The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Symbiotic Interactions
Volume 15 - 2024 |
doi: 10.3389/fpls.2024.1494855
Antagonistic effects of endophytic fungi from Camellia reticulata pedicels on yeasts: Implications for antimicrobial mechanism of nectar
Provisionally accepted- Yunnan Agricultural University, Kunming, China
Endophytic fungi are extensive in plant tissues and involved in the defense against stress from harmful microbes. The interaction between pedicel endophytic fungi and nectar yeasts is critical for maintaining nectar homeostasis. This study used Camellia reticulata as the research subject. High-throughput sequencing revealed that the community composition of endophytic fungi in the pedicel is dominated by Ascomycota and Basidiomycota. Their abundance varies at different taxonomic levels, showing sample variability. In total, 27 endophytic fungal isolates were isolated and screened from the pedicel under laboratory conditions. They exhibited antagonistic effects against three nectar yeasts (Metschnikowia reukaufii, Cryptococcus laurentii, and Rhodotorula glutinis) and displayed morphological and physiological diversity. The isolates were classified into the phylum Ascomycota and further categorized into the genera Alternaria, Trichoderma, Fusarium, and Dactylaria. The endophytic fungus D23, which effectively antagonizes nectar yeasts, was identified as Alternaria alternata. This fungus produces various secondary metabolites, including antibiotics such as penicillin G, grandiomycin, and cephalosporin C. The metabolic pathways involved include the biosynthesis of plant secondary metabolites, phenylpropanoids, amino acids, nucleotides, and antibiotics. The endophytic fungal community in C. reticulata pedicel is rich and diverse, making it a valuable material for screening antagonistic strains. This study provides a theoretical basis for the antagonistic effects of endophytic fungal metabolites from the pedicel of C. reticulata against nectar yeasts, highlighting their significance in maintaining nectar stability and reproductive fitness in cross-pollinated plants.
Keywords: Camellia reticulata, endophytic fungi, Nectar Yeasts, Antagonistic Activity, Antimicrobial mechanism, Alternaria alternata
Received: 11 Sep 2024; Accepted: 30 Oct 2024.
Copyright: © 2024 Huang, Meng, Wu, Xun, Yue, Zhao, Dong, Gong and Dong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Xiaoman Wu, Yunnan Agricultural University, Kunming, China
Lijie Xun, Yunnan Agricultural University, Kunming, China
Dan Yue, Yunnan Agricultural University, Kunming, China
Wenzheng Zhao, Yunnan Agricultural University, Kunming, China
Xia Dong, Yunnan Agricultural University, Kunming, China
Xueyang Gong, Yunnan Agricultural University, Kunming, China
Kun Dong, Yunnan Agricultural University, Kunming, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.