting in UAV images.
Comput. Electron. Agric. 211, 108032. doi: 10.1016/j.compag.2023.108032

Ghosal, S., Zheng, B., Chapman, S. C., Potgieter, A. B., Jordan, D. R., Wang, X., et al.
(2019). A weakly supervised deep learning framework for sorghum head detection and
counting. Plant Phenom. 1 (1), 14. doi: 10.34133/2019/1525874

Hasan, M. M., Chopin, J. P., Laga, H., and Miklavcic, S. J. (2018). Detection and
analysis of wheat spikes using Convolutional Neural Networks. Plant Methods 15 (1),
27. doi: 10.1186/s13007-018-0366-8

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Ithaca, New York: Cornell University Library.
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