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Applying microbial biostimulants
and drought-tolerant genotypes
to enhance barley growth and
yield under drought stress
Mohamed Ferioun1,2*, Ilham Zouitane2, Said Bouhraoua1,
Yasmine Elouattassi2, Douae Belahcen1, Abdellatif Errabbani1,
Said Louahlia1, Riyaz Sayyed3 and Naïma El Ghachtouli2*

1Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben
Abdellah University, Fez, Morocco, 2Microbial Biotechnology and Bioactive Molecules Laboratory,
Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco, 3Department
of Biological Science and Chemistry, College of Arts and Science, University of Nizwa, Nizwa, Oman
With climate change, the frequency of regions experiencing water scarcity is

increasing annually, posing a significant challenge to crop yield. Barley, a staple

crop consumed and cultivated globally, is particularly susceptible to the

detrimental effects of drought stress, leading to reduced yield production.

Water scarcity adversely affects multiple aspects of barley growth, including

seed germination, biomass production, shoot and root characteristics, water and

osmotic status, photosynthesis, and induces oxidative stress, resulting in

considerable losses in grain yield and its components. In this context, the

present review aims to underscore the importance of selecting drought-

tolerant barley genotypes and utilizing bio-inoculants constructed from

beneficial microorganisms as an agroecological approach to enhance barley

growth and production resilience under varying environmental conditions.

Selecting barley genotypes with robust physiological and agronomic tolerance

can mitigate losses under diverse environmental conditions. Plant Growth

Promoting Rhizobacteria (PGPR) play a crucial role in promoting plant growth

through nutrient solubilization, nitrogen fixation, phytohormone production,

exopolysaccharide secretion, enzyme activity enhancement, and many other

mechanisms. Applying drought-tolerant genotypes with bio-inoculants

containing PGPR, improves barley's drought tolerance thereby minimizing

losses caused by water scarcity.
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GRAPHICAL ABSTRACT
1 Introduction

Barley (Hordeum vulgare L.) comes in fourth place among most

cereals cultivated around the world. Historically, barley is among

the first domesticated crops (Geng et al., 2021). Now, it is widely

used in food, animal feed, brewing, distillation, forage, and many

other industrial uses (Bouhraoua et al., 2024). Ensuring barley

supply is becoming increasingly challenging due to the

continuous increase in the global human population, especially

considering that the majority of individuals depend on agriculture

for their livelihoods (Castaneda et al., 2016). Indeed, the risks

associated with abiotic stresses such as drought, salinity, and heat

are escalating annually due to climate change.

Drought is among the major stresses that affect barley crops and

can cause more than 50% of yield losses (Kebede et al., 2020). Several

studies showed ridiculous changes in barley plants subjected to

drought stress when compared to the unstressed ones. Drought

affects root and shoot length and weight (Abou-Elwafa, 2016),

reduces relative water content (Hasanuzzaman et al., 2019), affects

membrane steadiness (Ferioun et al., 2024), alters photosynthesis

efficiency (Ghotbi-Ravandi et al., 2014), induces some metabolites
Abbreviations: ABA, Abscisic acid; APX, Ascorbate peroxidase; BCS, Barley

Core Selected Collection; CAT, Catalase; DHAR, Dehydro-ascorbate reductase;

GPX, Guaiacol peroxidase; GR, Glutathione reductase; GY, Grain yield; GWAS,

Genome-Wide Association Study; HMP, Harmonic mean productivity; IAA,

Indole-3-acetic acid; IBA, indole-3-butyric; ISR, Induced systemic resistance; N,

Nitrogen; MDA, Malondialdehyde; MDHAR, Mono dehydro-ascorbate

reductase; MP, Mean productivity; P, Phosphate; PGPR, Plant Growth

Promoting Rhizobacteria; ROS, Reactive oxygen species; RWC, Relative water

content; SNP, Single nucleotide polymorphism; SOD, Superoxide dismutase; SSI,

Susceptibility index; STI, Stress tolerance index; TGW, Thousand grain weight;

TOL, Tolerance index.
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accumulation, stimulates reactive oxygen species accumulation

(Sallam et al., 2019) and many other physiological changes, which

impacts the grain yield (Ferioun et al., 2024). Hence, increasing barley

production by expanding land areas for cultivation is not a

straightforward solution. Furthermore, relying solely on chemical

fertilizers is not an agroecological solution.

Selecting high-performing genotypes is among the solutions

that many studies have endeavoured to pursue with the aim of

minimizing crop losses attributable to water scarcity. It is

challenging to select the most high-yielding genotypes due to

significant genotype x environment interactions (Boussakouran

et al., 2021). Therefore, testing various genotypes in different

environments is widely recommended to identify ideal genotypes

that shown high yield production and are less affected by stresses

(Boussakouran et al., 2021; Bouhraoua et al., 2023).

Investigating alternative strategies to increase barley output while

reducing the negative environmental effects associated with

traditional agricultural techniques has gained traction in recent

years. A bio-inoculant based on Plant Growth Promoting

Rhizobacteria (PGPR), mycorrhizae (Vafa et al., 2021; Jabborova

et al., 2022; Vafa et al., 2024), and/or algae is considered as an

agroecological solution that offers numerous benefits to various crops

in both non-stressful and stressful conditions Ahluwalia et al., 2021;

Al-Turki et al., 2023). The selection of microorganisms used for bio-

inoculant production is mostly based on plant growth promoting

traits such as nutrients solubilization, phytohormones production,

nitrogen fixation, exopolysaccharides secretion, and enzymes

activities (Etesami and Maheshwari, 2018; Kumar et al., 2019).

In barley growth, bio-inoculants have demonstrated a

significant improvement in various environmental conditions.

Barley plants inoculated with bio-inoculants, when compared to

uninoculated ones, exhibited higher leaf relative water content,

increased biomass production, improved grain quality and
frontiersin.org
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quantity, and lower sensitivity indices (Baris et al., 2014; Jodeh et al.,

2015; Slimani et al., 2023a). Furthermore, the positive effects of bio-

inoculants extend to improving soil health in the rhizosphere (Tirry

et al., 2023). The utilization of bio-inoculants as fertilizers in the

field is continuously progressing, although it remains limited

compared to chemical fertilization practices (Bittencourt et al.,

2023). In light of the numerous disadvantages associated with

chemical fertilizers, bio-inoculants appear to offer a sustainable

and agroecological solution for enhancing barley resilience

to drought.

The present study aimed to investigate bio-inoculant

advancements and breeding techniques to enhance barley

tolerance to drought conditions. We also explored the potential

synergistic approach of combining robust barley genotypes with

biofertilizers for improved crop production in barley fields.
2 Drought stress in the context of
global climate change

In recent decades, there has been growing concern about

worsening global weather conditions and its impact on agriculture.

The persistent build-up of greenhouse gases (GHGs) in the Earth's

atmosphere is forecasted to intensify soon. This escalation is expected

to elevate the average global temperature, alter precipitation patterns,

and amplify the occurrence and intensity of extreme weather events.

Consequently, this leads to the phenomenon known as climate

change, marked by reduced rainfall, prolonged droughts, intense

winds, or flooding that can damage crops and lead to losses after

harvesting (Toulotte et al., 2022; Mutengwa et al., 2023). One of the

biggest challenges is the increase in drought and water scarcity (Vila-

Traver et al., 2021; Bogati and Walczak, 2022). The future prediction

indicates that climate change will result in heightened occurrences of

droughts in most parts of the world. The climate forecasts indicate a

potential rise in average temperatures ranging between 0.5° to 5.6°C,

varying according to different scenarios. Moreover, these projections

suggest a continual decrease in rainfall between April to September,

estimating a reduction of approximately 4% for every degree Celsius

of global warming (Cramer et al., 2020). The affected area is

anticipated to surge from 15.4% to 44% by the year 2100 and

Africa is identified as the most vulnerable region (Idris et al., 2022).

Irregular and inadequate rainfall has serious and detrimental effects

on crop production and crop quality, especially in tropical regions

where most of the world’s water is used for agriculture (Reynolds and

Ortiz, 2010; Kebede et al., 2020). The impact of drought varies across

time and space, from the local level to the regional level and then to

the global level (Mishra et al., 2015). According to Cavicchioli et al.

(2019); Toulotte et al. (2022), rising temperatures and drought

significantly impact crop growth. Forecasts suggest that in areas

affected by drought, the yields of major crops could decrease by

over 50% by 2050 and nearly 90% by 2100 (Li et al., 2009). Multiple

separate studies have highlighted the impact of elevated temperatures

and water stress on agricultural yields. For instance, in Canada, severe

events that occurred in 2001 and 2002, along with droughts and

floods in 2010 and 2011, significantly devastated crop yields, resulting

in reductions of up to 50% (Yang et al., 2020). Additionally, from
Frontiers in Plant Science 03
1980 to 2016, substantial disasters in the United States, each

surpassing a billion dollars annually, underscore the significant

agricultural losses exceeding $220 billion stemming from the

combined effects of drought and heat (Lamaoui et al., 2018).

Among various abiotic stresses, drought is considered as the most

detrimental since it poses a major challenge to sustainable food

production, as it can reduce the potential yield of different crops by

up to 70% (Gosal et al., 2009). Drought can exert a significant toll on

both human well-being and agricultural activities. They are estimated

to impact around 55 million individuals annually worldwide,

representing a major menace to livestock and crops on a global

scale (Francini and Sebastiani, 2019; Elakhdar et al., 2022). Molénat

et al. (2023) assert that climate change amplifies the challenges

confronting Mediterranean agriculture, particularly in maintaining

or improving production levels to meet the growing demands of an

expanding population. The Mediterranean diet, comprising

representative crops such as olives, grapes, fruits, cereals, and

legumes (used as an alternative to animal protein), enjoys global

recognition (Cramer et al., 2020). The agricultural sector in the

Mediterranean region employs a significant workforce and holds

economic importance. For example, in the Maghreb, agriculture

engages 13–20% of the workforce and contributes 10–20% to the

region's gross domestic product (Cramer et al., 2020). In developing

nations, the impact of heat and drought is of paramount significance.

In Morocco, where agriculture plays a substantial role in the

economy, involving around 40% of the workforce, drought

significantly reduces crop productivity. This directly affects farmers'

livelihoods and has subsequent repercussions on the overall

economy. Reports from West Africa indicate crop failures due to

drought, leading to a 25% decrease in per capita food production

(Gbegbelegbe et al., 2024). In the Mediterranean region, agriculture is

the main user of water. For example, in countries of the Eastern

Mediterranean, crop irrigation accounts for up to 79% of total water

withdrawals (Hellal et al., 2019). This challenge coincides with the

need to protect essential natural resources like water, soil, and

biodiversity, which remain susceptible to both climate-related

dangers and anthropogenic activities. The effective management of

the limited water supply in a warmer and drier climate stands out as

one of the most critical concerns confronting Mediterranean

agriculture. Climate projections and crop modeling indicate that

water scarcity and heat waves significantly restrict and will

continue to limit crop production (Francini and Sebastiani, 2019;

Molénat et al., 2023). Consequently, the viability of the

Mediterranean food system hinges on the ability to sustain

Mediterranean agriculture amidst water scarcity.
3 Barley and water stress

Barley (Hordeum vulgare L.) is the 13th most produced crop in

the world and 4th in harvested area, with 1570000 Tons and 51.6

million ha, respectively, it stands as a highly important cereal crop

cultivated across regions spanning Europe, the Middle East, North

and South Africa, as well as Asia (Elakhdar et al., 2022; Talaat,

2023). In global production, Europe holds a share of 60% with 46%

of the total global area dedicated to barley cultivation (Martıńez-
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López et al., 2022). Spain leads in barley cultivation, producing

approximately 11000 Tons across 2.75 million hectares, of which

0.36 million hectares are under irrigation (Martıńez-López et al.,

2022). Barley is a versatile crop with substantial economic impact,

serving as a staple food for both humans and animals, as well as in

industrial sectors such as brewing (Elakhdar et al., 2022; Toulotte

et al., 2022). Drought is characterized as an extended duration of

insufficient rainfall, leading to the depletion of soil moisture

through transpiration or evaporation, thereby rendering it

insufficient to meet the demands of crops (Lamaoui et al., 2018;

Francini and Sebastiani, 2019; Toulotte et al., 2022). Several studies

conducted globally have demonstrated that water shortage triggered

multiple modifications in barley (Hasanuzzaman et al., 2019;

Tabatabaei and Ansari, 2020; Talaat, 2023). Drought has been

shown to reduce grain yield in barley, by 49–87% (Samarah,

2005; Kebede et al., 2020). Under such circumstances, it becomes

increasingly important for farmers and agronomists to focus on

enhancing barley's resilience to drought stress, all the while striving

to maintain or even improve productivity in challenging

climatic conditions.
4 Effect of drought stress on crucial
barley plant processes

4.1 Seed germination

Seed germination is a crucial process for the growth, development,

and successful establishment of a plant. It begins with the uptake of

water, which activates the essential metabolic processes in the seed.

This water uptake is also necessary for the activation of hydrolytic

enzymes, which are responsible for the degradation of starch,

solubilization, and transport of carbohydrates. However, the scarcity

of soil moisture can significantly impact the successful germination and

establishment of plants (Wijewardana et al., 2019). This is because of

the reduced water uptake rate through the seed coat under stress

conditions that can lead to a decrease in the percentage of seed

germination (Reza Yousefi et al., 2020). Additionally, germinated

seedlings in a moisture-deficit environment show a reduction in both

seedling vigor and germination index (Sazegari et al., 2020; Tang et al.,

2023). The average time required for seed germination is also extended

under soil moisture deficit stress (Queiroz et al., 2019). Furthermore,

the fresh weight as well as the dry weight of germinated seedlings

decline in a moisture-deficit environment. This reduction in seed

hydration can slow down the process of hydrolysing stored

carbohydrate material, leading to a lesser and slower supply of

hydrolysed material to the embryo axis. This, in turn, can affect the

emergence of the radicle from the seed coat, leading to a delay in seed

emergence and a reduction in seedling vigour (Channaoui et al., 2019).
4.2 Water & nutrients uptake and transport

In times of soil water deficit, the uptake capacity of roots

becomes limited due to the reduction in the water potential

gradient between the soil and the plant. This is because the root
Frontiers in Plant Science 04
hydraulic conductivity decreases under drought conditions, which

in turn limits the water uptake capacity of roots from the soil (Zhu

et al., 2024). The expression of genes coding for aquaporin, which

controls the root hydraulic conductivity, is generally downregulated

under moisture deficit conditions. This downregulation ultimately

lowers the root water uptake capacity (Mukarram et al., 2021).

Moreover, under stress, the continuous loss of transpiration and

lower soil moisture lead to an increase in xylem cavitation. This

increase gradually reduces the hydraulic conductance in plants and

blocks the movement of water within the plant. This further

exacerbates the water stress conditions (Zhu et al., 2024).

In plants, nutrient uptake is a complex process that involves the

absorption of nutrients from the soil through water. Water serves as a

medium for nutrients to move within the soil matrix and from the soil

to the plants. However, soil moisture deficit conditions can significantly

decrease the nutrient uptake from the soil. This reduction in nutrient

uptake may be attributed to a decrease in the nutrient supply through

mineralization, as well as a reduction in the diffusion and mass flow of

nutrients in the soil (Duman, 2006; Jorenush and Rajabi, 2015). The

kinetics of nutrient uptake by the roots are also affected, reducing the

rate of nutrient uptake under drought stress. This is further

compounded by the reduced translocation of nutrients from the root

to the shoot, which contributes to a reduction in the nutrient status of

different plant parts (El-Denary and El-Shawy, 2014). In addition, the

microbial growth in the rhizosphere is also affected under deficit soil

moisture conditions, ultimately affecting the nutrient uptake by the

roots (Jalal et al., 2014). To cope with drought, plants upregulate the

expression of different types of transporter proteins to balance the

nutrient uptake under stress conditions. Genes encoding for potassium

transporter proteins are also upregulated under drought stress (Maleki

Farahani et al., 2010; Abdel-Ghani et al., 2015). Bista et al. (2018)

reported that the reductions in P uptake under drought conditions

were correlated with decreases in P-uptake protein concentration and

activity. However, reductions in nitrogen (N) uptake were only

inversely related to N-uptake protein levels. Due to greater decreases

in total protein per gram, the concentration of nutrient-uptake proteins

per gram significantly declined, despite increases in total protein per

gram. Therefore, it is plausible that decreases in the concentration of

root nutrient-uptake proteins in both drought-tolerant and sensitive

species contributed to at least some of the drought-related declines in

nutrient concentration, particularly in %P. In conclusion, while

drought stress can negatively affect nutrient uptake from the soil,

plants also develop strategies to challenge stressful conditions through

the synthesis of a greater number of transport proteins to fulfill their

nutrient requirements.
4.3 Physiological responses

4.3.1 Growth
Severe stress conditions significantly impact various aspects of

germination, seed vigour, and seedling characteristics in different

cereals genotypes (Dhanda et al., 2004). This stress, characterized by

rough conditions, leads to delays, reductions, or inhibitions in the

germination process and the overall vigour of cereal seeds

(Ghanifathi et al., 2011; Tabatabaei, 2013). Additionally, it
frontiersin.org

https://doi.org/10.3389/fpls.2024.1494987
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ferioun et al. 10.3389/fpls.2024.1494987
influences the Germination Stress Tolerance Index (GSTI)

(Moayedi et al., 2009; Barati et al., 2015). Under water-deficit

conditions, the seed vigour index emerges as the most susceptible

trait, followed by root and shoot length, and germination

percentage (Moayedi et al., 2009). The repercussions of drought

stress extend to the reduction of cell membrane stability, changes in

relative water content (Geravandi et al., 2011), early maturity,

diminished leaf area (Tabatabaei and Ansari, 2020), decreased dry

weight, and alterations in the root–shoot ratio (Shi et al., 2014).

Furthermore, the overall response of the whole plant, including the

transpiration rate, to elevated atmospheric vapor pressure deficit is

linked to drought tolerance in cereals (Schoppach et al., 2017).

4.3.2 Root and shoot characteristics
Morphological characteristics of barley affected by water

deficiency encompass various leaf features, including shape, area,

expansion, size, waxiness, pubescence, senescence, and cuticle

tolerance. Additionally, root traits such as length, density, fresh and

dry weight are influenced by water deficit (Hasanuzzaman et al.,

2020). Assessing leaf water potential proves to be an effective and

dependable method for gauging plants' response to water scarcity.

Under water-limiting conditions, the gradual reduction in electron

transport of photosystem II occurs, leading to an increase in non-

photochemical quenching capacity. Consequently, this results in a

decline in cereal leaf relative moisture content (Jouyban et al., 2015).

Drought conditions contribute to a decrease in leaf water potential in

barley plant, attributed to solute accumulation. However, there may

be genotypic variations in the response to water potential, both under
Frontiers in Plant Science 05
well-watered and drought conditions (Istanbuli et al., 2020). Leaf

water potential also impacts various gas exchange characteristics,

including stomatal conductance, net-photosynthetic rate, and

transpiration (Hasanuzzaman et al., 2019) (Figure 1).

4.3.3 Water status
Relative water content (RWC) serves as a crucial indicator of

water status in barley experiencing water deficit, in contrast to leaf

water potential (Sallam et al., 2019). This parameter has proven

instrumental in selecting drought-tolerant barley cultivars (Teulat

et al., 2003). Notably, in cereals, the negative impact of drought

intensifies when applied later in plant growth (beyond 6 weeks post-

emergence), leading to more detrimental effects on water relations,

nutrient uptake, growth, and yield, compared to early drought

imposition (after 3 weeks of seedling emergence) (Ghotbi-

Ravandi et al., 2014). Chlorophyll content, membrane stability,

and RWC of barley cultivars during the flowering stage are

significantly reduced under drought stress (Hebbache et al., 2021).

A study found that drought stress caused a substantial 43%

reduction in relative water content (from 88% to 45%) in four

genotypes of wheat plant (Siddiqui et al., 2021). This reduction in

RWC leads to stomatal closure, subsequently diminishing the rate

of photosynthesis. Water scarcity hampers osmotic regulation, but

alternating between drying and re-watering induces osmotic

regulation, improving the plant's water use efficiency during

drought conditions. A tolerance strategy to water deficit involves

maintaining high relative moisture content, attributed to increased

osmotic regulation (Alghabari and Ihsan, 2018). Drought-tolerant
FIGURE 1

Mechanisms of barley drought tolerance: interaction between root/shoot growth, nutrient uptake, and physiological processes.
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genotypes demonstrate the ability to sustain high turgor potential

and relative water content, indicating minimal impact on their

protoplasmic structure compared to sensitive genotypes. This

correlation between RWC and photosynthetic rate underscores

the importance of maintaining leaf turgor as an adaptive

mechanism crucial for stomatal regulation and photosynthetic

activities under water-deficit conditions (Elakhdar et al., 2022).

4.3.4 Osmotic status
Osmoregulation is the active process of lowering osmotic

potential in plant cells through the accumulation of osmotically

active compounds (Sallam et al., 2019). It is an indispensable and

effective component of plant resistance to drought, in particular

because it maintains the turgor pressure associated with a large

number of metabolic and physiological processes for which the

presence of cell turgor is crucial (Zivcak et al., 2016).

Plants employ various strategies to maintain their water balance

when faced with drought. Three methods of osmotic regulation exist,

intracellular water reduction, wherein plants decrease the amount of

water inside their cells to reduce osmotic potential and conserve the

free energy of water, cell volume reduction, where cells reduce in size

to maintain osmotic pressure, enabling plants to better resist water

stress, and increase in cell content, whereby plants elevate the

concentration of solutes inside their cells (Sallam et al., 2019;

Ahluwalia et al., 2021). This lowers osmotic potential and facilitates

water uptake, even when external water potential is low (Wang et al.,

2000). While these mechanisms coexist in plants, not all possess the

same capacity for osmotic regulation (Osakabe et al., 2014) (Figure 1).

Ultimately, osmotic regulation is necessary to maintain the

required turgor pressure for cell growth, even in water-stressed

periods (Sanders and Arndt, 2012; Osakabe et al., 2014). Osmotic

regulation is an important mechanism that helps maintain stomatal

conductance and turgor pressure in plants when there is a moderate

water deficit. This mechanism is crucial for keeping a high

concentration of CO2 in the intercellular space of the mesophyll,

which prevents or reduces the inhibition of photosynthesis (Osakabe

et al., 2014). Osmotic regulation also plays a vital role in protecting

various cellular processes like cell growth, stomatal opening, and

photosynthesis under environmental stress (Sallam et al., 2019).

Certain compounds, such as amino acids, amino acid derivatives,

trehalose, fructan, and mannitol, act as osmotic regulators and help

control the osmotic pressure in the cytoplasm (Wang et al., 2000).

These substances have low molecular weight, high solubility, and low

toxicity, making them effective in maintaining normal osmotic

pressure and preserving the activity of proteins and the integrity of

the cell membrane structure (Sanders and Arndt, 2012; Osakabe et al.,

2014; Sallam et al., 2019). Currently, a large number of studies are

focusing on osmotic regulating substances such as proline, soluble

sugars, glycine betaine, among others. Research has shown that

proline accumulation represents a protective strategy adopted by

plants to cope with drought stress (Yang et al., 2021).

4.3.5 Photosynthesis efficiency
One essential metabolic function greatly impacted by drought is

photosynthesis. In response to water scarcity, roots produce abscisic
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acid (ABA), causing stomatal closure, which reduces gas exchange

and inhibits photosynthesis (Sallam et al., 2019; Ahluwalia et al.,

2021; Qiao et al., 2024). Drought affects various subcellular regions

and organelles, slowing overall plant growth, preventing seed

germination, and hindering cell elongation (Fadiji et al., 2022).

Drought-stressed plants are shorter and have fewer leaves, which

limits their ability to absorb photosynthetically active radiation

(PAR) and consequently restricts both photosynthesis and yield

(Fadiji et al., 2022). Additionally, the lack of moisture in the soil

increases salt concentration, which lowers the water potential of

plant cells and impedes growth (Mondini and Pagnotta, 2015;

Mahboob et al., 2023; Nazim et al., 2024). As a result, drought

disrupts the mass movement of essential water-soluble minerals,

such as calcium, magnesium, and nitrate, all vital for plant

development (ElSayed et al., 2022; Qiao et al., 2024. Ahluwalia

et al., 2021). These changes highlight the critical importance of

water availability for overall plant functioning and growth (Zargar

et al., 2017; Fadiji et al., 2022; Benito-Verdugo et al., 2023; Iqbal

et al., 2023; Kumar et al., 2024; Qiao et al., 2024).

Furthermore, stomatal closure decreases stomatal conductance,

leading to increased photorespiration and further restricting

photosynthesis (Fadiji et al., 2022). This inhibition likely results in

plants absorbing more light energy than they can effectively utilize for

carbon fixation (Jedmowski et al., 2013; Ghadirnezhad Shiade et al.,

2023; Luqman et al., 2023). Key components limiting photosynthesis

include reduced CO2 diffusion due to early stomatal closure,

decreased activity of photosynthetic enzymes, biochemical changes

related to triose-phosphate formation, and reduced photochemical

efficiency of photosystem II (Ghadirnezhad Shiade et al., 2023; Li and

Wang, 2023; Qiao et al., 2024). The imbalance between light capture

and its utilization leads to the accumulation of reactive oxygen species

(ROS) in the chloroplast and, subsequently, the disorganization of

thylakoid membranes, decrease in Rubisco activity, loss of chloroplast

membranes, degradation of chloroplast structure and photosynthetic

apparatus, chlorophyll photo-oxidation, destruction of chlorophyll

substrate, inhibition of chlorophyll biosynthesis, and the increase of

chlorophyllase activity (Kirkby et al., 2023; Rodrigues et al., 2024;

Sharma et al., 2024).

While reduced stomatal conductance minimizes water loss

through leaves (Li and Wang, 2023; Qiao et al., 2024), it

simultaneously limits photosynthesis by decreasing intercellular

CO2 levels (Benito-Verdugo et al., 2023; Ghadirnezhad Shiade

et al., 2023; Jahan et al., 2023). Consequently, these interconnected

disturbances lead to reduced water use efficiency (WUE) in plants

(Sallam et al., 2019; Kirkby et al., 2023; Li andWang, 2023; Mahboob

et al., 2023; Kumar et al., 2024; Qiao et al., 2024).
4.3.6 Oxidative status
The production of reactive oxygen species (ROS) in response to

stress represents the primary reaction of plant cells to various

environmental stresses. These ROS cause cellular damage by

altering proteins, inactivating enzymes, disrupting gene expression

and altering membranes (Amirjani and Mahdiyeh, 2013). In parallel,

changes in ROS generation act as signals, influencing gene

transcription and thus contributing to plant adaptation to abiotic
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stresses (Rajasekar et al., 2015). The key members of the ROS family,

such as singlet oxygen (O), superoxide radicals (O2), hydrogen

peroxide (H2O2) and hydroxyl radical (OH), are responsible for

oxidative damage in plants (Sallam et al., 2019). Antioxidant enzymes

regulate ROS at low levels under normal conditions, ensuring stability

(Hasanuzzaman et al., 2020). However, a decrease in antioxidants or

an increase in ROS production can upset this balance, resulting in

oxidative stress. The latter results in damage to macromolecules and

cell membranes, as well as increased lipid peroxidation (Ansari et al.,

2019). Drought induces increased ROS production, leading to a rise

in malondialdehyde (MDA) levels (Istanbuli et al., 2020). This

compound is considered a reliable indicator of oxidative damage,

particularly as a marker of membrane lipid peroxidation (Pakzad

et al., 2019). Reduced membrane stability thus reflects the level of

ROS-induced lipid peroxidation (Murtaza et al., 2016). Low MDA

levels are linked to drought stress tolerance in cereals (Zhang

et al., 2011).

The main ROS production sites in plants are located in the

chloroplast, mitochondria and peroxisomes, while the endoplasmic

reticulum, cell membrane, cell wall and apoplast act as secondary

production centers (Sallam et al., 2019). To protect themselves

against the damaging effects of ROS, plants have developed an

effective antioxidant system, consisting of both enzymatic

antioxidants, such as superoxide dismutase (SOD), catalase

(CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX),

glutathione reductase (GR), mono dehydro-ascorbate reductase

(MDHAR) and dehydro-ascorbate reductase (DHAR), as well as

non-enzymatic antioxidants, including ascorbic acid, reduced

glutathione (GSH), a-tocopherol, carotenoids, flavonoids and

proline. These two antioxidant systems work in tandem to

neutralize ROS (Das and Roychoudhury, 2014).
4.4 Agronomic traits

Drought stress hurts flowering and grain development

processes during the reproductive stage, which reduces spikelet

fertility, results in poor grain filling, and reduces grain weight

(Thabet et al., 2020). Consequently, compared to non-stressed

plants, barley plants in drought conditions frequently display

decreased grain production, smaller grain size, and a poorer

harvest index (Samarah et al., 2009; Khalili et al., 2016). The

impact of drought is not solely determined by its duration but

also by the timing of water scarcity (Dietz et al., 2021). When

drought occurs during the germination stage, it results in significant

losses in plant density (Farooq et al., 2012). Conversely, water

shortage during the vegetative stage leads to reductions in biomass

production, particularly affecting leaf area, especially the flag leaf

(Biswal and Kohli, 2013; Tian et al., 2022), which in turn affects

yield production. This relationship is supported by the strong

association between leaf area and grain yield (Jabbari et al., 2019).

Water scarcity during the flowering stage (anthesis) has a

detrimental effect on fertility, leading to a reduction in the

number of spikes per plant (Jamieson et al., 1995; Dietz et al.,

2021). Post-anthesis drought impacts grain filling by diminishing

seed weight, thereby reducing grain yield due to decreased
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carbohydrate reserves. Consequently, these effects extend to the

subsequent generation (Dietz et al., 2021).

Drought stress can also change the protein content, starch

composition, and malting properties of barley grains (Mahalingam,

2017), which can have an impact on the food and beverage sectors.

Overall, the impact of drought stress on barley agronomic traits

highlights the necessity of all-encompassing approaches, such as the

creation of drought-resistant cultivars and the application of water-

saving agronomic techniques, to improve drought tolerance and

reduce yield losses in barley production.
5 Methods for mitigation of drought
stress in barley plants

5.1 Selection of drought-
tolerant genotypes

5.1.1 methods adopted for genotypes selection
Drought tolerance might be approached differently, making it

very complicated. Successful plant breeding requires effective assays

to select the drought-tolerant genotypes (Sallam et al., 2019). In

literature, there are many methods for selecting barley drought-

tolerant genotypes, each method is based on various traits and can

be adopted in different growth phenological stages (Table 1). Many

screening studies were effected at the germination stage by

estimating the germination rate and speed (Barati et al., 2015;

Hellal et al., 2018; Adriana, 2020). Drought stress decreased

germination percentage and speed, with a higher effect on

germination speed than germination percentage (Hellal et al.,

2018). Autumn rainfall water deficit can slow down and inhibit

germination, which affects yield production (Adriana, 2020). Based

on this problematic, breeders think that the selection of barley

genotypes that can preserve a high germination rate and speed

under water shortage conditions might guarantee good barley plant

growth in various environmental conditions (Khafagy et al., 2017).

The selection might be also in the vegetative stage, based on

various traits. Selecting drought-tolerant cultivars in this stage is

based on morphology, biomass production, physiology, and

biochemistry (Figure 2).

i). Plant height, root length, root ramification, number of tillers

per plant, number of leaves per plant, internode length, flag leaf

area, and number of main stem nodes are among the morphological

traits frequently investigated in barley plants (Jabbari et al., 2018).

In barley as in other cereals, several research studies reported a

significant association of these traits to the grain yield trait

(Boussakouran et al., 2019), which makes morphological traits

effective for barley breeding programs in various growth

phenological stages. Here, under drought stress, genotypes that

showed less morphology affection are considered more tolerant.

ii). Evaluating the functioning of certain physiological and

biochemical traits is widely adopted in breeding studies for the

selection of drought tolerant genotypes (Sallam et al., 2019). In this

context, the traits evaluated are numerous. In relation with water

relations, the relative water content (RWC) index is the most

measured trait that reflect the ability of plant to keep cell turgor
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TABLE 1 Studies performed for selecting barley drought genotypes based on various physiological and agro-morphological traits.

Genotypes Origin Stresses
Growth
stage

Selection traits References

Nine Moroccan cultivars Morocco
Drought stress in pots in
greenhouse under
controlled conditions

Tillering stage
▪ Biomass production
▪ Physiological traits
▪ Biochemical traits

(Ferioun
et al., 2023b)

Twenty-five Hordeum vulgare Iran
Drought stress in pots in
greenhouse under
controlled conditions

Full maturity ▪ Drought tolerance indices
(Saed-
Moucheshi
et al., 2021)

Otis and Baronesse genotypes
United States
of America

Water shortage in plastic
pots under
controlled conditions

Tillering stage

▪ Hormonal profiling
▪ Gas exchange measurements
▪ Metabolites content (Proline,
malonaldehyde
▪ differential gene expression

(Harb
et al., 2020)

- landrace-derived lines SBCC042,
SBCC073, and SBCC146
- cultivars Cierzo, Orria,
and Scarlett.

Spain
automated
phenotyping platform

youngest fully
expended leaves

▪ Biomass production
▪ Physiological traits
▪ Photosynthesis efficiency

(Boudiar
et al., 2020)

Twenty-three barley varieties Romania
Drought stress induced by
polyethylene glycol in
Petri dishes

Germination ▪ Germination percentage (Adriana, 2020)

Eighty genotypes Worldwide
Drought stress in a
greenhouse under
controlled conditions

Three‐leaf stage

▪ Biomass production
▪ Relative water content
▪ Stomatal conductance and
density
▪ Na+, K+, and Cl−

measurements
▪ Drought tolerance indices

(Hasanuzzaman
et al., 2019)

Giza 123-135, and 2000 Egypt
Drought stress induced by
polyethylene glycol

Germination,
vegetative
stages

▪ Germination traits
▪ Biomass production
▪ Physiological and biochemical
traits
▪ Molecular traits

(Hellal
et al., 2018)

Ten genotypes
Sweden, Iran,
ICARDA, CIMMYT,
USA, Egypt, Italy

Drought stress under
field conditions

Full maturity ▪ Drought tolerance indices
(Arshadi
et al., 2018)

12 genotypes Mediterranean area
Drought stress under
field conditions

Full maturity
▪ Morphological traits
▪ Water use efficiency
▪ Drought tolerance indices

(Mansour
et al., 2017)

Sensitive (Maresi) and tolerant
(Cam/B1) barley genotypes

Poland
Drought stress in pots in
greenhouse under
controlled conditions

Stem elongation
▪ Chloroplasts form and
functioning
▪

(Filek
et al., 2015)

Thirty-seven genotypes Worldwide
Drought stress induced by
polyethylene glycol

Germination,
vegetative, and
reproductive stages

▪ Germination percentage
▪ Biomass production
▪

(Barati
et al., 2015)

Georgie, Lubuski, Maresi, and
Sebastian, Syrian cultivars Express
and Saida, and breeding lines
Cam/B1//CI 08887/CI 05761,
Harmal02//Esp/1808-4L and M.
Dingo/Deir Alla 106,

European genotypes

Drought stress in
environmental room
under
controlled conditions

Tillering stage

▪ Biomass production
▪ Relative water content
▪ Water use efficiency
▪ Net photosynthetic yield
▪ Fv/Fm ratio
▪ Proline and sugar content
▪ Expression profile of genes

(De Mezer
et al., 2014)

Yousof and Morocco genotypes Iran
Drought stress in a
greenhouse under
controlled conditions

Youngest fully
expended leaves

▪ Dry matter and relative water
content
▪ Photosynthetic efficiency

(Ghotbi-
Ravandi
et al., 2014)

Sensitive genotype 004186 and
tolerant genotype 004223

Pakistan
Drought stress induced by
polyethylene glycol

Seedling
development

▪ Proteomic analysis
(Kausar
et al., 2013)

Ten genotypes Iran
Drought stress under
field conditions

Full maturity Drought tolerance indices
(Ajalli and
Salehi, 2012)

(Continued)
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under stressful condition (Lugojan and Ciulca, 2011), in numerous

studies, under drought condition, the trait correlated negatively

with grain yield (Samarah, 2005; Gonzalez et al., 2010;

Aboughadareh et al., 2013). Genotypes that less reduced RWC

traits are considered more drought tolerant (Sallam et al., 2019).

Water loss rate shows the balance between transpiration rate and

the amount of water supplied to the leaf. Drought tolerant

genotypes shows less water loss rate reduction when compared to

the sensitive ones (Izanloo et al., 2008). It is widely recorded that

drought stress induces strong reduction in plant macro and micro-

nutrient uptake (Noman et al., 2018), which affect plant growth and
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leads to reduces yield production (Sardans et al., 2008). Based on

this fundings, many barley breeding studies includes some nutrients

uptake in the traits studied (Ayad et al., 2010; Ahmed et al., 2013),

the genotypes showed less nutrient uptake reduction under drought

stress were considered more tolerant. Every genotypes selection

study based on physiological and biochemical traits must

investigate the oxidative statue in plant cells (Sallam et al., 2019),

which is released by the quantification of reactive oxygen species

(ROS) and antioxidants enzyme activities. High ROS content such

as H2O2, superoxide radicals (O2), and hydroxyl radicals (OH),

resulting stressful environment affects the cellular redox potential
TABLE 1 Continued

Genotypes Origin Stresses
Growth
stage

Selection traits References

Sixteen Iranian genotypes Iran
Water shortage in
plastic pots

Flowering period
till maturity

Drought tolerance indices
(Nazari and
Pakniyat, 2010)

47 Tibet annual wild
barley genotypes

China
Drought stress in a
hydroponic system

Tillering stage
▪ SPAD value
▪ Shoot and root weights

(Zhao
et al., 2010)

12 genotypes Iran
Drought stress under
field conditions

Full maturity
▪ Agronomic traits
▪ Physiological traits

(Vaezi
et al., 2010)

Twenty-five autumn barley
genotypes (varieties and duble-
haploid lines)

Romania
Drought stress under
field conditions

Full maturity ▪ Drought tolerance indices
(Velicevici
et al., 2010)

Martin, HS41-1, and Moroc9-75 North Africa
Water shortage in plastic
pots under
controlled conditions

Reproductive stage

▪ Relative chlorophyll content
▪ Ratio Fv/Fm
▪ Grain yield
▪ Differential gene expression

(Guo
et al., 2009)
FIGURE 2

Essential physiological and biochemical differences between tolerant and sensitive barley genotypes.
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which leads to the oxidation of proteins, nucleic acids, chlorophyll

pigment, and many other compounds (Hasanuzzaman et al., 2018,

2020), which alters the function of various apparatus and affects

plants productivity. When compared to the sensitive ones, drought-

tolerant genotypes showed less ROS content increase under drought

stress coupled with important increase in antioxidant enzyme

activities such as catalase, peroxidases, superoxide dismutase, and

reductases (Guan and Scandalios, 2000). The tolerant genotypes

showed high ability to increase the activity of antioxidant enzymes

in stressful conditions (Guan and Scandalios, 2000). However, this

ability is less recorded in sensitive genotypes. ROS accumulation in

plant cells induces the peroxidation of membrane lipids (Sharma

et al., 2017), which can investigated by measuring malonaldehyde

(MDA) content. Low MDA content is widely linked to the stress

tolerance (Ferioun et al., 2023a). Under stressful conditions, plants

accumulate organic and inorganic osmolytes in cell cytosol such as

sugars, proteins, amino-acids, and polyols as a drought tolerance

mechanism (Loutfy et al., 2012). Solutes accumulated play many

roles especially in osmo-protection, osmotic regulation, ROS

neutralization, and macro-molecules protection (Sallam et al.,

2019). Under drought stress, proline accumulation in barley

leaves is widely reported (Hellal et al., 2018; Ferioun et al., 2023a,

b), the roles attributed to this amino-acid are numerous, the most

recorded are in relation with osmo-regulation, scavenging free

radicals, membranes steadiness (Marcińska et al., 2013). It is

important to sign that very limited species and genotypes can

accumulates enough proline under stressful conditions (Zali and

Ehsanzadeh, 2018) which make this criteria very important to

consider it in barley breeding studies. Given the effect of drought

stress on photosynthesis traits in barley plants, the evaluation of

photosynthesis apparatus becomes highly important in drought-

tolerant genotypes selection. Photosynthesis efficiency might be

investigated adopting various parameters such as measuring leaves

chlorophyll content, photosystem II efficiency (chlorophyll

fluorescence), CO2 incorporation, and stomatal conductance.

Genotypes that can preserve high scores in photosynthesis indices

under drought stress might be considered as an important choice

for barley breeding program.

At full maturity stage, the evaluation of drought tolerance might

be carried out based on agronomic traits such as grain yield (GY),

thousand grain weight (TGW), number of grains per spike, spike

number per plant, grains per square meter… (Kadam et al., 2014).

Furthermore, many breeders use drought tolerance indices based on

grain yield under non-stressful and stressful conditions such as

susceptibility index (SSI) for the fraction of genotypic productivity

(Fischer and Maurer, 1978), mean productivity index (MP)

(Mohammadi, 2020), The tolerance index (TOL) (McCaig and

Clarke, 1982), stress tolerance index (STI) (G. C. J. Fernandez,

1992), Harmonic mean productivity (HMP) (Jafari et al., 2009), and

geometric mean productivity (GMP) (G. C. J. Fernandez, 1992). In

this context, many studies in many countries have been carried out

to describe the suitable indices for selecting barley drought- tolerant

genotypes. The most cited indices were STI, MP, and GMP (Nazari

and Pakniyat, 2010; Ajalli and Salehi, 2012; Arshadi et al., 2016;

Saed-Moucheshi et al., 2021).
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5.1.2 Genetic variation between drought-tolerant
and drought-sensitive barley genotypes in
response to drought stress

Barley genome sequencing has emerged in recent years, making

it easier to understand the molecular mechanisms. Scanning the

genetic patterns involved in drought tolerance in barley (Hordeum

vulgare L.) will facilitate the control of molecular mechanisms of

drought tolerance (Karunarathne et al., 2023). Up to date, several

studies have been executed in this area, and have revealed different

genes and motifs associated with drought resistance/tolerance in

barley. Xiong et al. (2023) have compared the drought sensitivity/

tolerance of 100 barley genotypes at the seedling period. Those

genomes from International Barley Core Selected Collection (BCS),

(BCS24 for tolerant genotypes and BCS8 for sensitive ones) have

been treated under two planting conditions. Using Genome-Wide

Association Study (GWAS) and RNA-Seq methods, this study led

to the identification of numerous drought tolerance controlling

markers. In this study, 20 SNPs and 41 candidate genes located on

chromosomes 2, 5, and 6 have been identified using GWAS. In

addition, RNA-seq analysis has confirmed the results of GWAS and

revealed more differentially expressed genes in BCS8 and BCS24

(Zhao et al., 2010; Xiong et al., 2023).

Feng et al. (2020); Fu et al. (2022). Gao et al. (2022), and Pan

et al. (2022) have revealed new drought-protecting genes, more than

60 genes involved in plant protection against drought stress have

been made known thanks to the abovementioned studies. Another

study was conducted on a collection of 218 worldwide spring barley

genomes, 108 from Europe, 45 fromWest Asia and North Africa, 36

from East Asia, and 29 from the Americas, this study identified 26

genomic regions localized on chromosomes 1, 2, and 5 considered

as the precursors of several candidate genes involved in drought

tolerance. Among the 26 revealed genes, 9 adaptive genes are

drought-specific or control-specific, and 17 constitutive genes are

involved in the genetic variation of the traits studied under both

control and induced drought. On chromosome 1, no control-

specific genes were identified, while four of them are drought-

specific and the remaining 9 are constitutive. The genes located on

chromosome 2 are 8 adaptive and 3 constitutive, whereas those

identified on chromosome 5 are strictly constitutive. Putative

candidate genes in this study, especially those that are drought-

specific, are poised to be used for a wider application in crop

molecular breeding (Thabet et al., 2018). The majority of executed

studies in this area have identified several common drought-

controlling genes in barley (Table 2), some of those genes have

been promisingly used in numerous editing studies trying to

improve barley resistance against drought stress (Karunarathne

et al., 2023).
5.2 Bioinoculants

Microbial inoculants might be constructed using live

microorganisms such as bacteria, fungi, and/or algae with

important abilities of bio-stimulation and/or bio-protection (Lima

et al., 2020; Nayana et al., 2023; Sagar et al., 2024). The application
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TABLE 2 Important genes involved in barley drought tolerance, their location, and functional annotation.

GeneID Location Functional annotation Reference

HORVU6Hr1G067660

Chromosome 6

Phosphoribulokinase / Uridine kinase family

(Fu et al., 2017; Feng et al., 2020,
2022; Geng et al., 2021; Gao
et al., 2022; Pan et al., 2022;

Karunarathne et al., 2023; Xiong
et al., 2023)

HORVU6Hr1G067670 Secretory carrier-associated membrane protein 5

HORVU6Hr1G067910 Protein NRT1/ PTR FAMILY 8.3

HORVU6Hr1G067920 Protein NRT1/ PTR FAMILY 8.1

HORVU6Hr1G067930 DNA topoisomerase 2

HORVU6Hr1G067680 WRKY DNA-binding protein 35

HORVU6Hr1G067700 AT-hook motif nuclear-localized protein 20

HORVU6Hr1G067740 Protein NRT1/ PTR FAMILY 8.3

HORVU6Hr1G067870 60S ribosomal protein L12–1

HORVU6Hr1G067880 Guanosine-3′

HORVU6Hr1G067890 5′ -bis(diphosphate) 3′-pyrophosphohydrolase

HORVU6Hr1G067980 Protein NRT1/ PTR FAMILY 8.3

HORVU6Hr1G067760 Protein kinase superfamily protein

HORVU6Hr1G067840 ADP-ribosylation factor 1

HORVU5Hr1G055840

Chromosome 5

Ubiquitin-conjugating enzyme family protein

HORVU5Hr1G055850 sugar transporter 14

HORVU5Hr1G055260 NBS-LRR type disease resistance protein RPG1-B-like

HORVU5Hr1G055270 GDP-mannose transporter

HORVU6Hr1G092630

Chromosome 6

Wound-induced protein

HORVU6Hr1G092640 Disease resistance protein RPM1

HORVU6Hr1G092650 Disease resistance protein RPM1

HORVU6Hr1G092680 Disease resistance RPP8-like protein 3

HORVU6Hr1G092690 Disease resistance protein RPM1

HORVU5Hr1G075540

Chromosome 5

Oxidoreductase, zinc-binding dehydrogenase
family protein

HORVU5Hr1G075550 Oxidoreductase, zinc-binding dehydrogenase
family protein

HORVU5Hr1G075560 Myosin heavy chain-related protein

HORVU5Hr1G075570 FASCICLIN-like arabinogalactan 1

HORVU5Hr1G075590 unknown function

HORVU5Hr1G075600 cytidine deaminase 1

HORVU5Hr1G000750 undescribed protein

HORVU5Hr1G000760 Pentatricopeptide repeat-containing protein

HORVU5Hr1G000770 Flavoprotein, HI0933 family

HORVU5Hr1G000780 H(+)-ATPase 11

HORVU5Hr1G000800 Protein NRT1/ PTR FAMILY 2.11

HORVU6Hr1G068060

Chromosome 6

Tudor/PWWP/MBT superfamily protein

HORVU6Hr1G091800 RING/U-box superfamily protein

HORVU6Hr1G091840 MATE efflux family protein

HORVU6Hr1G091850 MATE efflux family protein

(Continued)
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of these biofertilizers might be in the plant rhizosphere, through

seed emergence in a biofertilizer solution, or by application to the

plant surface (Bittencourt et al., 2023). Many species of these

microbes have shown an important ability to improve plants

tolerance to drought stress (Asghari et al., 2020; Ilyas et al., 2020;

Hamid et al., 2021; Ashry et al., 2022; Mawar et al., 2023), which

might be attributed to: (i) enhancing the content of assimilable

nutrients via mineral solubilization, N2 fixation, organic

compounds decomposition, and siderophores production, (ii) the

secretion of hormones such as auxins and gibberellins, which

ameliorate morphological and physiological status in plants and

(iii) secretion of extracellular polymeric substances that helps retain

moisture (Ilyas et al., 2020) and their role plant photosynthesis

(Uarrota et al., 2022).

The attempts to commercialize bio-inoculants began for the

first time in the twentieth century based on nodulating and non-

nodulating bacteria and algae (Bittencourt et al., 2023). Ever since,

the global adoption of bio-inoculants by farmers has been

increasing annually (Santos et al., 2019; Kapadia et al., 2021).

Gradually, several studies have described bio-inoculants

formulated based on various microbes, demonstrating a

remarkable enhancement in the growth of various plants under

diverse environmental conditions (Etesami and Maheshwari, 2018;

Rebi et al., 2022). In cereals, Rebelo Romão et al. (2022) reported the

use of maize seeds encapsulated with xerotolerant microorganisms

for the protection of maize plants against water shortage conditions.

Kaboosi et al. (2023) reported the ability of Serendipita indica to

enhance drought tolerance in maize. Bangash et al. (2021) reported

the formulation of biofertilizer for improving wheat yield and

growth in rainfall farming system.

The studies on bio-inoculants encompass not only the

investigation of microbes but also the refinement of formulation

techniques. Bio-inoculants formulation involves developing a
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homogenous combination of a chosen beneficial strain and an

appropriate carrier that can stabilize and protect the strain

throughout storage and transportation. Effectiveness, non-

polluting nature, ease of biodegradation, high water retention

capacity, and sufficient shelf life are all desirable qualities in a

bioformulation. In literature, several types of formulation are

recorded such as: solid, liquid, and polymeric formulations

(Chaudhary et al., 2020).
5.3 Intercropping

Intercropping, also known as polyculture, refers to the

simultaneous cultivation of two or more distinct crop species

within a single field throughout a growing season (Elouattassi

et al., 2023). It is widely embraced globally as a significant

sustainable approach due to its beneficial impact on crop

productivity, yield stability, as well as enhanced efficiency in

utilizing nutrients and water resources (Fan et al., 2020; Hussain

et al., 2023). The benefit of effective water use in intercropping arises

due to variations in water needs among intercrops across

spatiotemporal differences (Dong et al., 2018). Optimal irrigation

amount and timing are crucial in aligning crop water needs with

water availability, thereby enhancing the compatibility between the

intercropped plants (Yin et al., 2020). Woldeamlak et al. (2006)

conducted a drought experiment and discovered that the yields of

wheat and barley mixtures remained notably consistent between the

drought treatments and controls. These mixtures exhibited higher

yields under both seedling and heading stage drought stress

conditions. The authors hypothesized that this increased

productivity in mixtures might be attributed to the later

maturation of wheat, enabling it to utilize soil moisture more

efficiently after the barley had matured, leading to a more
TABLE 2 Continued

GeneID Location Functional annotation Reference

HORVU6Hr1G091860 rRNA/tRNA 2′ -O-methyltransferase fibrillarin-like
protein 1

HORVU2Hr1G111640 Plasma membrane ATPase

HORVU1Hr1G048400 Chromosome 2 methyltransferase-like protein 17 (mitochondrial)

HORVU1Hr1G050760

Chromosome 1

Inositol-tetrakisphosphate 1-kinase 1

(Alqudah et al., 2016, 2018;
Thabet et al., 2018)

HORVU1Hr1G048410 zinc finger HIT domain-containing protein 2

HORVU1Hr1G050580 DnaJ homolog subfamily C member 13

HORVU1Hr1G050650 ARM repeat superfamily protein

HORVU2Hr1G009970 eukaryotic aspartyl protease family protein

HORVU2Hr1G010400

Chromosome 2

Chromosome 3B, genomic scaffold

HORVU2Hr1G023710
SNARE-associated Golgi protein family, soluble N-
ethylmaleimide-sensitive factor (NSF) attachment
protein receptors

HORVU2Hr1G023840 rhomboid protein-related

HORVU2Hr1G023890 myosin-J heavy chain
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comprehensive utilization of available moisture compared to the

individual crop components. According to Yin et al. (2017),

intercropping proves advantageous in elevating photosynthetic

resources, such as leaf area index (LAI) and leaf area duration

(LAD), while facilitating the transfer of photosynthetic substances

from vegetative organs to grains. This process contributes to

improving water use efficiency (WUE) by boosting crop yield.

Ikram ul Haq et al. (2020) have shown that planting 8 rows of

barley on beds alongside Egyptian clover grown in 120 cm irrigation

furrows exhibited superior performance and emerged as the most

promising approach concerning sustainability, profitability, and

efficiency in utilizing irrigation water. Furthermore, a recent study

done by (Liang et al., 2023) demonstrated that there was no

significant difference in barley grain yield observed between

barley monocropping and barley-pulse intercropping, particularly

under conditions of limited irrigation. This suggests that barley-

pulse intercropping systems might be well-suited for regions facing

restricted irrigation resources or engaged in dryland farming.

Cereal-pulse intercropping can enhance the use of soil moisture

for crop growth and development by complimentary root growth

coupled with improved water and nutrient uptake (Stomph et al.,

2020; Gowtham et al., 2022; Rafique et al., 2023; Tanveer et al.,

2023). Additionally, employing optimized tillage and mulching

methods improves the harmony between water requirements for

crop growth and the available water supply, thereby enhancing the

water use efficiency (WUE) of intercropping (Yin et al., 2017; Khan

et al., 2019; Jabborova et al., 2021; Najafi et al., 2021).
5.4 Other technologies

In recent years, there has been a remarkable increase in studies on

the utilization of nanoparticles, such as TiO2, Ag, SiO2, and ZnO, to

enhance plant growth under various environmental conditions. The

mechanism of action of these nanoparticles is still unclear (Ahluwalia

et al., 2021). However, it seems that the use of nanoparticles enhance

germination, shoot and root growth, relative water content, nutrients

uptake, osmotic status, oxidative status, and photosynthesis efficiency

in several plants and under various environmental conditions (Arruda

et al., 2015). In barley, the only study found in literature, by Moaveni

et al. (2011), described a significant increase in yield in barley plants

sprayed with Ti[O.sub.2] nanoparticle compared to those non-sprayed

under field conditions. On the other hand, the use of these compounds

with over dose can affect negatively plants growth. Indeed Martıńez-

Fernández et al. (2016) reported negative effects of nanoparticles on

Helianthus annuus L., such us root dehydration and the up regulation

of oxidative stress. Moulick et al. (2020), noted a possible long-term

negative effect of these compounds on ecosystems.

Biochar, produced by the thermal treatment of biomass (wood,

crop residues, or animal manure) under limited oxygen conditions,

is widely cited in literature as fertilizer that can promote plants

growth and enhance their tolerance against stressful conditions

(Haider et al., 2022). In barley, Hafez et al. (2020) reported a

considerable beneficial effect of biochar on antioxidant enzymes,

anatomic characters, and osmotic status under drought stress.

Nasiri et al. (2023) and Gul et al. (2023) recorded a significant
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increase in barley yield treated with biochar under drought stress.

on the other hand, some disadvantages of biochar have been

reported, such as soil alkalinization, unavailability (binding) of

nutrients in the soil, binding of pesticides and herbicides,

accumulation of heavy metals in soils treated with biochar, and

affecting rhizosphere microorganisms (Ahluwalia et al., 2021).

Very recently, several studies have reported the utilization of

hydrogels, a polymer capable of retaining a significant amount of

water and nutrients. This involves the storage of water and nutrients

for root plants, which can be utilized during periods of water

scarcity (Zhang et al., 2021). However, the use of this technique is

still limited in greenhouse setups.
6 Plant growth promoting
rhizobacteria: An alternative for
enhancing Hordeum
vulgare productivity

Of different microbial populations present in the rhizosphere,

bacteria are the most abundant microorganisms (Kaymak, 2010),

and among these bacteria, we find Plant Growth-Promoting

Rhizobacteria (PGPR). These represent a group of beneficial

microorganisms inhabiting the rhizosphere and playing a crucial

role in enhancing plant growth, yield, and crop quality (Figure 3)

(Etesami and Maheshwari, 2018) under non-stress and stress

conditions through various direct and indirect mechanisms

(Mahmood et al., 2014).

Under normal and stressful conditions (abiotic (drought, salt,

and heavy metal) and biotic (phytopathogenic species), PGPRs can

affect plants directly by facilitating the uptake of certain nutrients by

the plant through the synthesis of certain compounds by the

bacteria and indirectly by reducing or preventing the undesirable

effects of one or more phytopathogenic organisms (Kumar

et al., 2019).
6.1 Direct mechanisms

Direct promotion is achieved through several mechanisms,

including the production of phytohormones such as gibberellins,

auxins (indole acetic acid), and cytokinin, which play an important

role in cell elongation, cell division, tissue differentiation, and apical

dominance (Kaymak, 2010). For example, the treatment of two

selections of roses (Rosa canina and Rosa dumalis) and Pistacia vera

with indole-3-butyric acid (IBA) improved the rooting rate and

increased the number of lateral roots of the plants (Ercisli et al.,

2004; Orhan et al., 2007).

Other direct mechanisms include nitrogen fixation and the

solubilization of certain nutrients that limit plant growth.

Physiological fixation of nitrogen by rhizobacteria makes it more

accessible to plants, and can be symbiotic, forming nodules at plant

roots, or non-symbiotic (Bellés-Sancho et al., 2023). To assimilate

nitrogen, certain bacteria such as Azotobacter spp. and Azospirillum

lipoferum have the capacity to synthesize the enzyme nitrogenase
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(Niewiadomska et al., 2018). Inoculation of Trifolium repens with

Rhizobium and PGPR showed an increase in nodules, nitrogenase

levels, and nitrogen content in roots and shoots compared with the

control (Matse et al., 2020).

In the soil, phosphorus exists in two forms: inorganic and

organic. Because of its low solubility, micro-organisms play a

crucial role in the process of dissolving and mineralizing

phosphorus, notably through the production of organic acids and

phosphatases that catalyse the hydrolysis of phosphoric acid esters

(Alori et al., 2017). In other words, phosphate solubilization is

achieved through acidification, chelation, exchange reactions, and

gluconic acid production (Hameeda et al., 2008). Phosphate

solubilizing bacteria (PSB) are omnipresent (Gyaneshwar et al.,

2002), where Bacillus, Enterobacter, Erwinia and Pseudomonas are

among the most potent genera (Podile and Kishore, 2006).

Mesorhizobium mediterraneum was able to effectively mobilize

tricalcium phosphate and insoluble phosphates added to the soil

and increase the P, N, K, Ca, Mg and dry matter content of barley

and chickpea (Peix et al., 2001).
6.2 Indirect mechanisms

The indirect mechanisms comprise suppression of phytopathogens

by the production of volatile HCN, siderophores, volatile metabolites,

and ammonia, etc., induced systemic resistance in the host plant and

competition with the pathogen for space and nutrients (Etesami and

Adl, 2020).

The trivalent form of iron hydroxide (Fe3+) in the soil is difficult

for plants to absorb, and to facilitate this uptake, bacteria produce

low-molecular-weight molecules called siderophores. These

siderophores act as iron chelators while making iron accessible to

plants in case of deficiency (especially in neutral and alkaline soils)

(Khan et al., 2018). Siderophores not only chelate iron but can also
Frontiers in Plant Science 14
form stable complexes in the presence of other metals (Gu et al.,

2020). Siderophores play a crucial role in plant disease management

by depriving pathogens of iron, leading to their inhibition. For

example, siderophores secreted by Pseudomonas are the main

factors inhibiting the growth and development of fungal

pathogens, including Colletotrichum dematium, Rhizoctonia solani

and Sclerotium rolfsii (Sharma and Johri, 2003).

Volatile organic compounds (VOCs) secreted by rhizobacteria are

lowmolecular weight compounds capable of diffusing through different

matrices, including biological membranes, water, soil and air (Lemfack

et al., 2014; Etminani et al., 2024) to provide inter- and intra-organism

communication (Farag et al., 2013; Mhlongo et al., 2018). They play a

crucial role in improving plant growth by modulating levels of

phytohormones such as ethylene, auxin, and jasmonic acid and

tolerance to abiotic stress (Song et al., 2008). In addition, a multitude

of VOCs (benzothiazole, cyclohexanol, n-decanal, dimethyl trisulfide,

2-ethyl 1-hexanol, and nonanal) produced by bacteria in the

rhizospheres of canola and soybean inhibit sclerotia and ascospore

germination and mycelial growth of Sclerotinia sclerotiorum under

both laboratory and field conditions (Fernando et al., 2005).

Hydrogen cyanide (HCN) is a toxic secondary metabolite that

inhibits aerobic respiration activities (Williams et al., 2006). It is

produced only in a few bacterial species, including P. aeruginosa

(Neerincx et al., 2015). HCN produced by rhizobacteria plays an

important role in the biological control of phytopathogens and pests

(Suryadi et al., 2019). For example, HCN synthesised by

Pseudomonas sp. inhibits certain pathogenic fungi (Suryadi et al.,

2019), and that synthesised by P. chlororaphis O6 has shown

nematocidal activity (Kang et al., 2018). Ammonia (NH3
+)

production helps to satisfy the nitrogen demand of host plants

and in excess reduces plant colonization by pathogens. This NH3
+

production is achieved by the hydrolysis of urea by nitrogenase into

ammonia and carbon dioxide (Mbai et al., 2013), degradation of

plant ACC, or deamination of amino acids (Etesami and Adl, 2020).
FIGURE 3

Mechanisms of barley drought tolerance enhancement by Plant Growth Promoting Rhizobacteria (PGPR) through direct and indirect effects.
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In 1990, a discovery revealed that certain non-pathogenic

bacteria could prevent the metabolic changes caused by pathogen

attacks by triggering a systemic response in the plant called induced

systemic resistance (ISR) (Ali et al., 2022; Desai et al., 2023;

Gowtham et al., 2024). This response was initially discovered in

the plant model Arabidopsis thaliana and has since been observed

in many plant species. In A. thaliana, the ISR response is mediated

by ethylene and jasmonic acid as signal transducers. Additionally,

the NPR1 protein is involved, which induces the expression of other

proteins different from PRs. For example, P. fluorescens strain

WCS417 was shown to be effective against Fusarium oxysporum f.

sp. dianthi on carnations, acting protectively even when the bacteria

remained confined to the root system of the plant (van Peer, 1991).

This phenomenon was observed with several PGPR strains

applied to cucumber roots, providing protection against the

anthracnose fungus Colletotrichum orbiculare during subsequent

inoculations (Wei et al., 1991).

Through these mechanisms, the treatment of plants in general

and barley specifically with PGPRs affects growth parameters

positively and offers protection against abiotic and biotic

stresses (Table 3).
6.3 Root and shoot growth

The root system is the first part of the plant that is exposed to

the PGPR influence. Generally, roots growth and architecture are

affected by phytohormones such as auxins, gibberellin, and abscisic

acid. The drought stress reduces barley plants length and biomass

by affecting phytohormones balance (Barati et al., 2015; Bardehji

et al., 2023). The bioinoculant based on PGPR showed a significant

increase in various root traits in barley plant grown under drought

stress. Ferioun et al. (2023b) described a significant increased effect

of Providencia rettgeri on RDW. Slimani et al. (2023a) described

four PGPR isolates that increased significantly roots length of barley

plants under drought stress. In both last studies, PGPR strains were

characterized as being able to produce high levels of indole-3-acetic

acid (IAA) phytohormone. This last is widely reported in literature

in the regulation of cells and tissues plant growth (Etesami and Adl,

2020). The majority of PGPR strains isolated were IAA producer,

and many researches in other crops reported a significant

relationship between phytohormones secretion and yield

production (Ahluwalia et al., 2021) (Figure 1).

Several studies described a significant increase in shoot weight and

length on barley plants inoculated with PGPR strains when compared

to the uninoculated ones (Gul et al., 2023; Slimani et al., 2023a; Ferioun

et al., 2023b). The last references described a higher significant positive

correlation between shoot growth traits and root ones, which prove

that shoot growth is linked to root development induced by PGPRs

inoculation. Furthermore, the ability of PGPRs to fixate N2 and to

solubilize some nutrients such as potassium and phosphate increases

nutrient content in plants rhizosphere (Dhaked et al., 2022; Tirry et al.,

2023). The increase in water and nutrients assimilation due to the root

growth enhancement and nutrients assimilation lead to the

improvement of photosynthesis efficiency and biomass production

(Raklami et al., 2021). Moreover, the increase in shoot growth might be
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linked to the enhancement of ACC deaminase activity by PGPRs which

promote physiological tolerance of plants under stressful conditions

(Danish et al., 2020). This enzyme catalyzes the reaction of 1-

aminocyclopropane-1-carboxylic acid (ACC) cleavage into ammonia

and a-ketobutyrate, thereby inhibiting the formation of the stress

hormone ethylene (Sagar et al., 2020; Naing et al., 2021). In barley, as in

other cereals, the inoculation with ACC deaminase PGPR producer

increased plant tolerance to drought stress (Chandra et al., 2019;

Danish et al., 2020; Slimani et al., 2023b).
6.4 Water and osmotic status

Relative water content (RWC) is utilized in several studies as an

indicator of plant water status. Generally, RWC is associated with the

water taken by leaf tissue and the water lost through transpiration

(Lugojan and Ciulca, 2011). High RWC value under stressful

conditions reflects a strong ability of plant tissues to maintain their

cell turgor pressure under stresses (Ferioun et al., 2023a). The

inoculation of barley plants with PGPRs under drought stress

increased RWC% when compared to the stressed uninoculated

plants (Abideen et al., 2022; Ferioun et al., 2023b); aiding barley

plants in mitigating damages associated with decreased cell turgor

pressure. This effect is frequently linked to the effect of PGPRs on the

opening/closure of stomates, root water absorption, and hydraulic

conductivity (Ahluwalia et al., 2021).

Plant cells adjust their osmotic pressure to mitigate the damages

caused by fluctuations in osmotic pressure (Sallam et al., 2019). The

osmotic adjustment might be released by osmoregulation through

solutes accumulation which leads to reduced osmotic pressure in

plant cells (Ahluwalia et al., 2021). On the other hand, the osmo-

protection might be involved by antioxidant system or by the

accumulation of osmo-protectants such as polyamines, sugars,

and proline (Zulfiqar et al., 2020; Eswaran et al., 2024).

Askarnejad et al. (2021); Slimani et al. (2023a); Ferioun et al.

(2023b), and Slimani et al. (2023b) reported a significant impact

of PGPR inoculation on sugars and proline contents in barley plants

under drought stress, which confirm the strong effect of PGPRs on

the adjustment of osmotic pressure and on the enhancement of

physiological tolerance.
6.5 Oxidative status

In barley plants inoculated with PGPRs, the contents of H2O2

and MDA under various environmental conditions is significantly

fewer than uninoculated plants under drought stress (Zaib et al.,

2020; Abideen et al., 2022; Slimani et al., 2023a; Ferioun et al., 2023b).

The same references indicated a significant increase in antioxidant

(scavenging) enzyme activities (catalase, peroxidase, superoxide

dismutase) in barley plants inoculated with PGPRs when compared

to the uninoculated ones. Indeed, several studies reported a negative

correlation between antioxidant enzyme activities and H2O2 content

(Zhanassova et al., 2021), which confirms that PGPRs reduce

oxidative stress induced by water shortage via the up-regulation of

scavenging enzyme activities.
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TABLE 3 Studies for the enhancement of barley drought tolerance employing bioinoculant based on plant growth promoting rhizobacteria (PGPR).

Bacteria PGP traits of bacteria Effects on barley plants Treatments References

Pantoea agglomerans
Streptomyces swartbergensis
Pseudomonas zanjanensis
Streptomyces cahuitamycinicus
Ensifer meliloti

Phosphate and potassium
solubilization
Auxin and siderophore production
Nitrogen fixation
ACC deaminase secretion

Enhancement of plant biomass,
photosynthesis efficiency, and
biochemical traits.

Full irrigation regime
Drought stress

(Slimani
et al., 2023b)

PGPR consortia – Enhancement of physiological and
biochemical traits

Full irrigation regime
Drought stress

(Slimani
et al., 2023a)

Providencia rettgeri IAA, EPS, NH3, pectinase,
chitinase, phosphatase acid and
phosphatase alkaline production,
resistance to water stress, nitrogen
fixation and P solubilization

Improvement of shoot dry weight,
relative water content, chlorophyll
pigments content and
photosynthesis efficiency
Decrease in electrolytes leakage,
MDA and hydrogen
peroxide contents

Full irrigation regime
Drought stress

(Ferioun
et al., 2023b)

Serratia odorifera – Enhancement of plant biomass
production, chlorophyll content,
and antioxidant enzyme activities

Full irrigation regime
Drought stress

(Gul
et al., 2023)

Bacillus subtilis – Improvement of plant growth and
biomass, photosynthetic efficiency,
antioxidant enzymes and mineral
absorption,
- Reduction of exudation of
organic acids and oxidative stress
indicators in roots

No stress
Metal stress by chromium

(Zhu
et al., 2023)

Bacillus mycoides – Enhancement of shoot and root
lengths and weight, leave traits,
chlorophyll pigments content, and
photosynthesis efficiency
Reduction of MDA, H2O2, EL and
organic acids

None-stressful conditions
Metal stress by Cadmium

(Ma
et al., 2023)

Pantoea sp & Pseudomonas sp – Enhancement of leaf respiration
and transpiration
- Photoinhibition, and the risk of
oxidative stress

Full irrigation regime
Drought stress

(Abideen
et al., 2022)

Bacillus mojavensis
Pseudomonas fluorescens

Resistance to salt stress and
production of IAA and proline.

Increase of shoot and root dry
weights
Enhancement of stomatal
conductance and CO2 assimilation
Decrease of root and shoot Na+

concentrations
Improvement of leaf
water potential.

None-stressful conditions
Salt stress

(Mahmoud
et al., 2020)

Pseudomonas fluorescens
Pseudomonas putida

- Enhancement of root weights,
chlorophyll content, and relative
water content
Enhancement of abscisic acid,
saliciylic acid and indole acetic
acid biosynthesis.
up-regulation of the genes of
jasmonic acids and ethylene
biosynthesis.
Enhancement of the expression of
nitrate transporter and
antioxidant genes.

Salt stress (Zaib
et al., 2020)

Pantoea agglomerans Inorganic and organic P
solubilization
K mobilization
siderophores, ACC deaminase and
IAA production.
Nitrogen fixation

Increase of plant height and
weight, chlorophyll content,
Enhancement of mineral nutrition
(Mg and K)
Induction of resistance against the
fungal pathogen

None-stressful conditions
Nutrients deficit

(Rahman
et al., 2018)

(Continued)
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6.6 Photosynthesis efficiency

In barley, under non-stressful conditions, under drought stress,

and in the case of other abiotic stresses, PGPRs enhance

photosynthesis efficiency, which improves biomass and organic

matter production (Zaib et al., 2020; Ahluwalia et al., 2021;

Abideen et al., 2022; Abbasi et al., 2023). PGPRs promote

chlorophyll pigments synthesis pathways directly via hormones

synthesis or indirectly via the enhancement of water and

nutrients uptake (Ghanbarzadeh et al., 2020). This increase in

chlorophyll content leads to the optimization of photosynthetic

rate and photosystem II efficiency, and the functioning of the

complex pigment-proteins (Abideen et al., 2022). This last study
Frontiers in Plant Science 17
reported that, the inoculation of barley plants with Pantoea sp. &

Pseudomonas sp. under drought stress optimized leaf transpiration,

gas exchange, as well as stomatal conductance.
7 Prospects and challenges for
the future

In the next few years, the need for increased outputs, better crop

productivity, soil health, and ecologically sound farming is growing.

Breeding genotypes resilient to drought has great potential to increase

barley's ability to withstand water shortage in future years, but it also

comes with a number of difficulties. Through the use of genome
TABLE 3 Continued

Bacteria PGP traits of bacteria Effects on barley plants Treatments References

Tolerance to salinity, cold and
drought stresses.

Azotobacter (strain12),
Pseudomonas
(strainp-169), Azospirillum
(strain OF)

– Enhancement of grain yield,
biological
Yield, and thousand grain weight

Full irrigation regime
Drought stress

(Rezaei
et al., 2017)

Pseudomonas putida Enhancement of ions absorption
Increase of the cell membrane
stability, photosynthesis rate and
biomass measurements.

- Salt stress (Jodeh
et al., 2015)

Hartmannibacter diazotrophicus ACC-deaminase activity Improvement of plant growth, and
water content
Decrease of sodium uptake and the
ethylene emission.

None-stressful conditions
Salt stress

(Suarez
et al., 2015)

Curtobacterium flaccumfaciens IAA production and
Phosphate mobilization

Increase in germination rate of
seeds, and biomass and resistance
of leaves, stems and roots to salt
stress.
E. garamanticus aids in the
accumulation of water in
plant roots

None-stressful conditions
Salt stress

(Cardinale
et al., 2015)

Ensifer garamanticus IAA production, nitrogen fixation,
Phosphate and
phytate mobilization

Improvement of plant growth, and
water content
Decrease of sodium uptake and the
ethylene emission.

None-stressful conditions
Salt stress

(Suarez
et al., 2015)

Strains name not indicated – Under drought stress, PGPR
enhanced cell membrane stability
Increase in root and shoot weight,
grain weight per spike, and
grain yield

Full irrigation regime
Drought stress
Full irrigation in greenhouse
Rainfall in field

(Rezaei and
Pazoki, 2015)
(Cakmakci
et al., 2014)

Bacillus OSU-142
Bacillus megaterium M3
Azospirillum brasilense Sp.245
Bacillus megaterium RC07
Paenibacillus polymyxa RC05
Bacillus licheniformis RC08

Luteibacter rhizovicinus Inorganic Phosphate solubilization
Siderophores and IAA production

Significant increase in the weight
of the aerial part, and the weight
and length of the roots.

None-stressful conditions (Guglielmetti
et al., 2013)

Bacillus megaterium M3, Bacillus
subtilis OSU142, Azospirillum
brasilense Sp245, and
Raoultella terrigena

– Enhancement stomatal
conductance, leaves water content,
and membrane stability.

Full irrigation regime (Turan
et al., 2012)

Bacillus RC01, Bacillus RC02,
Bacillus RC03 and Bacillus M-13

Nitrogen fixation
Phosphate solubilization
Amylase positive

Increase in root weight, shoot
weight and total biomass weight.

None-stressful conditions (Canbolat
et al., 2006)
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editing, genomic selection, and marker-assisted selection (MAS),

drought-tolerant barley genotypes may be developed more quickly

than ever before as a result of developments in molecular genetics,

genomics, and phenotyping technology (Sallam et al., 2019). By using

these methods, breeders may quickly accelerate the genetic

development of drought tolerance characteristics by identifying and

introducing advantageous alleles linked to drought tolerance from

broad germplasm pools and wild barley relatives into top breeding

lines. On the other hand, there are still a number of difficulties in

selecting barley drought-tolerant genotypes despite these technical

developments. Drought tolerance is a complex feature involving

many interacting physiological, biochemical, and molecular

systems, it is difficult to properly deconstruct and regulate these

qualities. Moreover, Genotypes x Environment (G x E) interactions

and polygenicity are common in the genetic architecture of drought

tolerance traits, making multi-environment trials and strong

statistical techniques necessary for precise trait assessment and

selection. Furthermore, socioeconomic and legal obstacles, such as

those pertaining to intellectual property rights, public acceptability,

and farmer adoption, stand in the way of the broad distribution and

adoption of drought-tolerant barley cultivars.

The strategic use of bio-inoculants to improve barley stress

tolerance to drought has great potential in the upcoming years.

PGPR bio-inoculants offer a sustainable and agroecological solution

(Abbasi et al., 2023). The combination of these bio-inoculants with

suitable breeding approach seems promising for developing barley

genotypes with enhanced drought resilience indices. To fully realize

the promise of bio-inoculants for improving barley's resistance to

drought stress, several challenges must be overcome: (i) Field

experiments and on-farm demonstrations are necessary to further

investigate the efficacy and consistency of bio-inoculant performance

under various environmental circumstances and agricultural

techniques; (ii) Strong screening and selection processes that take

into account genotype-microbiome interactions and compatibility

with other agricultural inputs are necessary for the selection and

optimization of appropriate bio-inoculant strains for particular barley

cultivars and agroecosystems; (iii) It is necessary to address the

flexibility, cost-effectiveness, and commercial feasibility of bio-

inoculant manufacturing and application technologies in order to

enable farmers and stakeholders to use them widely. To overcome

these challenges and ensure food security in the face of water scarcity

and climate change, interdisciplinary research collaborations,

technological advancements, and policy support will be necessary

to support the sustainable integration of bio-inoculants into barley

cultivation systems.
8 Conclusion

Drought strongly influences barley plant physiology and

productivity and lowers the economic incomes of barley crops.

Genotype breeding is among the solutions widely studied to obtain

robust and resilient barley genotypes, aiming to mitigate barley losses
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caused by water scarcity. Tolerant genotypes exhibit fewer

physiological disturbances and maintain relatively high productivity

even under stressful conditions. At the same time, bio-inoculants

based on PGPRs are considered effective agroecological and

sustainable solution. PGPRs used for bio-inoculant construction

exhibit strong PGP traits including enhancing nutrients availability,

phytohormones secretion, EPS production, and the stimulation of

plant systemic defence mechanisms. Barley plants inoculated with

these bio-inoculants showed higher physiological resistance and yield

productivity. Based on the genotype x microbiome interaction,

developing appropriate bio-inoculants for specific barley cultivars

and agroecosystems is a highly effective solution that can maximize

barley yield production under diverse conditions.
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of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ. Sci. pollut.
Res. 23, 1732−1741. doi: 10.1007/s11356-015-5423-5
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