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Pitaya (Hylocereus undatus; 2n=22) is an important fruit crop from theCactaceae

family, originally domesticated in Mexico and the USA, and is now widely

cultivated for its nutritional benefits. It is characterized by its distinctive

triangular-shaped stems and large, showy flowers, thriving in arid and semi-

arid environments, particularly in hot, dry climates. However, systematic

chromosomal studies, including chromosomal mapping of cytogenetic

markers in pitaya, are limited, presenting challenges for its cytogenetic

improvement. To address this issue, we designed oligo-barcodes specific to

thirty-three chromosome regions based on the pitaya reference genome and

applied them to both pitaya and cactus (Selenicerus grandifloras; 2n=22) for

oligo-barcodes mapping, karyotyping, and chromosome identification. We

utilized FISH technology, employing oligo, rDNA, and tandem repeat probes

for chromosomal mapping, identification, and karyotyping of pitaya and related

species. We successfully localized oligo-barcodes on eleven pairs of

chromosomes in both pitaya and cactus, demonstrating the effectiveness of

the synthesized oligo-barcodes. We used two ribosomal DNA (rDNA) probes (45S

and 5S) and two tandem repeat probes (GTR11 and STR3) in pitaya (both diploid

and tetraploid) and two other Cactaceae species (S. grandifloras and Opuntia

humifusa; 2n=40) for chromosomal mapping. The analysis of rDNA distribution

and CMA (Chromomycin A3) banding across different chromosomes in pitaya

and cacti highlights the concept of conserved rDNA. This study provides

fundamental insights into cytogenetic markers and their localization across

different chromosomes in pitaya and other Cactaceae species.
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Introduction

Pitaya, belonging to the Cactaceae family, is believed to have

diverged from a common ancestor around 35 million years ago.

However, significant diversification occurred more recently during

the Miocene to Pliocene epochs, approximately 10 to 2.5 million

years ago (Arakaki et al., 2011; Khan et al., 2024). This period aligns

with a global evolutionary surge in C4 photosynthesis (Arakaki

et al., 2011). One hypothesis has suggested that pitaya which is a

mostly well-known Cactaceae species evolved from a group of cacti

and then subsequently adapted and grew in a tropical environment,

while another hypothesis suggested that pitaya and other cacti such

as S. grandifloras evolved independently. The Cactaceae family

presents challenges due to its varying ploidies and limited

genomic data (Hunt et al., 2006; Korotkova et al., 2021). It

encompasses a diverse array of plants, with around 100 genera

and approximately 1,500 to 1,800 species (Barthlott and Hunt,

1993). Two important species within this family are H. undatus and

S. grandiflorus, which belong to the genera Hylocereus and

Selenicereus, respectively (Tel-Zur et al., 2004). The Hylocereus

genus comprises approximately 16 species of epiphytic cacti and

has sprawling stems that can reach several meters long, with aerial

roots that help them attach to trees or other supports (Barthlott and

Hunt, 1993). H. undatus, commonly known as pitaya or dragon

fruit, is a significant tropical fruit crop domesticated from the

Cactaceae family. It is primarily cultivated as diploid and

tetraploid cultivars and tetraploid taxon shares morphological

features with diploid (Masashi et al., 2020; Chen et al., 2021; Li

et al., 2021; Zheng et al., 2021). The Selenicereus genus includes 20

species distributed throughout Mediterranean climates, America

and the Caribbean region (Barthlott and Hunt, 1993). S.

grandifloras is known for its various local names such as night-

blooming cactus, large-flowered cactus, sweet-scented cactus, and

vanilla cactus which is an important species in the Cactaceae

(Hecht, 1997). The Opuntia genus includes 226 species of cacti

commonly known as prickly pears; these species are characterized

by flattened, paddle-shaped stems called pads (Castro et al., 2020).

Opuntia humifusa, known as devil’s tongue, eastern prickly pear, or

Indian fig, belongs to the Opuntia genus (THE PLANTS

DATABASE, see URLs). It is native to regions of the eastern

United States, Mississippi, and northeastern Mexico (PLANTS OF

THEWORLD, see URLs). All of these plants are vine and succulent

native to the tropical and subtropical regions and share similarities

such as their capacity to store water in their stems and leaves

(Mizrahi and Nerd, 1999).

Chromosome painting by fluorescence in situ hybridization

(FISH) is an important technique in molecular cytogenetics in

plants (Jiang, 2019). This technique is useful for cytogenetic

markers mapping, chromosomes identification, polidy

determination and karyotyping. However, chromosomal mapping

and individual identification are challenging in nonmodel species

especially those with large numbers of chromosome or similarly sized

chromosome. DNA clone probes such as bacterial artificial

chromosome (BAC), rDNA sequences, tandem repeats, and

distributed repetitive sequences have traditionally been used for

chromosome painting via FISH (Song et al., 2023a, 2023b; Mukai
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et al., 1993; Jiang et al., 1995; Fransz et al., 1998; Kulikova et al., 2001;

Kim et al., 2002; Kato et al., 2004). Due to the limitations of

traditional probes, a new class of DNA probes based on low-copy

oligonucleotides (so-called single-copy oligo-barcodes) has become

popular for FISH experiments (Jiang, 2019; Harun et al., 2023).

Oligo-barcodes have been used in an increasing number of plant

species for chromosomal identification (Hou et al., 2018; Meng et al.,

2018; Braz et al., 2020; Song et al., 2020), mapping (Xin et al., 2018; Bi

et al., 2020), karyotyping (Xin et al., 2020; Liu et al., 2020; Braz et al.,

2018; Qu et al., 2017; Šimonıḱová et al., 2019) and rearrangement and

translocation (He et al., 2018; Albert et al., 2019; do Vale Martins

et al., 2019; Bačovský et al., 2020).

Researchers have explored cytogenetics and evolutionary

relationships among plants in the Cactaceae family including

pitaya, primarily utilizing chromosomes counting, rDNA probes

and CMA staining (Lichtenzveig et al., 2000; Castro et al., 2020;

Masashi et al., 2020). However, there remains much to uncover,

including high-resolution oligo and rDNA mapping, as well as

chromosomal identification and karyotyping. Genome sequencing

has been completed for pitaya which provides hope for designing

and preparing oligo probes (Chen et al., 2021; Li et al., 2021; Zheng

et al., 2021). Here, we designed and synthesized thirty-three single-

copy oligo-barcodes specific to chromosome regions from the

pitaya reference genome. These barcodes were used to map

specific oligo sequences on chromosomes. We also applied the

same oligo-barcodes to cactus for mapping, chromosomal

identification, and karyotyping. Additionally, we mapped two

rDNA probes and tandem repeat probes across three Cactaceae

species. In summary, by performing FISH on these three Cactaceae

species using oligo-barcodes, rDNA, tandem repeat probes, and

CMA, we successfully conducted mapping, chromosome

identification, and karyotyping. Our study revealed that the

conservation of 45S rDNA has been maintained among pitaya

and cactus species since their divergence millions of years ago.
Materials and methods

Plant materials and
chromosome preparation

Cactaceae species, pitaya diploid (2n=2x=22), tetraploid

(2n=4x=44), S. grandiflorus (2n=2x=22), and O. humifusa

(2n=2x=40) were used for the experiments. Three diploid species

were collected from Huazhong Agricultural University in Wuhan,

China, and tetraploid species were obtained from the Chinese

Academy of Tropical Agricultural Sciences in Haikou, China.

Chromosome preparations for FISH were performed according to

reported protocols with minor modifications (Yu et al., 2019).

Metaphase chromosome spreads were prepared from the aerial

root tips of stem cuttings and good spreads were selected for

chromosome counting and other chromosomal analyses. To

prepare mitotic metaphase chromosomes root tips were harvested

from stems pretreated with a saturated solution of para-

dichlorobenzene and a-bromonaphthalene at room temperature

(25°C) for 3 h, fixed in Carnoy’s fixative for 12 h, and
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subsequently stored in 70% ethanol at -20°C until use. An enzyme

mixture (1% pectolyase Y23, 2% pectinase, 2% RS, and 4% cellulase

Onozuka R-10) was used to digest the root tips for almost 1 h and

30 min at 37°C. Finally, the suspension of cells was dropped onto

glass slides and 10 µl of Carnoy’s fixative was used to spread the

cells. The chromosomes were stained with DAPI to visualize them

clearly in the microscope.
Development and synthesis of oligo
libraries and repetitive sequences

The current study generated 36,944 potential single-copy oligo

sequences from the pitaya reference genome (Accession number:

PRJNA691451) using the Chorus2 pipeline (Chen et al., 2021). We

then synthesized thirty-three oligo-barcodes from the eleven pairs

of homologous chromosomes. The design of the oligo-barcodes was

performed following the published method with minor

modifications (Han et al., 2015). Single-copy oligos with 45 nt

length were screened from the reference genome of pitaya (http://

pitayagenomic.com/) using the software Chorus2 (Zhang et al.,

2021). The RIdeogram (Hao et al., 2020) was used for visualizing the

distribution of oligos in the genome. Each oligo-barcode covers a

chromosomal region of approximately 0.5 to 1 kb and contains

around 1,000 oligos per megabase. The sequences of the oligos are

presented in Supplementary Dataset S1. The 45S rDNA and 5S

rDNA sequences were derived from a sweet orange (Citrus sinensis)

genome blast. Tandem repeat probes GTR11 and STR3 were

obtained by Tandem Repeats Finder (Benson, 1999).
The labeling of probes

Several primer pairs were added to both ends of each

chromosome site-specific oligo and then the oligo-barcode pool

was synthesized by the company GENEWIZ (Jiangsu, China).

Thirty-three barcodes were selected from the oligo pool using

specific primer pairs for PCR amplification. The sequences of the

primers used are presented in Supplementary Dataset S2. We used

the same 45S and 5S probes in the published paper (Song et al.,

2023a). Tandem repeat DNAs were obtained by PCR amplifying

genomic DNA identified by the Tandem Repeats Finder in silico.

Specific primers were used for PCR. The primers for GTR11 and

STR3 are shown in Supplementary Dataset S2. The sequences of the

rDNA and tandem repeat probes are shown in Supplementary

Dataset S3. GTR11 and STR3 were labeled by PCR (PCR DIG probe

DIG synthesis kit, 11636090910; for biotin labeling using Biotin-16-

dUTP, 11093070910). Oligo probes were labeled following the

method published (Song et al., 2023a).
FISH and CMA staining

The FISH experiment protocol using oligo and rDNA probes

was the same, with a probe concentration of 60 ng/slide.

Chromosomal denaturation and hybridization steps were
Frontiers in Plant Science 03
performed according to published procedures (Lan et al., 2016).

Approximately 20 µL of hybridization solution containing 1-2 µL of

probes was placed on each dried slide and incubated overnight at

37°C. FISH signals were detected according to previously reported

protocols (Song et al., 2023a). During the FISH experiment, CMA

was used as a reference and DAPI was used for counter-staining.

We used Citrus (C. sinensis) cells as a control during the rDNA

FISH experiment (Supplementary Figure S1). The FISH images

were photographed with a camera (Zeiss Axiocam 506 color,

Germany) with ZEN 2 (blue edition) software and then processed

with Adobe Photoshop 2020.
Chromosomal mapping and karyotyping

The actual karyotypes were obtained by measuring the lengths of

the long and short arms, as well as the lengths of the CMA bands,

using ImageJ (http://rsb.info.nih.gov/ij/) and Adobe Photoshop 2020

software. The distribution of oligo sequences in H. undatus was

illustrated with the Rideogram (https://github.com/zhangtaolab/

Chorus2). The sizes of the 45S and 5S rDNA signals were

estimated by measuring their relative lengths in dual-color FISH

across 10 metaphase cells using ImageJ software. The estimated

relative length is calculated as 100 * (individual length/total length).
Results

Chromosome counts

Original chromosomes of pitaya and vine cacti were analyzed to

identify species and determine their ploidy using FISH. The results

showed that the diploid pitaya has 2n=2x=22 chromosomes, while

the tetraploid variety has 2n=4x=44 chromosomes (Figures 1A, B).

For cacti, S. grandiflorus has 2n=2x=22 chromosomes, whereas O.

humifusa has 2n=2x=40 chromosomes (Figures 1C, D). We

assessed several structural properties of the chromosomes,

including chromosomal length (mm), arm length (mm), and arm

ratios, which allowed us to construct karyotypes for these species.

The average chromosome lengths were moderate: 3.30 ± 0.14 mm
for pitaya, 3.27 ± 0.12 mm for S. grandiflorus, and 3.05 ± 0.11 mm for

O. humifusa (Supplementary Table S1). All species exhibited

symmetrical karyotypes based on centromere position, with

notable variation in chromosome size (Supplementary Table S1).
High-resolution oligo map was
constructed using oligo-barcodes in pitaya

Oligo-FISH experiments were conducted using synthesized

oligo-barcodes to map high-resolution signals at specific locations

on the original chromosomes, allowing for the individual

identification of eleven pairs of chromosomes. As expected, each

oligo-barcode produced bright FISH signals on one pair of

homologous chromosomes (Figures 2A–K), while displaying weak

noise on other chromosomes (not visible in the figure). Our oligo-
frontiersin.org
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FISH experiment successfully mapped nearly all oligo-barcode sites

across the homologous chromosomes, with three sites each,

although some were missing due to faint signals (1b, 2bc, 6ab,

9ab, 10ab, 11bc). The missing signals could be recovered by

redesigning oligo-barcodes to feature longer sequences and fine-

tuning the FISH experimental procedure. This mapping was

instrumental in identifying specific chromosomes using dual-

color FISH. The resulting pattern of oligo-barcodes was digitally

constructed after FISH (Figure 2L), allowing for a comparison

between the constructed and putative karyotypes based on the

mapping of oligos onto the reference genome sequence (Figure 3).
Potential oligo-barcodes mapping and
chromosomes identification in cactus

This study randomly selected eleven oligo barcodes (1a, 2a, 3c,

4c, 5a, 6c, 7a, 8c, 9c, 10c, and 11a) from an oligo probe pool derived

from pitaya and applied them to genetically related cactus species

for potential testing. We observed bright signals for each oligo

probe in the homologous chromosomes of the cacti, which

exhibited signal intensities nearly identical to those generated by

pitaya (Figures 4A–K). A high-resolution oligo map, identification

of eleven pairs of homologous chromosomes, and karyotyping were

accomplished through the localization of these eleven oligo-

barcodes (Figure 4L). Our findings suggest that the oligo-barcodes

developed from pitaya could serve as universal probes for other
Frontiers in Plant Science 04
Cactaceae species; however, the quality and signal intensity of the

FISH experiments may vary and should be considered.
Localization of rDNA cistron and two
tandem repeats in Cactaceae species

The 45S and 5S rDNA probes were utilized for rDNA-FISH

(Figures 5A–L). In each diploid species, both 45S and 5S rDNAs

were mapped onto two chromosomes, while the 45S rDNA was

found to double in the pitaya autotetraploid (Figure 5M). rDNA

blastn analysis indicated that the 45S rDNA localized on

homologous chromosomes 11, and the 5S rDNA localized on

homologous chromosomes 7 at subtelomeric positions in pitaya.

In the cacti species (S. grandiflorus andO. humifusa), the 45S and 5S

rDNAs were expected to localize at the same site on the same

chromosomes of pitaya. However, a standard genome assembly has

not yet been reported, preventing the localization of rDNA in these

two cactus species. Interestingly, dual-color FISH in pitaya revealed

two 45S rDNA signals and four 5S rDNA signals, with two signals

positioned centrally and the other two at subtelomeric locations on

the chromosomes. The 5S rDNA loci exhibited more heterogeneous

profiles, showing two and four loci per diploid genome. The

number, localization, and size of rDNA in different Cactaceae

species are summarized in Table 1. The largest 45S rDNA loci

were found inH. undatus, while the smallest were in S. grandiflorus.

The largest 5S rDNA loci were found in H. undatus, while the
FIGURE 1

Chromosomes number confirmation of Cactaceae species. (A) Pitaya diploid (2n=2x=22). (B) Pitaya tetraploid (2n=4x=44). (C) S. grandiflorus
(2n=2x=22). (D) O. humifusa (2n=2x=40). Scale bars=5mm.
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smallest were in O. humifusa. We also screened two tandem repeat

probes in pitaya to map additional cytogenetic markers. After

labeling, the tandem repeat probes GTR11 and STR3 were

employed for FISH. GTR11 localized to the middle and

subtelomeric positions of chromosome pair 7, while STR3 was

found in the middle position of chromosome 4 (Figures 6A–D).

Notably, the FISH signals of STR3 were concentrated in the

centromeric region of chromosome 4, suggesting that STR3 may

be a centromeric tandem repeat. We measured the relative length

(Mb) of the CMA banding in ten metaphase cells of diploid and

tetraploid pitaya, as well as in S. grandiflorus and O. humifusa

(Table 1). Based on CMA banding, most chromosomes in Cactaceae

species exhibited a D type, while other chromosomes displayed the

F type.
Molecular ideograms in pitaya and cactus

Based on the mapping results of cytogenetic markers, we

illustrated their physical positions on the pseudochromosomes of

pitaya and cactus species (Figures 7A, B). The ideograms depict the

locations of oligos and rDNA in pitaya and cacti, as well as the

positions of tandem repeats specifically in pitaya. Chromosomes 4

and 7 in pitaya contain a large number of cytogenetic markers.
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However, illustrating the rDNA markers on specific chromosomes

in cactus was not feasible due to the lack of identifiable

chromosomal availability.
Discussion

This study generated thirty-three low-copy oligo-barcodes from

eleven homologous chromosomes in pitaya which are short,

specific, efficient, and easily labeled. We developed thirty-three

oligo-barcodes, of which twenty-two yielded successful FISH

results, these twenty-two barcodes have been used for mapping,

chromosome identification, and karyotyping in pitaya and its

genetically related cactus species which proved that the

synthesized oligo probes could be used as universal probes. The

oligo-barcodes developed in this study offer several advantages over

chromosome painting probes for specific mapping and localizing

(Braz et al., 2018, 2020; Meng et al., 2020). However, reliable

cytogenetics markars mapping, chromosomes identification and

karyotyping are difficult tasks, especially for plants with many

chromosomes and limited genomic information including

Cactaceae (Castro et al., 2020).

This study applied rDNA and tandem repeat probes in pitaya

for FISH experiments. While several rDNA studies have been
FIGURE 2

Oligo-barcodes mapping in pitaya and then chromosomes identification using oligo FISH in metaphase cells. (A–K) represent chromosomes 1-11 of
pitaya respectively with oligo-barcodes modified with red and green fluorophores. (L) Chromosomes were digitally separated from (A–K) using
Adobe Photoshop CS6 ×64 to construct resulted karyotype with oligo-barcodes. Scale bars=5mm.
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conducted on some Cactaceae species (Las Peñas et al., 2009;

Moreno et al., 2015; Castro et al., 2020; Masashi et al., 2020,

Las Peñas et al., 2013; Tel-Zur et al., 2004) we found that 45S

rDNA serves as a valuable cytogenetic marker. Our findings

indicate that rDNA sequences in pitaya and related cacti species
Frontiers in Plant Science 06
remain conserved following their divergence (Mizrahi and Nerd,

1999; Garcia et al., 2017; He et al., 2021). We observed 45S rDNA

synteny in both pitaya and cacti, which has been preserved in pitaya

autotetraploids after genome duplication, challenging

misconceptions about the fate of rDNA in polyploidy (Rosselló
FIGURE 3

Putative karyotype based on the mapping of oligos onto references genome sequence. Heatmaps represent the density and position of selected
oligo-barcodes in pitaya pseduchromosomes. a, b and c denote oligo-barcodes modified with red and green colours by biotin-dUTP and
digoxigenin-dUTP antibodies respectively.
FIGURE 4

Oligo-barcodes mapping in cactus then chromosomes identification using oligo FISH in metaphase cells. (A–K) represent chromosomes 1-11 of
cactus respectively with oligo-barcodes modified with red and green fluorophores. (L) Chromosomes were digitally separated from (A–K) using
Adobe Photoshop CS6 ×64 to construct resulted karyotype with oligo-barcodes. Scale bars=5mm.
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et al., 2022). The physical mapping of 45S rDNA revealed a

conserved pattern, with the number of sites strictly correlated to

species ploidy: two sites in diploid species and four sites in

tetraploid species (Las Peñas et al., 2009; Moreno et al., 2015;
Frontiers in Plant Science 07
Castro et al., 2016, Table 1). All 45S rDNA sites were terminally

localized and maybe co-localized with CMA bands, consistent with

the most common observations in plants (Lima-de-Faria, 1980; Roa

and Guerra, 2012). In contrast, 5S rDNA sites exhibited variability
FIGURE 5

rDNA-FISH of Cactaceae species in metaphase cells. (A–C) 45S, 5S- rDNA and CMA FISH signals in pitaya diploid respectively. (D–F) 45S, 5S- rDNA
and CMA FISH signals in pitaya tetraploid respectively. (G–I) 45S, 5S- rDNA and CMA FISH signals in S. grandiflorus respectively. (J–L) 45S, 5S- rDNA
and CMA FISH signals in O. humifusa respectively. (M) Chromosomes were digitally separated from (A–L) for rDNA mapping on chromosomes.
Scale bars=5mm.
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TABLE 1 Summary of the molecular cytogenetics of H. undatus, S. grandiflorus and O. humifusa.

Characteristics H. undatus (2x) H. undatus (4x) S. grandiflorus O. humifusa

Chromosomes number 22 44 22 40

Number of signals detected by
45S and

2 4 2 2

Localization Chr. 11 (subtelomeric) Chr. 11 (subtelomeric) × ×

Number of signals detected by
5S and

2 and 4 4 2 2

Localization Chr. 7 (subtelomeric
and middle)

Chr. 7 (subtelomeric) × ×

Relative length (%) of
45S rDNA

41.30 ± 0.1
32.42 ± 0.2

15.08 ± 0.1
11.65 ± 0.3
16.94 ± 0.2
14.29 ± 0.1

28.45 ± 0.2
17.99 ± 0.1

56.42 ± 0.1
43.59 ± 0.1

Relative length (%) of
5S rDNA

66.67 ± 0.1
23.60 ± 0.1

46.06 ± 0.1
28.43 ± 0.1
29.07 ± 0.3
25.13 ± 0.1

30.08 ± 0.1
21.45 ± 0.3

64.48 ± 0.1
35.53 ± 0.2

Numbers of CMA band 2 4 3 4

CMA band relative length (%) 66.19 ± 0.2
46.86 ± 0.1

83.57 ± 0.3
31.06 ± 0.1
20.22 ± 0.2
29.07 ± 0.1

34.58 ± 0.1
36.73 ± 0.3
89.76 ± 0.1

42.07 ± 0.1
22.88 ± 0.2
18.09 ± 0.1
16.98 ± 0.2
F
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FIGURE 6

Tandem repeats FISH in pitaya in metaphase cells. (A) 45S and 5S- rDNA dual FISH (B) GTR11-FISH. (C) STR3-FISH. (D) STR3 and Chr. 4b oligo
-barcodes dual FISH. Scale bars=5mm.
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in number and position, occupying proximal and interstitial

locations, and occasionally adjacent to 45S rDNA sites, as seen in

other Cactaceae (Moreno et al., 2015).

The diversity of 5S rDNA sites highlights the significance of

structural chromosome rearrangements, such as inversions. This

phenomenon may lead to the creation of two sites on the same

chromosome arm, as observed in both Cereus jamacaru and

Pilosocereus chrysostele (Castro et al., 2020). It is possible that a

breakpoint occurred within the original 5S rDNA site an event

potentially favored by transposable element (TE) activity. Following

an inversion, some copies of 5S rDNA could have been inserted,

creating a new site while retaining copies at the original site. Such

events have been suggested for various plant groups, including

unrelated species of Orchidaceae (Moraes et al., 2012; 2017; Lee

et al., 2017). In this sense, the evolution of 5S rDNA sites in cacti

contrasts with the evolution of 45S rDNA, with 5S beingmore variable

than 45S, which is the opposite of the commonly accepted hypothesis

that position and number of 5S rDNA loci in plants are usually more

conserved than those of 45S rDNA loci (Roa and Guerra, 2012, 2015).

It is noteworthy that the FISH signals of STR3 are localized in the

centromeric region of chromosome 4, suggesting that STR3 may

represent a centromeric tandem repeat. Additionally, centromeric

repeats are highly conserved within the karyotypes. However, the

STR3 repeat is only detected in a single chromosome pair in pitaya,

and tandem repeats are not conserved between chromosomes may be

due to evolutionary pressures, and its genetics makeup in pitaya (Ma

et al., 2023). The presence of terminal CMA bands observed in this

study appears to be a common characteristic among plant species

(Moreno et al., 2015; Las Peñas et al., 2013, 2009). Variation in

heterochromatic bands has long been utilized for karyotypic

characterization among species, such as in Orchidaceae (Moraes et al.,

2017, 2016; Koehler et al., 2008). The CMA band pattern has proven to

be taxonomically informative in cacti, providing valuable chromosome

markers within the stable karyotypes typical of the Cactaceae family.
Frontiers in Plant Science 09
Conclusions

We developed thirty-three oligo probes from the pitaya

reference genome for mapping in both pitaya and cactus, as well

as for chromosome identification. Ideograms of pitaya and cactus

were illustrated based on oligo-barcodes, rDNA, and tandem

probes. The cactus ideogram was constructed for comparison

with pitaya, revealing that both species exhibit symmetrical

karyotypes. Analysis of the distribution of 45S, 5S rDNA and

CMA across various Cactaceae species highlighted 45S

conservation, while the movement of 5S rDNA in pitaya may

facilitate the creation of additional 5S rDNA sites throughout the

genome. This research utilizes mapped molecular cytogenetic

markers in pitaya and cacti, providing valuable insights into their

cytogenomic structure and evolutionary divergence from a

common ancestor.
Glossary

Karyotyping: A laboratory technique used to analyze an

individual’s chromosomes by arranging and staining them to

create a visual representation known as a karyotype. This process

allows for the identification of the number, size, and shape

of chromosomes.

rDNA Probe: A molecular cytogenetics tool designed to detect

specific DNA sequences related to ribosomal DNA (rDNA). These

probes are typically labeled with a fluorescent marker, enabling

visualization and identification of rDNA presence in various

samples, such as tissues or cells.

Homologous Chromosomes: Pairs of chromosomes that

contain the same genes in the same order, with one chromosome

inherited from each parent within the same species.
FIGURE 7

Illustration of ideograms based on oligo-barcodes, rDNA, tandem repeats probes and CMA banding. (A) pitaya (B) cactus. Scale bars = 10cm and 5µm.
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Cytogenetic Mapping: The process of determining the physical

locations of cytogenetic markers such as oligo sequences, tandem

repeats, telomere repeats, and rDNA along the chromosomes.

Evolution: The study of changes in genetic sequences and the

resulting modifications in biological macromolecules, including

oligos, proteins, and rRNA, over time.
URLs

The Plants Database (National Plant Data Center), http://

plants.usda.gov; POWO (Plants of the World Online), http://

www.plantsoftheworldonline.org.
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