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Recent advances in deep neural networks in terms of convolutional neural

networks (CNNs) have enabled researchers to significantly improve the

accuracy and speed of object recognition systems and their application to

plant disease and pest detection and diagnosis. This paper presents the first

comprehensive review and analysis of deep learning approaches for disease and

pest detection in tomato plants, using self-collected field-based and

benchmarking datasets extracted from real agricultural scenarios. The review

shows that only a few studies available in the literature used data from real

agricultural fields such as the PlantDoc dataset. The paper also reveals

overoptimistic results of the huge number of studies in the literature that used

the PlantVillage dataset collected under (controlled) laboratory conditions. This

finding is consistent with the characteristics of the dataset, which consists of leaf

images with a uniform background. The uniformity of the background images

facilitates object detection and classification, resulting in higher performance-

metric values for the models. However, such models are not very useful in

agricultural practice, and it remains desirable to establish large datasets of plant

diseases under real conditions. With some of the self-generated datasets from

real agricultural fields reviewed in this paper, high performance values above 90%

can be achieved by applying different (improved) CNN architectures such as

Faster R-CNN and YOLO.
KEYWORDS

convolutional neural networks, deep learning, plant disease detection, object detection,
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1 Introduction

The agricultural sector is of vital importance in maintaining

human life and providing essential food resources. Plant health and

accurate and timely diagnosis of plant diseases are of great

importance for human health and the economy of the farmers in

the world. The issue of plant diseases and pests represents a

significant challenge for the agricultural sector. However, plant

diseases and pests represent a significant threat to crop yield and

quality, leading to substantial economic losses and food insecurity.

Among various crops, tomatoes are particularly vulnerable to a

wide range of diseases caused by fungi, bacteria, viruses, and

environmental stressors. The effective detection of plant diseases

can reduce output losses and ensure the long-term sustainability of

agricultural production. This represents a significant challenge for

the implementation of agricultural informatization and intelligent

industry, as well as the realization of high-quality, efficient, and safe

agricultural production (Gong and Zhang, 2023).

Tomatoes are one of the most commonly consumed fruits on a

daily basis. As tomatoes are utilized in a variety of condiments,

including ketchup, sauce, and puree, their global utilization rate is

high. They constitute approximately fifteen percent (15%) of all

vegetables and fruits, with an annual per capita consumption of

twenty kilograms. In Europe, an individual consumes

approximately 31 kg of tomatoes per year. The high demand for

tomatoes necessitates the development of early detection

technologies for viruses, bacteria, and viral contaminations

(Shoaib et al., 2022).

The advent of new technologies has opened up promising

avenues for tackling this challenge. Deep learning (DL), a subset

of artificial intelligence (AI), has emerged as a powerful tool for

image analysis and pattern recognition. Convolutional neural

networks (CNNs), a popular architecture in DL, have

demonstrated remarkable success in a range of image

classification tasks, including object detection, fruit counting,

automated harvesting, and, notably, plant disease detection and

diagnosis. Among ML and DL techniques, CNNs are frequently the

preferred choice for image detection and classification due to their

intrinsic capacity to autonomously acquire pertinent image features

and comprehend spatial hierarchies. CNN algorithms are well-

suited for the classification of plant diseases, offering flexibility

and a feature extractor property that enables the automated

extraction of features Demilie (2024).

The field of object detection technology represents a significant

area of current research interest. It has been developed to address

the shortcomings of traditional methods of disease diagnosis. The

technology is capable of classifying and defining the category of

objects by locating and predicting the position of objects in images

or videos. Object detection algorithms are primarily classified into

two categories: two-stage algorithms and one-stage algorithms.

Two-stage algorithms, exemplified by ResNet, LeNet-5, AlexNet,

GoogLeNet, and Faster R-CNN, comprise a two-step process,

whereas one-stage algorithms, exemplified by SSD, VGG, and

YOLO, comprise a single step. Two-step algorithms exhibit

relatively high accuracy but are constrained by computational

demands and real-time performance (Orchi et al., 2023).
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A considerable number of reviews has been published on the

current status of DL applications in object detection and crop

disease image recognition. An earlier review was presented in

(Ngugi et al., 2021). This paper presents a comparative analysis of

the performance of ten deep learning models on the task of leaf

disease recognition using the well-known PlantVillage dataset

(Hughes and Salathe, 2015). The review by Darwin et al. (2021)

highlighted the merits and demerits of different machine vision and

deep learning techniques along with their various performance

metrics. The authors stated that DL models outperform

conventional image processing techniques with an average

accuracy of 92.51% in diverse agricultural applications. The work

of Li et al. (2021) reviewed studies conducted in the field of plant

leaf disease detection to identify plant leaf diseases using image

processing, hyperspectral imaging, and DL techniques. Publications

from 2019–2020 were considered by the authors. They discussed the

importance of collecting large datasets with high variability, data

augmentation, transfer learning, and visualization of CNN

activation maps in improving classification accuracy, as well as

the importance of detecting plant leaf diseases with small samples

and the importance of hyperspectral imaging for early detection of

plant diseases. Liu and Wang (2021) delineated research on plant

disease and pest detection using DL, focusing on three aspects:

classification networks, detection networks, and segmentation

networks. Additionally, the paper summarized the advantages and

disadvantages of each method. The review in (Dhaka et al., 2021)

undertook a comparative analysis of the pre-processing techniques,

CNN models, frameworks, and optimization techniques applied to

detect and classify plant diseases using leaf images as a dataset. This

paper also presented a survey of the datasets and performance

metrics used to evaluate the efficacy of models. A total of 100

publications were reviewed by Tugrul et al. (2022) based on

detection methods and model performance evaluation,

comparison of popular CNN frameworks, detailed description of

CNN applications in agricultural fields, dataset preparation, the

problem and solution related to plant leaf disease detection, and

publicly released datasets in the relevant field.

The paper by Salman et al. (2023) provides a bird’s eye view of

plant disease datasets, deep learning techniques, their accuracies,

and challenges. A comprehensive review of the latest developments

in object detection algorithms and the underlying concepts behind

these methods is provided by Amjoud and Amrouch (2023). The

paper by Zou et al. (2023) provides an exhaustive review of the

advancements in object detection over the past two decades (1990–

2022). It provides a comprehensive analysis of seminal detectors,

pivotal technologies, accelerated methodologies, datasets, and

performance metrics. Another survey of 70 studies on the

applications of deep learning (DL) and the trends associated with

their use for disease diagnosis and management in agriculture was

presented in reference to the paper by (Ahmad et al., 2023b). A

review of recent research on deep learning models-based plant

disease detection was provided by Shoaib et al. (2023). The authors

focused on publications between 2015 and 2022. In (Attri et al.,

2023), 129 papers (2017–2022) that employ DL applications in

agricultural contexts were examined and classified into five

categories: crop yield prediction, plant stress detection, weed and
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pest detection, disease detection, and smart farming. The study by

Doutoum and Tugrul (2023) presents a review of leaf disease

research in the literature. The total number of papers retrieved

from five electronic databases was 256. Ramanjot et al. (2023)

analyzed existing techniques in terms of data sources, pre-

processing techniques, feature extraction techniques, data

augmentation techniques, models utilized for detecting and

classifying diseases affecting the plant, image enhancement

techniques, overfitting reduction techniques, and accuracy. Peer-

reviewed publications from various databases published between

2010 and 2022 were selected as research papers for this study. The

paper of Zhou et al. (2023) reviewed the application of object

detection methods to the recognition of common plant diseases,

such as tomato, citrus, corn, and pine. It presents various object

detection models, from basic to advanced and sophisticated

networks, and compares the innovative aspects and drawbacks of

commonly used neural network models.

A recent review of crop disease detection with DL was offered by

Ngugi et al. (2024). The review examines the performance analysis

of the latest machine learning (ML) and DL techniques outlined in

the literature. Furthermore, the study reviewed recent research

initiatives, providing an overview of publicly accessible datasets

pertaining to plant diseases. The review by Odounfa et al. (2024) has

provided a detailed analysis of the current state of deep learning

methods employed for the detection and severity estimation of

stresses and pests affecting market garden crops, such as tomatoes,

cucumbers, peppers, and leafy greens. A survey of 135 articles

published between 2017 and 2023 onML and DL image-based plant

disease classification for industrial farming systems was conducted

by Sajitha et al. (2024). Various aspects of these systems, including

the sources of plant datasets, algorithm types and techniques,

are examined.

The most comprehensive, recent, and impressive review is that

of Demilie (2024), who considered 161 publications. The author

summarized the research on disease detection and classification in

plant leaves and crops using deep learning and machine learning,

including the type of plant, techniques/models/algorithms used,

and accuracy. The review revealed that the majority of the included

studies focused on the detection and classification of diseases in

tomato (39%) and rice crops (16%), respectively. This suggests that

the tomato plant is the most extensively researched plant leaf and/or

crop species, highlighting its susceptibility to stress and pest-related

challenges. This prominence can be attributed to the economic

significance of the species and its widespread cultivation (Odounfa

et al., 2024). Saranya et al. (2021) surveyed 38 research works that

applied DL techniques to various research problems in tomato

plant. The paper by Domingues et al. (2022) presented a literature

review on ML techniques used in the agricultural sector, with a

particular focus on the tasks of classification, detection, and

prediction of diseases and pests, with an emphasis on tomato crops.

The main contribution of this paper is providing the first review

of methods and application studies for the detection of diseases and

pests in tomato plants using DL, based on field databases. The

objective is to develop a system for classifying plant diseases based

on the analysis of leaf images collected under real-field conditions.

The objective of the studies reviewed in this paper is not to classify
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the leaves in the images according to their species or plant type, as

this information is already known a priori in real agricultural

situations. Instead, the aim is to identify and classify the disease

or pest present in the images.
2 Scope and methodology of
the review

In the last decade, CNNs have been widely adopted in the field

of image-based disease and pest detection in plants. The present

review focuses on the use of DL methods for the detection of

multiple diseases and pests affecting tomato plants (leafs). Although

a considerable portion of studies have validated DL-based image

recognition models on datasets comprising multiple crop

classification and disease identification, there is a growing interest

in developing deep image-based disease diagnostic models for a

specific crop, assuming that farmers are already aware of the type of

crop they are cultivating (Khatoon et al., 2021). This disease

classification task aims to predict the diseases of plants from leaf

images. Note that “healthy” is also treated as a category of plant

diseases. The task will not only identify whether a plant has a disease

or not but also need to accurately categorise the disease types from

different plants. A model should be able to focus on the diseases and

not be confused by the common patterns from leaves of the same

type (Yao et al., 2024).

To guarantee the reliability of the analysis, it is crucial that only

studies incorporating data exclusively collected for the tomato

species are included. It is therefore imperative that researchers

refrain from attempting to identify the plant type itself from amulti-

plant dataset. The rationale for this is that the present work is

primarily concerned with object recognition models for monitoring

the cultivation of crops, for example, those cultivated

hydroponically, as demonstrated in the work by Schneider et al.

(2024). When considering the practical application of such a model,

it becomes evident that the specific crop currently being cultivated is

typically known. In a hydroponic system, for instance, a single plant

is typically cultivated in a given cycle. It is therefore unnecessary for

a model designed for monitoring these plants to be capable of

differentiating between different species, as the plant species is

always known a priori. The complexity of a model increases in

direct proportion to the number of classes in a dataset that require

differentiation. Furthermore, an increased number of classes can

also have a negative effect on the accuracy of the model,

consequently affecting its metrics. From a practical standpoint,

therefore, the simultaneous prediction of species and diseases is

unnecessary. It can be regarded as an academic exercise at most.

Even in the rare cases where the plant species needs to be identified,

it is best to take a two-stage approach, i.e. to use two independent

CNNs, one for predicting plant species and the other for predicting

disease types within the same plant species; see Figure 1. This

approach separates the two tasks and thus overcomes the problem

of the growth of computational complexity associated with the

simultaneous identification of species and diseases.

Our search, conducted between 2016 and 2024, identified 35

relevant articles. Of these, 27 were original journal publications, 6
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were conference proceedings, 1 was a preprint (Research Square), and

1 was an arXiv article. We chose 2016 to start the search because it

was the year following the publication of the prominent PlantVillage

dataset. In addition, 2016 was the year that Mohanty et al. (2016)

published one of the most cited papers on the topic. In the following

analysis, we focus on papers that address the detection of tomato leaf

diseases and pests using (at least partially) real field datasets. Papers

will not be considered for review in Section 4 if they use only

PlantVillage or analogous datasets for benchmarking purposes.
3 Review of agriculture datasets

The main problem faced by most researchers in this field is the

lack of available datasets. This would greatly affect and restrict the

research of machine learning for plant identification and disease

classification from leaf images. Fortunately, in recent years, several

attempts have been made successfully and researchers have devoted

themselves to the collection of plant disease data, filling the data

availability gap in this area (Chouhan et al., 2020; Yao et al., 2024).

While some of the researchers have worked with the database

provided by a laboratory or research organization, others have

evaluated their work using a self-generated database. PlantVillage,

PlantDoc, IP102, Flavia, and MalayaKew Leaf are among the

datasets that are publicly available.

The pathology for tomato diseases is complex, and the symptom

may manifest on fruit or leaves. Some common diseases include

bacterial spot, which can affect fruit, leaf, and stem, and bacterial

canker, which appears on the crown and above. Other diseases

include early blight, late blight, leaf mold, and septoria leaf spot,
Frontiers in Plant Science 04
which are caused by Alternaria fungus, Phytophthora infestans,

Passalora fulva, and Septoria lycopersici, respectively (Zhou et al.,

2023; Cornell University, 2024). For descriptions of plant diseases

and management practices affecting specific crops, including

tomatoes, the reader is referred to (Cornell University, 2024).

The following is a concise overview of five publicly available

datasets used in many studies (Domingues et al., 2022; Yao

et al., 2024):
• PlantVillage (Hughes and Salathe, 2015): The PlantVillage

dataset has been one of the most frequently utilized public

datasets for research on the identification and classification

of leaf diseases for over a decade. The dataset is available in

multiple versions, including an original version and a data

augmentation version. The original dataset was first

published in 2015 and comprises 54,305 images of

diseased and healthy leaves from 14 plant species,

including apple, blueberry, cherry, corn, grape, orange,

peach, bell pepper, potato, raspberry, soybean, squash,

strawberry, and tomato. Each species is associated with

one to ten distinct disease categories, resulting in a total of

22 unique disease categories. It should be noted that some

species exhibit a tendency to share several diseases. The

dataset comprises a total of 38 unique combinations of

species and diseases, in addition to an additional category of

images lacking leaves (1,143 background images). The

images utilized in Plant Village were captured in a

laboratory setting, rather than in the actual conditions of

cultivated fields, which could potentially influence the

trained model’s effectiveness in real-world scenarios.
FIGURE 1

Separate plant species identification (Stage I) and disease classification processes (Stage II) using independent CNNs.
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• PlantDoc and Cropped PlantDoc (Singh et al., 2020): The

PlantDoc dataset is a non-laboratory-based collection of

images and information pertaining to leaf disease detection.

Most of the images included in the dataset depict diseases

contracted in field conditions. However, the majority of

these images were sourced from online sources, resulting in

a highly variable dataset. The images feature a multitude of

backgrounds, many of which are complex and diverse. The

dataset contains images of similar categories of plant species

and disease types as those found in PlantVillage, with 2,598

leaf images, 13 plant species, and 17 unique diseases. There

are 38 classes for a combination of species and diseases.

PlantDoc is thus considerably smaller than PlantVillage. In

addition to the PlantDoc dataset, Singh et al. (2020) have

also introduced a second dataset, namely the “Cropped

PlantDoc Dataset”, by cropping the images with bounding

box information. This dataset includes low-resolution

cropped images of diseased and healthy leaves from the

original PlantDoc dataset.

• Taiwan Tomato (Huang and Chang, 2020): This dataset

contains 622 photographs of Taiwan tomato leaves

categorized into six groups (five disease categories and

one healthy category). It includes a single leaf, many

leaves, simple background, and complicated background.

• Tomato-Village (Gehlot et al., 2023): This new database

was created when Gehlot et al. attempted to predict tomato

diseases in the field in the Jodhpur and Jaipur districts of

Rajasthan, India, and found that the majority of diseases

were leaf miner, spotted wilt virus, and nutrient deficiency

diseases, but no public datasets were available that included

these categories. Three variants of the dataset were then

established for a) multiclass tomato disease classification,

b) multilabel tomato disease classification, and c) object

detection-based tomato disease detection. Using numerous

plant pathology references, Internet resources, and local

agricultural experts, labels were identified for 3,231 images

taken from three different locations in Rajasthan. These

images may contain one disease (belonging to one label) or

many diseases (having multiple labels). Of the 3,231

images, 2,103 contain one disease, 1,106 contain two

diseases, and 22 contain three diseases. The multiclass

variant of the dataset contains 2,103 images with a single

disease per image, as required for multiclass classification,

while the multilabel variant contains all 3,231 images with

either a single disease or multiple diseases per image. For

the multilabel variant dataset, a CSV file was created with

columns for image name and each disease category, such as

early blight, healthy, late blight, leaf miner, magnesium

deficiency, nitrogen deficiency, potassium deficiency, and

spotted wilt virus (Gehlot et al., 2023).

• FieldPlant (Moupojou et al., 2023): FieldPlant is a relatively

new plant disease dataset of 5,170 annotated field leaf

images collected from plantations in Cameroon, the

world’s tenth largest tomato producer. The dataset focuses

on different diseases in three tropical crops: corn, cassava,

and tomato. The manual annotation of individual leaves on
tiers in Plant Science 05
each image was conducted under the supervision of plant

pathologists to ensure the quality of the process.
Table 1 shows the disease categories included in some selected

tomato disease databases. A comprehensive survey of plant disease

databases is presented in (Mondal et al., 2023). The majority of
TABLE 1 Diseases/categories available in different tomato
disease databases.

Tomato-
related dataset

Tomato
disease category

No.
of images

D1: PlantVillage Bacterial Spot 2,127

Early Blight 1,000

Healthy Leaf 1,591

Late Blight 1,909

Leaf Mold 952

Septoria Leaf Spot 1,771

Spider Mites Two-spotted
Spider Mite

1,676

Target Spot 1,404

Mosaic Virus 373

Yellow Leaf Curl Virus 5,357

Total 18,160

D2 D3

D2: PlantDoc Bacterial Spot 110 273

D3: Cropped PlantDoc Early Blight 88 207

Healthy Leaf 63 391

Late Blight 111 203

Leaf Mold 91 291

Septoria Leaf Spot 151 418

Spider Mites Two-spotted
Spider Mite

3 3

Mosaic Virus 54 254

Yellow Leaf Curl Virus 76 713

Total 747 2,753

D4: Taiwan Tomato Bacterial Spot 880

Black Mold 536

Gray Spot 672

Healthy 848

Late Blight 784

Powdery Mildew 1,256

Total 4,976

D5: FieldPlant Bacterial Wilt 2

Blight Leaf 410

(Continued)
frontier
sin.org

https://doi.org/10.3389/fpls.2024.1493322
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jelali 10.3389/fpls.2024.1493322
published studies have utilized image data obtained from the

PlantVillage dataset. In a controlled laboratory setting, images are

typically composed of a single leaf superimposed on a neutral

artificial background. In contrast, images acquired in the field

exhibit considerably greater complexity than those obtained in a

laboratory setting. This is due to the presence of multiple leaves in a

single image, the inclusion of additional plant parts, variations in

shading and lighting, diverse ground textures, and different

backgrounds; see Figure 2. Accordingly, the PlantVillage database

is not an optimal choice for training deep learning models due to

the prevalence of similar backgrounds and lighting conditions.

Images obtained in a controlled laboratory setting and those

acquired in the field can yield markedly disparate outcomes

and processes (Domingues et al., 2022). The classification of

diseases and pests is significantly more challenging when

images are acquired in the field than in a controlled setting.

PlantDocillustrates that cropping leaves enhances the precision of

CNN architectures when processing in-field images (Singh et al.,

2020). Consequently, it is unsurprising that numerous studies

utilizing PlantVillage yield results with an accuracy exceeding 90%.

In our experience, the PlantDoc dataset is a valuable resource—

it is realistic and diverse, containing information on many different

plant species and diseases. In addition, the dataset is well annotated,

making it easy to use for developing and testing a variety of models.

The dataset described in some detail here comprises a (tomato)

subset of the PlantDoc database. Figure 3 illustrates the class

distribution of the PlantDoc dataset in relation to the instances of
Frontiers in Plant Science 06
the training dataset. Upon examination of the diagram, it becomes

evident that the dataset encompasses not only the 27 officially

mentioned classes but also two additional classes, namely Potato

Leaf and Tomato Two Spotted Spider Mites Leaf. This implies that

the total number of classes in the dataset is 29.

In order to create a model that is as realistic as possible and has

been developed in relation to practical requirements, only one plant

species, i.e., classes of the tomato plant, from the PlantDoc dataset

should be considered. The primary rationale for this is that the

tomato plant is a crop of significant global importance, with a

particularly prominent role in German-speaking regions.

Consequently, it is a highly pertinent subject within the context

of realistic studies. Secondly, the tomato plant in the PlantDoc

dataset contains the most classes within the dataset. This presents

the model to be developed with a sufficient and realistic challenge,

because differentiating between a healthy plant and a single disease,

for example, would not be sufficiently complex to evaluate the

requirements for model quality and the dataset.

The class Tomato Two Spotted Spider Mites Leaf (see Figure 3)

contains a very low number of sample images, and is thus excluded

here. The resulting dataset comprises 2,753 images from 8 distinct

classes, including healthy leaves. Figure 4 shows the class

distribution when considering the tomato plant. The distribution

is somewhat unbalanced, but more balanced than for the entire

PlantDoc dataset. This imbalance could potentially skew the model

towards overrepresented classes, thereby affecting its performance

on underrepresented classes.

In order to gain a better understanding of the data used and the

characteristics of the various disease classes, Figure 5 shows an

example image for each class of the reduced dataset. Figure 6

contains sample images from PlantVillage dataset for the same

diseases as in Figure 5, to show the gap between lab-controlled and

real-life images. The images serve to confirm the complexity of the

various diseases and the similarity of the symptoms. The pictures

show healthy leaves and symptoms of four fungal, two viral, and one

bacterial disease. With regard to the two viral diseases, only

inconspicuous symptoms are displayed, namely, slightly curled

leaves. In the absence of sufficient specialist knowledge, such

symptoms could be mistaken for those of a healthy tomato plant.

The symptoms of fungal and bacterial diseases are consistently

manifested as brown or brown-yellow spots of varying sizes on the

leaves. While Tomato Leaf Late Blight can be readily distinguished

from the other diseases by a relatively large spread of brown spots,

the symptoms of the other diseases are highly similar. Additionally,

Tomato Mold Leaf exhibits a somewhat distinct morphology of

lesions, which can be employed to differentiate this disease from the

others. Tomato Early Blight Leaf, Tomato Septoria Leaf Spot, and

Tomato Leaf Bacterial Spot are all typified by small brown lesions

distributed across the entire leaf. This can lead to difficulties in

differentiating between these diseases, with potential for confusion

between fungal and bacterial diseases. In real-field situations, the

background for tomato diseases is complicated, and the size of

disease spots is small. As weather, lighting, and occlusion affect

imaging, disease spot imaging presents a variety of challenges.
TABLE 1 Continued

Tomato-
related dataset

Tomato
disease category

No.
of images

Brown Spots 1,967

Healthy Leaf 279

Leaf Mosaic Virus 19

Leaf Yellow Virus 115

Total 2,792

D6: Tomato-Village Early Blight 62

Healthy Leaf 216

Late Blight 113

Leaf Miner 1,024

Magnesium Deficiency 117

Nitrogen Deficiency 45

Potassium Deficiency 9

Spotted Wilt 517

Total 2,103

2 diseases 1,106

3 diseases 22

Total 3,231
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These include the potential for diverse postures, blurry details in

symptom features, high missed warnings, and false alarm rates due

to overlapping occlusions (Wang and Liu, 2024).
1 Source of photos: https://pixabay.com/de/photos/tomaten-pflanze-gem

%C3%BCse-lebensmittel-1026096/.

2 Source of photos: https://balkongarten-blog.de/tomatenkrankheiten/.

3 Source of photos: https://plantpath.ifas.ufl.edu/u-scout/tomato/

early-blight.html.
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4 Review of the selected papers
The development of novel methodologies for the early detection

of plant diseases can markedly enhance the potential for increased

agricultural yield. In recent decades, researchers have conducted a

multitude of studies aimed at accurately identifying the presence of

pathogens in diverse crops. The majority of models demonstrated a

high degree of accuracy when typically applied on the PlantVillage

dataset or similar databases, containing leaves photographed in a

single background, which does not reflect the pose of leaves in the
FIGURE 2

Challenges associated with detection and classification of tomato diseases and pests: (A) complex plant environments1, (B) multiple disease types2,
(C) similarity among classes3.
FIGURE 3

Sample (instance/bounding box) frequencies in PlantDoc dataset by plant classes.
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natural environment. However, a significant challenge remains in

ensuring their operational efficacy in non-laboratory settings, such

as those encountered in agricultural fields or greenhouses. In

contrast, some works have employed the PlantDoc dataset or self-

acquired datasets, which comprise data pertaining to diseased and

healthy plants in authentic farmland settings. For the purposes of

this paper, we have limited our investigation to a single plant

species, namely the tomato leaf. Furthermore, our research

encompasses related works that have proposed methodologies for

the detection and classification of plant diseases and pests using

images captured in actual field settings, specifically on agricultural

premises. In nature, tomato diseases and pests are often obscured by
4 Source of photos: https://www.kaggle.com/datasets/abdulhasibuddin/

plant-doc-dataset.
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light and shade, and the branches and leaves are covered or

overlapping. The identification and localization of tomato diseases

and pests under the influence of noise, shadows, overlapping,

different textures, etc. in the images is a much more difficult

problem than under (ideal) laboratory conditions.

Fuentes et al. (2017) used a deep learning-based framework to

detect tomato diseases and pests in real-time, employed three

distinct types of detectors, R-CNN, R-FCN), and SSD. A variety

of convolutional neural network (CNN) architectures were

investigated for potential integration with these detectors,

including: The following CNNs were considered: AlexNet, VGG-

16, GoogLeNet, ZFNet, ResNet-50, ResNet-101, and ResNetXt-101.

It was observed that the application of data augmentation resulted

in an increase in mean Average Precision (mAP) of approximately

30%. Moreover, it was discovered that conventional CNN

architectures, such as VGG16 and ResNet50, demonstrated
FIGURE 5

Images of the individual classes of diseases/pests from PlanDoc dataset4.
FIGURE 4

Sample (instance/bounding box) frequencies per disease for the selected tomato dataset extracted from the PlantDoc database.
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superior performance compared to their deeper counterparts,

including ResNet-101. However, problems related to class

imbalance and false positives remained unresolved. Due to the

lack of samples, some classes such as white fly and leaf mold with

high pattern variation tended to be confused with others, resulting

in false positives or lower average precision.

Subsequent research in (Fuentes et al., 2018) demonstrated

enhanced anomaly recognition accuracy by integrating a bank of

one-class CNN classifiers to refine the decisions made by the Faster

R-CNN. The refinement CNN filter bank effectively mitigated false

positives, leading to a notable improvement in mAP of 96.25%. A

remaining issue is that the learning process is observed to be more

biased towards classes with more samples and variations, due to the

limited training data with significantly unbalanced distribution.

Moreover, the discrepancy between classes due to inter- and

intra-class variations leads to a high number of false positives,

which consequently limits the system to achieve higher accuracy in

the considered complex recognition framework (Fuentes et al.,

2020). To address these problems, an extended version of

Fuentes’ approach was then proposed in (Fuentes et al., 2020),

which achieved a mAP of 96.25%. The cost-effectiveness of the

techniques presented has yet to be demonstrated in large-scale

cultivation fields.

Ahmad et al. (2020) used VGG16, VGG19, ResNet, and

InceptionV3 and fine-tuned CNNs to obtain optimal results on a

tomato leaf dataset containing images of both types, lab-controlled

and in-the-wild, and classified 6 disease classes. According to their

results, InceptionV3 provided an accuracy of 99.60% on lab-

controlled images and 93.70% on field images. Therefore, there is

still room to optimize the considered networks for better

performance on real field-based data.

Chen et al. (2020) proposed a framework for tomato leaf disease

detection, which consists of image denoising and enhancement by

Binary Wavelet Transform combined with Retinex (BWTR),
5 Sou r ce o f pho t o s : h t t p s : / /www . k a gg l e . c om/da t a s e t s /

emmarex/plantdisease.
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removal of noise points and edge points, retention of important

texture information, separation of tomato leaves from the

background using KSW optimized by Artificial Bee Colony

Algorithm (ABCK), and image identification by the Both-channel

Residual Attention Network model (B-ARNet). The application

results showed that the overall recognition accuracy is about 88.43%

based on images taken in natural light using a Nikon camera.

However, the collected image dataset is too small and should be

further enriched to improve the generalization ability of the model,

especially regarding the identification of multiple diseases on the

same leaf. Moreover, the preprocessing part of this network is more

complex and challenging to implement in a real-time recognition

system (Zhang et al., 2023).

Khan and Narvekar (2020) developed a system for classifying

tomato plant diseases, including early blight and late blight, using a

custom CNN. Their system achieved an overall accuracy of 97.25%

using a combined dataset, which was collected from various sources,

including PlantVillage, internet data, and real-world images from

Tansa Farm captured in an uncontrolled environment. However,

this dataset is largely idealized and requires expansion with more

diseases. Only two classes of diseases have been considered so far,

and the dataset is dominated by images from the PlantVillage

dataset, making it more representative of ideal/laboratory

conditions than real field scenarios.

In the paper of Liu and Wang (2020), an improved YOLOv3

algorithm was proposed for tomato disease and pest detection. The

Yolo V3 network was improved by using multi-scale feature

detection based on image pyramid, object bounding box

dimension clustering and multi-scale training. The experimental

results showed that the detection accuracy of the algorithm was

92.39%. Compared with SSD, Faster R-CNN, and the original

YOLOv3, the improved YOLOv3 CNN achieved higher detection

accuracy. Although real field condition images were used for

training, the images were categorized based on pathogens. The

interclass similarity of lesions at different stages can confuse the

CNN and thus cause misclassification (Cheng et al., 2022).

Moreover, the proposed method can only effectively detect

tomato disease and pest targets in the case of slight leaf overlap,
FIGURE 6

Images of the individual classes of diseases/pests from PlantVillage dataset5.
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and there is no satisfactory detection result in the case of large area

occlusion (Wang et al., 2021b).

In (Natarajan et al., 2020), different DL architectures were used

to identify pests and diseases: Faster R-CNN, R-FCN and SSD.

Based on the tomato pest and disease detection study conducted on

field data, the Faster R-CNN deep learning architecture combined

with ResNet provided better performance compared to R-FCN and

SSD; it achieved a mAP of 80.95%. However, Faster R-CNN as a

two-stage object detection method usually requires classification

and regression of a large number of candidate regions in the image,

as well as separate forward inference for each candidate region,

which consumes a lot of computational resources and is not suitable

for real-time scenes. Moreover, the images in the used dataset were

taken from very specific areas in India, and it is still necessary to add

images from other locations.

Ouhami et al. (2020) evaluated the efficacy of deep learning

models, specifically DensNet-161, -121, and VGG-16 with transfer

learning, for the detection of tomato crop diseases in standard RGB

images. The study is based on images of infected plant leaves, which

were divided into six categories: pest attacks, plant diseases, and

other types of infections. The database of images was developed

earlier by El Massi et al. (2016). The results were promising, with an

accuracy of up to 95.65% for DensNet-161, 94.93% for DensNet-

121, and 90.58% for VGG-16. However, the dataset used is too small

and should be expanded with many more real tomato disease

samples from different fields to verify or improve the

model accuracy.

In their study, Sharma et al. (2020) trained two CNNmodels on

a tomato dataset comprising nine disease types and healthy leaves.

The first model, designated F-CNN, employed full leaf images with

diverse backgrounds and disease progression, whereas the second

model, S-CNN, utilized images segmented to include only regions

of interest with disease symptoms. The regions of interest were

selected to encompass multiple lesions of a similar disease. In

comparison to the F-CNN model trained on full images, the S-

CNN model trained on segmented images demonstrated a

significant improvement in performance, reaching an accuracy of

98.6% when tested on an independent dataset that had not been

previously seen by the models, even with 10 disease classes.

However, the proposed detection system had difficulty in cases

where regions contained symptoms of multiple diseases. Masking or

cropping to isolate single disease symptoms could alleviate this

problem to some extent. In addition, the method can be very

sensitive to the quality of the segmentation, which depends on

the human involved in the segmentation (Sharma et al., 2020). Also,

the dataset is dominated by PlantVillage images, which represent

controlled conditions with similar backgrounds and lighting.

Fuentes et al. (2021) proposed and explored a paradigm called

“control to target classes” to improve the performance of their DL-

based detector to deal with changes in new greenhouse conditions

using target and control classes. They created a more extended

dataset than in (Fuentes et al., 2017, 2018), including more classes

and samples, and obtained a recognition rate of 93.37%mAP for the

target classes during inference. The main limitation of the proposed

method is the data imbalance. This issue has a direct impact on the

selection of target classes as the recognition objective of a system.
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The data should be sufficient to capture all the features that the

system may encounter in real greenhouse scenarios (Fuentes

et al., 2021).

The objective of the study conducted by Khatoon et al. (2021)

was to develop an integrated system capable of diagnosing critical

crop issues in real-time with a high degree of accuracy. The

researchers employed a variety of DL models to recognize and

predict different diseases caused by pathogens, pests, and

nutritional deficiencies. A variety of CNNs were trained on a

substantial dataset comprising images of tomato leaves and fruits.

The performance of two distinct network architectures was

evaluated: ShallowNet, a shallow network trained from scratch,

and a state-of-the-art deep learning network, which was fine-tuned

via transfer learning. In their experiments, DenseNet demonstrated

consistent high performance, achieving an accuracy score of 95.31%

on the test dataset. However, the dataset used was not large enough

and showed imbalances.

Wang et al. (2021a) proposed an improved YOLOv3-tiny

method for real-time detection of tomato diseases and pests

under occlusion and overlap conditions in real natural

environment. The results showed that the mAP under three

conditions a) deep separation, b) debris occlusion, and c) leaf

overlapping are 98.3, 92.1, and 90.2%, respectively. In the latter

cases, there is still room to improve the approach and expand the

dataset to include more types of plant diseases and pests. YOLOv3

seems to struggle when applied directly to certain specific detection

objects in complex scenes with varied features.

In another research, Wang et al. (2021b) enhanced the YOLOv3

model for the early detection of tomato pests and diseases in

complex backgrounds, achieving enhanced detection results. The

test results of nine common tomato diseases and pests under six

different background conditions are statistically analyzed. The

proposed method has an F1-score of 94.77% and an mAP value

of 91.81%. The test results show that the method is suitable for the

early detection of tomato diseases and pests using large-scale video

images collected by the Agricultural Internet of Things. However,

the model needs to be improved for issues such as small objects and

occluded objects that tend to be missed or inaccurate positioning of

the detection frame.

For the automatic identification of tomato anomalies in

complex natural environments, Wang and Liu (2021) proposed a

YOLO variant called YOLO-Dense based on the YOLOv3

framework. They added a dense connection module in the

network architecture to improve the network inference speed of

the model, and adopted a multiscale training strategy to improve

the recognition accuracy of objects at different scales. The

experimental results showed that the mAP of the YOLO-Dense

network is 96.41%, surpassing SSD, Faster R-CNN, and the original

YOLOv3 network. However, the dataset used should be expanded

with many more real tomato disease samples from other regions of

the world to verify the achieved model accuracy.

In their paper, Ahuja et al. (2022) put forth a model that

integrates the ResNet and InceptionNet architectures in a novel

approach. The model achieved an accuracy of 99.08% on the

PlantVillage dataset and a reasonable accuracy of 66.06% on the

PlantDoc dataset. Furthermore, the authors propose a method for
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enhancing the detection of diseases in crops in real-world scenarios

by augmenting the number of data points. They also discussed the

potential benefits of deformable convolution, which is capable of

learning various geometric transformations and can improve the

performance of the architecture. However, the model needs to

become more robust and significantly more accurate, especially

for the PlantDoc dataset and similar datasets from real or

natural fields.

Astani et al. (2022) conducted an in-depth analysis and

classification of 13 distinct categories of tomato diseases, utilizing a

combination of subsets of the databases Plantvillage (laboratory

setting) and Taiwan Tomato leaves (farm setting); see (Huang and

Chang, 2020). The Taiwan tomato leaves database comprises images

that have been subjected to a number of challenges, including

fluctuations in brightness, the presence of multiple leaves, the

presence of background clutter, shadows cast upon the leaves, a

reduction in image quality, and the display of diverse textures in

accordance with the conditions prevailing on farms. To this end, 260

ensemble classifiers were devised, employing diverse preprocessing

techniques, distinct feature extraction methodologies, and varying

classifiers. The optimal ensemble classifier attained an accuracy of

95.98%. Furthermore, a comparison was conducted between the

numerous DL models and the 260 proposed ensemble models

within the proposed methodology. The experiments of Astani et al.

(2022) showed that CNN accuracy is very sensitive to the similarity of

training and test data, and that low accuracy is obtained when the

model is trained on lab data, such as PlantVillage, and tested on field

data. In this context, the ensemble strategy should be made robust

and more accurate on field datasets by creating diversity in classifier

models or by changing the number of classifiers.

The work of Cheng et al. (2022) developed a system for

automatic identification of eight tomato disease and pest

categories using images of tomato leaves collected in the field or

greenhouse. The proposed multi-stage system consists of an

anomaly detection model (CNN 1), a disease identification model

(CNN 2), a leaf mold/mildew II discrimination model (CNN 3), and

a chatbot controller. CNN 1 achieved an accuracy of 97.40% in

detecting anomalous images, and CNN 2 achieved an accuracy of

93.63% in categorizing images into the considered tomato disease

and pest categories. Although high performance was achieved

under challenging real field conditions, some unsuccessful cases

of lesion detection and disease and pest identification were observed

using the test images. Since the varieties studied were large

tomatoes, the diseases considered in the dataset (specks, powdery

mildew, systemic disorders, etc.) are somewhat special, i.e. different

from the traditional ones (spots, blights, molds, etc.) found in other

studies. Therefore, the combination of both types of datasets may be

useful in future work.

The work of Liu et al. (2022a) proposed and tested an improved

YOLOv4 algorithm on a self-generated pest dataset. The average

recognition accuracy reached was 95.2%. However, the pest dataset

of this study is relatively small and includes only a few pests and

should be greatly expanded, especially for tomato diseases. Only

then can the performance of the method be definitively determined.

In (Liu et al., 2022b), a neural network named DCCAM-MRNet

was developed using the combination of a filtering algorithm
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(INLM—Integration NonLocal Means) and ResNeXt50 as a

backbone network. The results for tomato leaf disease

identification showed that the DCCAM-MRNet had an accuracy

of 94.3% in identifying tomato leaf diseases. However, the noise

reduction and feature retention capabilities of the image denoising

algorithm it used need to be improved. A more suitable denoising

algorithm for tomato leaf disease images is needed to improve

image quality (Zhang et al., 2023).

In their study, Xu et al. (2022) presented a novel data

augmentation paradigm, called the style-consistent image

translation (SCIT) model, which can adapt variations from one

class to another. Extensive experiments were conducted on three

tasks, image classification, object detection, and instance

segmentation, and suggested that the SCIT algorithm can

improve the performance of various deep learning-based methods

and outperform the state-of-the-art data augmentation methods.

The proposed model obtained a mAP of 68.3%, which is

comparable to the values obtained in other studies, but it is far

from being satisfactory.

Bellout et al. (2023) employed images of tomato leaves from two

datasets, PlantVillage and PlantDoc, and combined them to form a

diverse and comprehensive dataset for the purpose of training the

models under investigation. A comparative analysis was conducted

of four versions of the widely used YOLO (object detection model),

specifically YOLOv5, YOLOX, YOLOv7, and YOLOv8. The results

demonstrated that YOLOv5 achieved the best level of accuracy

among the four versions, with a score of 92.7%. To optimize the

model’s hyperparameters, hyperparameter evolution approaches

were applied, resulting in a notable enhancement, with the

accuracy reaching 93.1%. However, only three different disease

categories (Tomato Late Blight, Tomato Septoria Leaf Spot, and

Healthy) were used in the study. Therefore, the dataset is not

representative of real-world multi-disease scenarios.

With a substantial collection of over 18,160 images pertaining

to tomato diseases, the PlantVillage dataset represents one of the

most comprehensive and extensively studied public repositories of

plant disease data. However, the dataset was created in a laboratory

setting and thus may not reflect the nuances of real-world images.

Models trained on this dataset tend to perform poorly on real-world

images. Some natural or real-world datasets are available, but they

are proprietary and not publicly accessible. To address these

challenges, Gehlot et al. (2023) proposed the creation of a new

publicly available dataset, designated “Tomato-Village,” comprising

three variants: (a) multiclass tomato disease classification, (b)

multilabel tomato disease classification, and (c) object detection-

based tomato disease detection. The three variants of the dataset

have been subjected to analysis using a range of convolutional

neural network (CNN) architectures and models. All variants of the

YOLOv7 and YOLOv8 architectures demonstrated satisfactory

performance, with an mAP50 value approaching 90%. The

YOLOv7 and YOLOv8-m achieved mAP50 of 98.3% and 96.4%,

respectively. YOLOv7 was the best-performing model, but

YOLOv8-m also performed quite well. Additionally, YOLOv8-m

is smaller in size, requires less training time, and has a faster

detection speed (Gehlot et al., 2023). However, the images in the

used dataset were taken from very specific open fields in Jaipur and
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Jodhpur. It is still necessary to add images from other locations, as

well as from real or natural environments, such as polyhouses,

greenhouses, etc. Only then can the robustness of the approach be

finally assessed.

Khan et al. (2023) presented a transformer-based model called

TomFormer (Tomato TransFormer) for tomato leaf disease

detection. They proposed to use a fusion model combining a ViT

and a CNN. TomFormer achieved mAP scores of 87%, 81%, and

83% on the KUTomaDATA (proprietary dataset), PlantDoc, and

PlantVillage datasets, respectively. Surprisingly, TomFormer had a

relatively lower mAP score on the PlantVillage dataset, contrary to

most studies in the literature. This result can be attributed to the

specific challenges of the dataset, where TomFormer has difficulty

distinguishing between diseases with subtle visual differences due to

the uniform background setting Khan et al. (2023).

In the work of Liu and Wang (2023), a tomato disease object

detection method (improved YOLOv6) that integrates prior

knowledge attention mechanism and multi-scale features, called

PKAMMF, was proposed. The experimental results on the home-

made tomato disease dataset from real natural environment

demonstrated the effectiveness of the proposed approach, and it

achieved a mAP of 91.96%, which is an improvement of 3.86%

compared to the baseline methods. However, the performance of

the proposed method should be verified by applying it to datasets

other than those representative of plant diseases in a specific region

of the world (in China).

Rajamohanan and Latha (2023) constructed a customized field

dataset consisting of multiple images of tomato leaves taken with a

mobile phone from agricultural fields in Indian regions and

classified into two categories: healthy and diseased. In their study,

YOLOv5 was used to classify images of tomato leaves into the

respective categories and achieved an accuracy rate of 93% on the

test dataset, which was significantly higher compared to the Faster

R-CNN and EfficientDet mode ls. However, the dataset used

remains small and only representative of plant diseases in a very

specific region of the world (in India), and the proposed method

should be applied to other or expanded datasets.

One limitation of some CNN models is that they do not

perform well with small datasets and fail in cases where samples

have symptoms of multiple diseases or viruses in the same image of

the dataset. Singh et al. (2023) addressed this issue by using transfer

learning with pre-trained models (InceptionV3, VGG-16, and

ResNet-50) to improve classification accuracy. The classification

accuracy for a dataset comprising 5,500 images was determined to

be 86% for a custom CNN, 79% for VGG-16, 91% for ResNet-50,

and 92% for InceptionV3. The classification accuracy was found to

be at least 6% higher when pre-trained deep learning models were

used for transfer learning in comparison to a custom CNN model.

However, the CNNs used have had problems with specimens with

multiple diseases, which can lead to incorrect training and lower

accuracy. Transfer learning with pre-trained models can only

mitigate this problem to a certain extent.

An image-based approach for leaf disease detection in tomato

using PLPNet, a YOLOX-S-based object detection approach for

tomato leaf diseases, was proposed by Tang et al. (2023). The

experimental results show that PLPNet achieved a mAP50 of 94.5%
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and an average recall of 54.4% on a home-grown dataset. The model

is more accurate and specific for tomato leaf disease detection than

other popular detectors such as Faster R-CNN, RetinaNet and

YOLOv4. However, the custom dataset used in this study

eliminated several blurry and low-quality images, which aided

model training. Therefore, the method needs to be evaluated on

other or extended datasets.

A new identification network structure, called Multi-channel

Automatic Orientation Recurrent Attention Network (M–

AORANet), was designed in the paper (Zhang et al., 2023) by

analyzing the characteristics of tomato leaf disease, which has a

superior ability in the tomato leaf disease identification task. The

approach solves the problem of low accuracy in tomato leaf disease

identification caused by image noise and inter-class similarity and

intra-class variability in current identification networks in applications.

Experiments showed that M–AORANet has a recognition accuracy of

96.47% and an F1-score of 93.96%. However, the model developed had

some difficulties in identifying diseased leaves in images that were

obscured by other leaves or objects. The same was true for some images

in which the diseased leaves are in the early stage of the disease and

their characteristics are not yet fully revealed. These two factors made

the M–AORANet network perform poorly in the application, and

should be solved in future work.

Chen et al. (2024) proposed a dual vision transformer (DVT)

classification model that includes densely connected networks and

transformer modules. Experiments showed that the proposed

model achieved 95.4% accuracy on a newly combined dataset.

The paper also proposed a cycle-consistent generative adversarial

network (GAN)-based transformer model to generate diseased

tomato leaf images for data augmentation. The application on the

augmented dataset further improved the accuracy to 97.6%.

However, the dataset should be expanded with more complex,

diverse, and realistic diseases to meet the needs of real-world

applications and improve the generalizability of the model.

Tej et al. (2024) focused on the application of the YOLOv5

algorithm for the simultaneous detection and localization of

multiple plant diseases on leaves. They compared YOLOv5s and

YOLOv5x models and demonstrated the superior performance of

YOLOv5x, which achieved a mAP of 96.5% on a self-generated

dataset collected in the Monastir region of Tunisia. However, as

with the study by Rajamohanan and Latha (2023), the dataset used

remains small and only representative of plant diseases in a specific

region of the world (in Tunisia). In addition, the proposed method

should be further evaluated under more complex conditions with

multiple leaves and occlusions.

Umar et al. (2024) proposed a target detection model based on

an improved version of YOLOv7 to accurately detect and categorize

tomato leaves under harsh field conditions. The university

greenhouse served as the source for a data sample collected from

the leaves of tomato plants. The study achieved an accuracy rate of

98.8%. To facilitate immediate disease detection in remote

agricultural areas, the model framework and computational

requirements must be optimized for placement in resource-

constrained environments, such as those limited by mobile devices.

In their study, Wang et al. (2024) proposed a method for

detecting diseases on tomato leaves based on the fusion of
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attentional mechanisms and multiscale features. Their approach

achieved an average accuracy of 92.9% in the detection of tomato

leaf diseases. However, the method is not effective in dealing with

small disease spots with similar symptoms under complex

backgrounds. Under conditions of light and shadow interference,

the results (for YOLOX and YOLOv6-s) also revealed some false

positives and false negatives, such as misidentifying late blight as

early blight. YOLOv5, YOLOX, YOLOv7, and YOLOv8 showed

poor performance in the handling of occlusions that are present in

the images. Therefore, the proposed model structures still have

room for further improvement, especially when applied to the

public FieldPlant dataset.

Wang and Liu (2024) introduced a real-time tomato disease

detection algorithm using Swin-DDETR, Meta-ACON and IBiFPN,

named TomatoDet, to improve the performance by optimizing the

backbone network, activation functions, and feature fusion

structure. Its effectiveness has been demonstrated by experimental

results, which show improved detection accuracy for tomato

diseases. It outperforms conventional disease detection

algorithms, achieving a mAP of 92.3% on a home-made tomato

disease dataset. However, the dataset used is too small and should

be expanded with many more real tomato disease samples from

different fields to verify the achieved model accuracy.

Zhong (2024) improved four types of loss functions and

replaced the backbone network of YOLOv8 to make the model

more accurate. The new YOLOv8 version (with FasterNet as the

backbone) had an mAP of 84.5%. However, this performance level

is still moderate and the model structure should be improved to

achieve higher accuracy in tomato disease detection.
5 Studies analysis and discussion

The results given in Table 2 show that the performance differs

significantly across the benchmark datasets and the CNN networks.

Figure 7 shows the distribution of the reviewed studies across the

four main categories of dataset sources (Self-generated, PlantDoc,

Combined, and Taiwan) considered in the studies. Note again that

the PlantVillage dataset is only relevant here for studies that used it

in combination with other datasets, i.e. in the “Combined” category.

The largest dataset used in this context was that constructed by

Khatoon et al. (2021). It can be seen that self-generated datasets are

the most common source of data. The largest self-generated dataset

from a real natural environment was that of Wang and Liu (2021).

Combined datasets rank second. Despite being a valuable resource,

the PlantDoc dataset is surprisingly underutilized.

Figure 8 shows the distribution and number of studies

categorized by the CNN architecture used in the field of disease

recognition of tomato leaf diseases, utilizing at least partially real-

field datasets. Among the summarized studies, YOLO (v3 to v8) was

the most widely used architecture. YOLO models can strike a

balance between computational complexity and recognition

accuracy to some extent (Sajitha et al., 2024), and are therefore

well suited for early detection of tomato leaf diseases. The next most

commonly used CNNs belong to the R-CNN family (R-CNN,

Faster R-CNN, Mask R-CNN). SDD was also employed in many
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studies. It seems that ResNet is still often considered the baseline.

Transformer models are on the rise and their use will probably

increase even more in the future. Transformer networks are well

suited to the task of feature extraction because they can discover

long-range dependencies in data sequences. This is important in

tomato leaf disease detection, where symptoms of different diseases

often appear in different parts of the leaf (Khan et al., 2023). Thus,

transformers are combined with CNNs to perform the entire

detection task.

Figure 9 shows the average performance of CNN models used

for tomato disease and pest detection in the reviewed studies. The

average performance across all models and all papers is 84.66%.

Taking just the 7 papers that used PlantVillage subsets, the average

performance was 90.18%. Even with self-generated datasets from

real agricultural fields, high performance values can be exemplary

achieved, i.e., values above 90%. This was the case for Faster R-CNN

(Fuentes et al., 2018, 2020) with 96%, InceptionV3 (Ahmad et al.,

2020) with 93.70%, DenseNet (Ouhami et al., 2020) with 94.93%,

and Xception (Astani et al., 2022) with 93.81%. It is well known that

(Faster) R-CNN-based methods can be very accurate, but are not

suitable for real-time detection. However, the high accuracy of R-

CNN-based models cannot be confirmed here for tomato disease

detection using at least partially real field datasets. The average

performance of these models across all studies was 78.63% (see

Figure 9). The RCNN series of algorithms typically require

classification and regression of a large number of candidate

regions in the image, as well as separate forward inference for

each candidate region, which consumes a lot of computational

resources and is not suitable for real-time scenes (Zhong, 2024).

However, tomato diseases and pests should be detected at an early

stage, i.e. in real time, which is important to avoid or reduce the

economic loss caused by the disease or pest.

The best CNN architectures and more on the rise are the YOLO

variants due their high accuracy and real-time performance. Metrics

above 90% have been achieved for improved YOLOv3 by Liu and

Wang (2020); Wang et al. (2021b), YOLOv3-Dense by Wang and

Liu (2021), improved YOLOv3-tiny by Wang et al. (2021a),

YOLOv4 by Cheng et al. (2022), SE-YOLOv5 by Qi et al. (2022),

YOLOv5 by Rajamohanan and Latha (2023), YOLOv5s and

YOLOv5x by Tej et al. (2024), improved YOLOv6 and YOLOX

by Wang et al. (2024), improved YOLOv7 by Umar et al. (2024),

YOLOv5s and YOLOv8s by Bellout et al. (2023), and YOLOv8n by

Wang and Liu (2024). On average, YOLO models achieved

performance values of 86.59% in all the studies considered. A

similarly good average performance was achieved by VGGNet

with 86.83%. However, the VGGNet architecture has a large

number of parameters, which makes it computationally expensive

and memory intensive (Singh et al., 2023). As mentioned above, the

transformer models are becoming more popular. They also deliver

high performance values, with an average of 86.56%. The highest

performance (92.58% on average) was achieved by custom CNNs in

the studies by (Khan and Narvekar, 2020), Singh et al. (2023), and

Tang et al. (2023). However, datasets dominated by PlantVillage

data were used in all three studies.

Our analysis can confirm that it is considerably more

challenging for CNN models to identify diseases in raw field
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TABLE 2 Comparative analysis of existing methods for the recognition of tomato leaf diseases, utilizing at least partially real-field datasets.

Ref. (Year) Data source (dataset size: # of images) –
Disease/pest classes

Performance metric: CNN architecture
—value

Fuentes et al. (2017) Self-acquired images on farms located in Korea (5,000) – 10
classes: Leaf Mold, Gray Mold, Canker, Plague, Miner, Low
Temperature, Powdery Mildew, Whitefly, Nutritional
Excess, Background

mAP: Faster R-CNN with VGG-16/ResNet-50/
ResNeXt-50—83.0/75.37%/71.1%, SSD with
ResNet-50—82.53%, R-FCN with ResNet-50—85.98%

Fuentes et al. (2018) Self-acquired images (8,927) – 10 classes: Leaf Mold, Gray Mold,
Canker, Plague, Miner, Low Temperature, Powdery
Mildew, Whitefly, Yellow Leaf Curl, Nutritional Excess

mAP: Faster R-CNN with VGG16 feature extractor—96%

Ahmad et al. (2020) Self-acquired data from various fields in a natural uncontrolled
environment (317) – 6 classes: Healthy, Late Blight, Septoria Leaf
Spot, Yellow-Curved

Accuracy: VGG16—84.10%, VGG-19—86.30%, ResNet—
91.30%, InceptionV3—93.70%

Chen et al. (2020) Self-acquired data at the demonstration base of Hunan Vegetable
Institute, Changsha, China (2,716) – 5 classes: Early Blight,
Late Blight, Citrinitas Leaf Curl, Leaf Mold, Bacterial Leaf Spot

Accuracy: AlexNet—83.62%, ResNet-50—84.16%, ARNet
—85.12%, B-ARNet—88.43%

Fuentes et al. (2020) Self-acquired images in real-field scenarios (8,927) – 11 classes:
Leaf Mold, Gray Mold, Canker, Plague, Miner, Low
Temperature, Powdery Mildew, Whitefly, Nutritional Excess,
Yellow Leaf Curl, Background

mAP: Faster R-CNN with VGG-16—82.55%, Refinement
Filter Bank—96.25%

Khan and Narvekar (2020) Subset of PlantVillage (9,000) + Internet data (4,298) + data from
Tansa Farm (250) – 3 classes: Early Blight, Late Blight, Healthy

Accuracy: Custom CNN—97.25%

Liu and Wang (2020) Self-built dataset from real natural environment (15,000) – 12
classes: Early Blight, Late Blight, Yellow Leaf Curl Virus, Brown
Spot, Coal Pollution, Gray Mold, Leaf Mold, Navel
Rot, Leaf Curl Disease, Mosaic, Leaf Miner, Greenhouse Whitefly

Accuracy: Improved YOLOv3—92.39%,
YOLOv3—88.31%, SSD—84.32%, Faster R-CNN—90.67%

Natarajan et al. (2020) Self-acquired images in tomato farms in Kallur, Mangapuram, and
Piller in Andhra Pradesh, India (1,090) – 5 classes: Early Blight,
Leaf Curl, Septoria Leaf Spot, Healthy, Bacterial Spot at Early

mAP: Faster R-CNN—80.95%

Ouhami et al. (2020) Self-acquired images in farms in the area of Sous Massa, Morocco,
extended with images collected from Internet (666) – 6 classes:
Early Blight, Late Blight, Powdery Mildew, Leaf Miner Flies,
Thrips, Tuta Absoluta

Accuracy: DenseNet-161—95.65%,
DenseNet-121—94.93%, VGG-16—90.58%

Sharma et al. (2020) Subset of PlantVillage (16,579) + Internet images (637) – 10
classes: Bacterial Spot, Early Blight, Healthy, Late Blight, Leaf
Mold, Septoria Leaf Spot, Spider Mite, Target Spot, Tomato
Mosaic Virus, Yellow Leaf Curl Virus

Accuracy: Custom F-CNN—42.3%, S-CNN—98.6%

Fuentes et al. (2021) Self-acquired images on farms located in Korea (1,981) – 5 classes:
Leaf Mold, Canker, Gray Mold, Yellow Leaf Curl Virus,
Powdery Mildew

mAP: VGG-16—87.06%, ResNet-50—87.34%, ResNet-50
FPN—89.78%

Khatoon et al. (2021) Subset of PlantVillage, extended with data from agriculture farms
of King Faisal University, Alahsa, Saudi Arabia, under natural
conditions (23,716) – 24 classes: Mosaic Virus, Bacterial Spots,
Yellow Leaf Curl Virus, Late Blight, Early Blight, Leaf Mould,
Septoria Leaf Spot, Target Spot, High Temperature, Powdery
Mildew, Leaf Miner, Two-spotted Spider Mite, Whitefly, Melon
Fly, Melon Thrips, Green Peach Aphid, Taro Caterpillar, Beet
Armyworm, Cotton Bowl Worm, Nitrogen Deficiency, Potassium
Deficiency, Calcium Deficiency, Magnesium Deficiency,
Tomato Healthy

Accuracy: ShallowNet-8—78.05%,
VGGNet-16—80.32%, ResNet-50—92.01%,
ResNet-152—90.85%, DenseNet-121—95.31%

Wang and Liu (2021) Self-built dataset from real natural environment (15,000) – 12
classes: Early Blight, Late Blight, Yellow Leaf Curl Virus, Brown
Spot, Coal Pollution, Gray Mold, Leaf Mold, Navel
Rot, Leaf Curl Disease, Mosaic, Leaf Miner, Greenhouse Whitefly

mAP: YOLOv3-Dense—96.41%, YOLOv3—88.31%, SSD
—84.32%, Faster R-CNN—90.67%

Wang et al. (2021a) Self-acquired dataset from an experimental tomato planting base
in Shouguang City, Shandong Province, China (5,000) – 12
classes: Early Blight, Late Blight, Yellow Leaf Curl Virus,
Brown Spot, Coal Pollution, Gray Mold, Leaf Mold, Navel Rot,
Leaf Curl Disease, Mosaic, Leaf Miner, Greenhouse Whitefly

mAP: Improved YOLOv3-tiny—93.1%, R-CNN—86.6%,
Mask R-CNN—87.1%, SSD—85.3%, YOLOv3—88.8%,
YOLOv3-tiny—88.1%

(Continued)
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TABLE 2 Continued

Ref. (Year) Data source (dataset size: # of images) –
Disease/pest classes

Performance metric: CNN architecture
—value

Wang et al. (2021b) Self-acquired dataset/videos from an experimental tomato planting
base in Shouguang City, Shandong Province, China (10,696) – 12
classes: Early Blight, Late Blight, Powdery Mildew, Spot Blight,
Gray Mold, Leaf Mold, Gray Leaf Spot, Leaf Miner, Whitefly

F1-score: Improved YOLOv3—94.77%,
YOLOv3—91.43%, Faster R-CNN—89.04%, SSD—88.45%

Ahuja et al. (2022) Subset of PlantDoc (741) – 8 classes: Leaf Mold, Bacterial
Spot, Septoria Spot, Early Blight, Late Blight, Yellow Virus, Mosaic
Virus, Healthy

Accuracy: ResNet-50—26.5%, InceptionResNet—66.0%

Astani et al. (2022) 10 classes of Plantvillage (laboratory conditions) + 6 classes of
Taiwan tomato leaves (farm conditions) – Bacterial Spot, Early
Blight, Healthy, Late Blight, Leaf Mold, Septoria Leaf Spot, Spider
Mites, Target Spot, Mosaic Virus, Yellow Leaf
Curl Virus, Powdery Mildew, Gray Spot, Black Mold

Accuracy: Different ensemble classifiers (ML models)—
84.80–86.95%, DenseNet-169—93.66%,
EfficientNet-B4—92.83%, Xception—93.81%,
InceptionResNetV2—91.98%

Cheng et al. (2022) Images collected in fields or greenhouses at Taiwan Agricultural
Research Institute (8,770) – 8 classes: Early Blight Early, Bacterial
Spot Early, Target Spot Early, Gray Leaf Spot, Bacterial Spot Late,
Powdery Mildew I, Early Blight Late, Target Spot Late, Leaf Mold,
Powdery mildew II, Late Blight, Leaf
Miner, Tomato Chlorosis Virus, Tomato Yellow, Leaf Curl Virus

Accuracy: YOLOv4—93.63%

Liu et al. (2022a) Pest images collected in the tomato greenhouse in Shouguang
(Shandong, China) (2,893) – 4 classes: Whitefly, Aphid,
Leafminer, Other

mAP: Improved YOLOv4—93.4%, YOLOv4—87.1%,
YOLOv3—73.6%, SSD—72.3%, Faster R-CNN—68.7%

Liu et al. (2022b) Dataset from the Hunan Academy of Agricultural Sciences
(Changsha, China) demonstration base, compiled using data from
tomato greenhouses and the Internet (2,731) – 6 classes: Leaf
Mold, Septoria Leaf Spot, Yellow Leaf Curl Virus,
Mosaic Virus, Target Spot, Two-spotted Spider Mite

Accuracy: ResNeXt-50—85.6%,
ResNeXt-50-CA—90.2%, DCCAM-MRNet—94.3%

Xu et al. (2022) Images collected from different real farms (999) – 6 classes:
Healthy, Powdery Mildew, Canker, Leaf Mold, Tomato Chlorosis
Virus, Magnesium Deficiency

mAP: Faster R-CNN—51.5%, Mask R-CNN—56.6%,
YOLOv3—32.6%

Bellout et al. (2023) Subset of PlantVillage (3,000) + subset of PlantDoc (325) – 3
classes: Septoria Leaf Spot, Late Blight, Healthy

Accuracy (training): YOLOv5s—92,7%, YOLOXs—89,3%,
YOLOv7-tiny—87,6%, YOLOv8s—92,2%

Gehlot et al. (2023) Tomato-Village/variant(c)–object detection-based dataset from the
field in the Jodhpur and Jaipur districts of Rajasthan, India
(1,796) – 8 classes: Early Blight, Healthy, Late Blight, Leaf Miner,
Magnesium Deficiency, Nitrogen Deficiency, Potassium Deficiency,
Spotted Wilt Virus

mAP: YOLOv8-n—87.2%, YOLOv8-s—93.1%,
YOLOv8-m—96.4%, YOLOv7—98.3%,
YOLOv7-tiny—91.3%

Khan et al. (2023) KUTomaDATA: Images captured within greenhouses in Al Ajban,
Abu Dhabi, United Arab Emirates (939) – 8 classes:
Healthy, Bacterial Spots, Early Blight, Late Blight, Leaf Mold,
Septoria Leaf Spot, Mosaic Virus, Yellow Leaf Curl

mAP: TomFormer—87%, YOLOS—80%, DETR—82%,
ViT—73%, SwinTransformer—78%

Khan et al. (2023) Subset of PlantDoc (700) – 8 classes) mAP: TomFormer—81%, YOLOS–77%, DETR—79%,
ViT—71%, SwinTransformer—76%

Liu and Wang (2023) Self-acquired dataset from the tomato planting base in Shouguang
City, Shandong Province, China (10,000) – 10 classes: Early
Blight, Late Blight, Bacterial Spot, Gray Leaf Spot, Gray Mold, Leaf
Mold, Yellow Leaf Curl Virus, Mosaic Virus, Canker, Anthracnose

mAP: PKAMMF ((improved YOLOv6))—91.96%,
Faster-R-CNN—70.73%, SSD—72.54%,
YOLOv3—78.62%, YOLOv4—80.37%,
YOLOv5—88.98%, YOLOv7—88.10%

Rajamohanan and Latha (2023) Images collected from the farm of the Department of Agriculture,
Karunya Institute of Technology and Sciences in Coimbatore,
TamilNadu and Deesan Farm in Palakkad, Kerala,
India (2,311) – 2 classes: Healthy, Diseased)

mAP: EfficientDet—35%, Faster R-CNN—45%, YOLOv5
—93%

Singh et al. (2023) Subset of PlantVillage + Internet images (5,500) – 9 classes:
Bacterial Spot, Early Blight, Healthy, Late Blight, Leaf Mold,
Septoria Leaf Spot, Spider Mite, Target Spot, Tomato Mosaic
Virus, Yellow Leaf Curl Virus

Accuracy: Cutom CNN—86%, ResNet-50—79%, VGG-16
—91%, InceptionV3—92%

(Continued)
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images than in other forms of data. As expected, when the training

and test sets are identical, the presence of extraneous visual

elements, such as noise backgrounds and an abundance of foliage

in the raw images, impairs the models’ capacity to accurately assess

their performance, as stated by (Moupojou et al., 2023). In our

comparison, this can be concluded from the results of the studies by

Khan and Narvekar (2020) with 97.25%, Sharma et al. (2020) with

98.6%, Khatoon et al. (2021) with 95.31%, and Astani et al. (2022)
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with 93.81%. These studies used combined datasets dominated by a

subset of PlantVillage.

The discrepancy between the results obtained with PlantVillage

and those obtained with PlantDoc can be seen in (Ahuja et al., 2022)

and (Khan et al., 2023). This is not surprising, because the images in

PlantDoc are more complex with noisy backgrounds and there can

be multiple leaves in one image (Yao et al., 2024). In contrast,

PlantVillage uses images collected in a laboratory setting, so it does
TABLE 2 Continued

Ref. (Year) Data source (dataset size: # of images) –
Disease/pest classes

Performance metric: CNN architecture
—value

Tang et al. (2023) Subset of PlantVillage (filtered images) (3,524) + self-acquired
images from Internet (1,909) – 6 classes: Late Blight, Bacterial
Spot, Septoria Leaf Spot, Leaf Mold, Early Blight, Healthy

mAP50: Faster R-CNN—72.6%, YOLOX-s—86.8%,
PLPNet—94.5%, RetinaNet—73.5%, YOLOv4—79.9%,
YOLOv5-s—84.7%

Zhang et al. (2023) Self-acquired images at the experimental tomato base of the
Hunan Institute of Plant Protection, Changsha, China (1,850)
+ subset of PlantVillage (1,273) – 7 classes: Bacterial Spot, Early
Blight, Leaf Mold, Septoria Leaf Spot, Yellow Leaf Curl
Virus, Healthy

Accuracy: M–AORANet—96.47%, ResNet-50—87.20%,
MobileNetV3—91.23%, ViT—92.46%,
SwinTransformer—92.78%, B-ARNet—89.83%

Chen et al. (2024) Images collected online + images from a real greenhouse (3,820) –
8 classes: Bacterial Spot, Early Blight, Late Blight, Leaf Mold,
Mosaic Virus, Healthy, Spectoria Leaf Spot, Yellow Leaf Curl Virus

Accuracy: DVT—95.4% (original), 96.5% (with
augmentation using cyclic GAN)

Tej et al. (2024) Self-generated dataset collected from greenhouses located in Bkalta
in the region of Monastir, Tunisia (500) – 6 classes:
Healthy, Leaf Miner, Oidium, Nutrient Deficiency, Mildew, Yellow
Curve Virus

mAP: YOLOv5s—94.8%, YOLOv5x—97.6%

Umar et al. (2024) Self-acquired dataset from the University Plant Nursery
(10,337) – 8 classes: Bacterial Spot, Early Blight, Late Blight, Leaf
Mold, Mosaic Virus, Septoria Leaf Spot, Yellow Curl
Virus, Healthy

Accuracy: CNN/Improved YOLOv7—98.8%

Wang and Liu (2024) Self-acquired dataset from a tomato cultivation facility in
Shouguang City, Shandong Province, China (2,000) – 5 classes:
Late Blight, Gray Leaf Spot, Brown Rot, Leaf Mold, Healthy

mAP: Custom DCNN (Transformer +
YOLOv8n)—79.3%, Faster R-CNN—79.8%,
YOLOXs—80.9%, YOLOv5s—81.7%,
YOLOv7-tiny—83.6%, YOLOv8n—92.3%

Wang et al. (2024) Subset of tomato dataset on the roboflow1 platform (Bryan, 2023)
(4,659) – 6 classes: Healthy, Leaf Mold, Leaf Miner,
Early Blight, Late Blight, Septoria Leaf Spot

mAP: Improved YOLOv6—93.8%, YOLOX—90.5%,
YOLOv5—85.6%, YOLOv6—91.1%,
YOLOv6-s—89.1%, YOLOv7—88.6%,
YOLOv8—89.8%

Zhong (2024) Dataset collected from tomato leaves in a real environment
(3,362) – 10 classes: Healthy, Early Blight, Late Blight, Leaf Miner,
Leaf Mold, Mosaic Virus, Septoria, Spider Mites, Yellow Leaf,
Curl Virus

mAP50: YOLOv8n—84.3%, YOLOv8 with FasterNet as
backbone—84.50%,with HGNetV2—80.4%, with
GhostNet—81.0%
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not address conditions that occur in actual agricultural scenarios

(Fuentes et al., 2017). The discrepancy between the outcomes

observed with PlantVillage and those obtained with PlantDoc has

also been documented by Ahmad et al. (2023a) (for corn disease

identification) and Balafas et al. (2023) (for simultaneous

identification of species and diseases). In a recent study, Yao et al.

(2024) examined the efficacy of diverse CNN backbones and

learning methodologies, conducting a comprehensive experiment

on the three benchmark datasets: PlantVillage, Plant Leaves, and

PlantDoc. The accuracy and F1-scores were above 80% for

PlantVillage and Plant Leaves, with many values exceeding 90%.

In contrast, the values for PlantDoc ranged from 40% to 50%.

In the study by Moupojou et al. (2023), a series of revealing

experiments were conducted on three datasets, namely PlantVillage,

PlantDoc, and FieldPlant, with the objective of evaluating the

performance of several cutting-edge CNNs (YOLOv8, SSD

MobilenetV2, and Faster R-CCN-InceptionResNet) in identifying

leaves and diseases from both raw images and cropped images. The
Frontiers in Plant Science 17
latter were obtained by cropping the initial annotated images using

bounding box information. The following observations and

conclusions were derived from the aforementioned experiments

(Moupojou et al., 2023; Mashamba et al., 2024; Chen et al., 2024):
• The accuracy of the models was diminished when they are

trained on PlantVillage and tested on PlantDoc or

FieldPlant, due to the considerable discrepancy in the

structure between the training and test datasets.

• The outcomes yielded by FieldPlant were markedly superior

to those obtained by PlantDoc. This discrepancy may be

attributed to the fact that FieldPlant contains a more

extensive dataset for model training. It is also possible

that the inclusion of both field and laboratory images in

PlantDoc may had influenced the results.

• Experiments conducted on the cropped images

demonstrated that the models exhibited optimal

performance when trained and tested on PlantVillage,
FIGURE 8

CNN architectures applied in the reviewed studies.
FIGURE 9

Comparison of the performance (accuracy) of CNN models for tomato disease/pest detection from the results reported in the reviewed studies.
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Fron
which featured a single leaf per image with a uniform

background. The efficacy of the models was diminished

when they were trained and tested on Cropped FieldPlant

or Cropped PlantDoc data. Additionally, the complex

backgrounds of the cropped images contribute to this

discrepancy, as they are not always consistent between

two images, even when they identify the same disease.

The results were inferior when the models were trained

on PlantVillage and tested on Cropped FieldPlant or

Cropped PlantDoc, due to the significant discrepancy in

image structure. The models are unable to produce accurate

results due to the presence of background noise and the

inclusion of scrap leaves in the images.

• Experiments in object detection on the PlantDoc and

FieldPlant datasets demonstrated that PlantDoc exhibits

superior performance in identifying individual leaves

from raw images collected in the field. The presence of

some laboratory images with uniform backgrounds in the

PlantDoc dataset appears to significantly enhance its

performance in object detection. Conversely, some plant

leaves are only partially visible in certain images of

FieldPlant, which could potentially have a detrimental

impact on object recognition and detection tasks.

• For all categories of datasets that are unbalanced and have

insufficient sample sizes, data augmentation by synthesizing

new tomato disease images improves the robustness and

generalization of the classification models.
These guidelines offer valuable insight into the selection of an

appropriate database. However, it should be noted that the findings

of the study by (Moupojou et al., 2023) were derived from a multi-

plant context, which is not within the scope of the review presented

in Section 4. The same applies to Yao et al. (2024) who investigated

the effectiveness of different backbone CNNs and learning

approaches for plant identification and disease classification using

“mixed” plant-leaf images as input data.

Given that tomato diseases and pests can vary in different

regions of the world due to factors such as shape, variety and

environmental conditions, most of the real field or natural

environment datasets used in the reviewed studies contain only a

limited number of categories of local or regional plant diseases and

pests. Therefore, there is still a great need to compile much larger

databases, including diseases and pests from different regions of the

world, and to apply DL approaches to such diversified datasets.
6 Conclusions

Agriculture is suffering from a number of problems; plant

diseases and pests are contributing as the most devastating factor.

Diseases on the leaves of tomato plants have a negative impact on

both quality and yield. Deep learning has shown great potential in

improving tomato disease and pest detection, offering high accuracy
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and efficiency compared to traditional methods. A large number of

studies have shown that CNN models have been successfully

applied to tomato plant disease and pest detection, with excellent

performance on ideal/laboratory datasets.

However, it still needs further development before it can be

considered a reliable and widely applicable technology for use in

real-world scenarios. To the best of our knowledge, this is the first

review, which covers only those studies available in the literature

that used data from real agricultural fields. It has been shown that

there are only a relatively small number of such studies. With some

self-generated datasets from real agricultural fields, high

performance values above 90% can be achieved by applying

different (improved) CNN architectures such as Faster R-CNN

and YOLO. For real-time detection, the YOLO Series algorithms

are the preferred methods due to their excellent balance between

speed and accuracy. Given these common yet challenging problems

in complex natural environments, there is still a need to improve the

accuracy of existing methods for detecting tomato leaf diseases. In

addition, most of the performance values are lower than those

obtained using datasets collected in a laboratory setting such as

PlantVillage. However, many of the natural or real-world datasets

found in this review are still private and not publicly available.

Future research should address these challenges by developing

more robust, explainable, and field deployable models. In

subsequent research, we intend to investigate a larger number of

classification and object detection algorithms on a wider range of

datasets, including diverse diseases and pests from different regions

of the world. In the medium term, the integration of these models

with IoT and edge computing platforms holds promise to transform

agricultural practices, leading to more sustainable and efficient crop

management. This requires models that are not only accurate but

also lightweight and computationally efficient.
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