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Chlorophyll content is a vital indicator for evaluating vegetation health and

estimating productivity. This study addresses the issue of Global Ecosystem

Dynamics Investigation (GEDI) data discreteness and explores its potential in

estimating chlorophyll content. This study used the empirical Bayesian Kriging

regression prediction (EBKRP) method to obtain the continuous distribution of

GEDI spot parameters in an unknown space. Initially, 52 measured sample data

were employed to screen the modeling parameters with the Pearson and RF

methods. Next, the Bayesian optimization (BO) algorithmwas applied to optimize

the KNN regression model, RFR model, and Gradient Boosting Regression Tree

(GBRT) model. These steps were taken to establish the most effective RS

estimation model for chlorophyll content in Dendrocalamus giganteus (D.

giganteus). The results showed that: (1) The R2 of the EBKRP method was

0.34~0.99, RMSE was 0.012~3,134.005, rRMSE was 0.011~0.854, and CRPS

was 965.492~1,626.887. (2) The Pearson method selects five parameters

(cover, pai, fhd_normal, rv, and rx_energy_a3) with a correlation greater than

0.37. The RF method opts for five parameters (cover, fhd_normal, sensitivity,

rh100, and modis_nonvegetated) with a contribution threshold greater than

5.5%. (3) The BO-GBRT model in the RF method was used as the best estimation

model (R2 = 0.86, RMSE = 0.219 g/m2, rRMSE = 0.167 g/m2, p = 84.13%) to

estimate and map the chlorophyll content of D. giganteus in the study area. The

distribution range is 0.20~2.50 g/m2. The findings aligned with the distribution of

D. giganteus in the experimental area, indicating the reliability of estimating forest

biochemical parameters using GEDI data.
KEYWORDS

remote sensing, EBKRP method, modeling factor selection, Bayesian optimization
algorithm, chlorophyll content, estimation
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1 Introduction

Chlorophyll content, as an important indicator of plant

nutritional stress, photosynthetic capacity, growth, and

senescence, plays a crucial role in assessing forest health and

stand productivity (Qi and Zhang, 2016; Guo et al., 2023).

Dendrocalamus giganteus (D. giganteus) is very important in

maintaining the balance of forest ecosystems, addressing global

warming, and contributing to carbon sequestration and emission

reduction (Ni et al., 2023). The conventional approach for

determining chlorophyll content is the spectrophotometer

method. However, this method demands the destruction of a

substantial number of plants, and there may be losses during the

transportation process (Madeira et al., 2000). Moreover, it can only

acquire representative sampling data from leaves, which fails to

fulfill the requirements of research on the spatial distribution and

variation of chlorophyll content in large-scale forests (Xu et al.,

2019), thus limiting its applications in forestry. Therefore, how to

efficiently, cost-effectively, and accurately estimate the chlorophyll

content of D. giganteus at the regional level is an urgent problem

that needs to be resolved in the qualitative and quantitative analysis

of chlorophyll. Since the remote sensing (RS) method offers the

advantages of being nondestructive, real-time, efficient, and

accurate (Yao et al., 2019; Ahmad et al., 2022; Qiao et al., 2022;

Wu et al., 2023), this study aims to estimate forest chlorophyll

content on a regional scale using high-quality standard sampling

data in combination with remote sensing data, thereby providing

support for the scientific management of forest resources.

At present, the most widely used data for estimating chlorophyll

content is optical RS data, such as Landsat series and Sentinel-2 data

(Houborg et al., 2015; Vermote et al., 2016; Yang et al., 2023), and

mainly focuses on extracting spectral features from optical RS

images (Boucher et al., 2018; Cao et al., 2020; Cheng et al., 2022;

Liu et al., 2024) to explore its relationship with vegetation

chlorophyll content. However, research on estimating chlorophyll

content using Global Ecosystem Dynamics Investigation (GEDI)

data is almost blank. Compared to optical RS images, GEDI data

acquisition is not limited by external environmental conditions. It

has the advantages of strong penetration ability, fast capture of

three-dimensional information on forest vegetation (Zhu et al.,

2022; Xu et al., 2023; Zhou et al., 2024), and wide data coverage

(Potapov et al., 2021; Zhou et al., 2024). In addition, the
Abbreviations: D. giganteus, Dendrocalamus giganteus; RS, remote sensing;

LiDAR, Light Detection and Ranging; EBKRP, Empirical Bayesian Kriging

Regression Prediction; BO, Bayesian optimization; PSO, particle swarm

optimization; GA, genetic algorithm; DE, differential evolution; KNN, K-

nearest neighbor; RFR, Random Forest Regression; GBRT, Gradient Boosting

Regression Tree; OB-KNN, Bayesian Optimization-K-nearest neighbor; OB-RFR,

Bayesian Optimization-Random Forest Regression; BO-GBRT, Bayesian

Optimization-Gradient Boosting Regression Tree; GA-SVM, Genetic

Algorithm-Support Vector Machine; LOOCV, leave-one-out cross-validation;

DBH, diameter at breast height; RTK, real-time kinematic; OK, ordinary Kriging;

R², coefficient of determination; RMSE, root-mean-square error; rRMSE, relative

root-mean-square error; CRPS, continuous ranked probability score; P, overall

prediction accuracy.
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characteristic parameters such as pai, cover, and fhd_normal in

the GEDI L2B product dataset have a strong sensitivity to forest

biochemical parameters and forest structure parameters (Xu et al.,

2023; Xia et al., 2024; Zhou et al., 2024), which is conducive to the

estimation of chlorophyll content at the regional scale. However, the

limitation of spaceborne LiDAR data lies in its discontinuity (i.e.,

the data is composed of scattered points rather than surface

attribute data), leading to incomplete acquisition of forest

information. In previous studies, ordinary Kriging (OK) (Zhu and

Lin, 2010), inverse distance weight (Khouni et al., 2021), radial basis

function (Wang et al., 2014), and other statistical spatial

interpolation methods were used to solve the problem of data

discreteness. However, these interpolation methods have large

errors, low prediction accuracy, and unsatisfactory interpolation

results. In contrast, the empirical Bayesian Kriging regression

prediction (EBKRP) method can estimate the semivariogram

through the process of subset and repeated simulation. While

reducing the smoothing effect of spatial interpolation, it can also

solve the multicollinearity problem between variables and provide a

more accurate prediction of moderate non-stationary data on the

local scale (Lötter and Le Maitre, 2021). This provides convenience

for using GEDI spot data to obtain high-precision surface modeling

feature parameters and further predict the chlorophyll content in

the study area. At present, GEDI data are mostly used in the

inversion of forest biomass, forest canopy closure, canopy height,

etc, and it has been confirmed that the indicators in GEDI L2B

product data have good model interpretation ability in estimating

forest structure parameters (Potapov et al., 2021; Zhu et al., 2022;

Xu et al., 2023, 2024; Zhou et al., 2024). Therefore, this study aims

to explore the potential of GEDI L2B product data in forest

biochemical parameter estimation.

Currently, the research on RS inversion of chlorophyll content

has made great progress at home and abroad. The inversion

methods mainly include the empirical model method (Shah et al.,

2019), the physical model method (Darvishzadeh et al., 2012), and

the coupling model method (Xu et al., 2019). The empirical

modeling method (covering both parametric and non-parametric

models) is primarily based on the correlation between chlorophyll

content and spectral characteristics or forest structure parameters.

This method is easy to operate, fast, efficient, and has ideal accuracy,

but further research is needed in optimizing feature combinations.

The physical modeling method is universal and does not depend on

vegetation types, but it is difficult to accurately describe the

radiation transfer mechanisms. Coupled models combine

empirical and physical models to maximize the advantages of

statistical models, but they are complex to operate and less

efficient. Machine learning algorithms, as a novel modeling

approach, are not constrained by fixed model frameworks and

have the ability to iteratively learn from feedback errors during the

model correction process, thereby enhancing the understanding of

complex relationships between independent and dependent

variables (Lary et al., 2016). According to previous studies, using

machine learning models to estimate chlorophyll content is more

accurate than using nonparametric models (Lary et al., 2016; Ta

et al., 2021), but the estimation accuracy needs to be further

improved. Su et al (Su et al., 2015). used a simplified support
frontiersin.org
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vector machine model optimized by genetic algorithm (GA-SVM)

to estimate chlorophyll content. It has been proved that the

optimized estimation accuracy is better than the unoptimized. At

present, there are few studies on estimating chlorophyll content by

the Bayesian optimization (BO) algorithm. Compared with the

particle swarm optimization (PSO) algorithm, GA, and

differential evolution (DE) algorithm, BO algorithm can obtain a

global approximate optimal solution at a small evaluation cost (Cui

and Yang, 2018), which makes the number of model optimizations

less, the operation rate faster and the estimation accuracy more

(Zhang et al., 2021).

Therefore, this study aims to take Xinping County, Yunnan

Province, which is widely planted with D. giganteus, as the research

area. The EBKRPmethod is used to obtain the attribute information

of GEDI data from point to surface. The BO algorithm optimizes

the machine learning model to construct the best chlorophyll

content RS estimation model and evaluate the potential of GEDI

data in chlorophyll content inversion. The main content of this

study includes the following: (1) The construction of the

chlorophyll content model of individual D. giganteus was realized.

(2) The GEDI L2B data of spaceborne LiDAR were used as the main

information source to extract the modeling parameters. Combined

with 52 field-measured data, the vegetation index and terrain factor

were used as explanatory variables. The empirical EBKRP method

was used to obtain the continuous distribution of GEDI

characteristic parameters in the unknown space of the study area.

Pearson and RF methods were used to optimize the characteristic
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variables. Based on the BO-KNN, BO-RFR, and BO-GBRT models,

the chlorophyll content of D. giganteus in the experimental area was

established to invert the chlorophyll content and spatial distribution

mapping of D. giganteus at the regional scale. (3) Evaluate the

potential of GEDI data in estimating forest biochemical parameters,

and provide a reference for the health monitoring of forest resources

and the development of digital forestry.
2 Materials and methods

2.1 Study area

Xinping Yi and Dai Autonomous County, Yunnan Province

(abbreviated as “Xinping County”), is under the jurisdiction of Yuxi

City. It is located at 23°38′15″–24°26′05″N, 101°16′30″–102°16′50″
E (Figure 1), with a predominantly mountainous terrain, and an

elevation ranging from 422 m to 3,165.9 m. Because of the impact of

altitude variation, Xinping County has formed three climate types:

dry-hot valley high-temperature area, semi-mountain warm

temperature area, and alpine cold temperature area. The annual

rainfall is 869 mm, the annual maximum and minimum

temperatures are 32.8°C and 1.3°C, respectively, and the annual

average temperature is 18.1°C. It is suitable for growing in an area

with an altitude of 300~1200 m, and its surface daily average

temperature is required to be between 18°C and 26°C (Li, 2022).

The forest coverage rate of Xinping County was 61.99%, and the
FIGURE 1

Location map of the study area (Xinping County) in China (A) and in Yunnan Province (B). The location of the Sentinel-2 image and field sampling
points in Xinping County is shown in (C).
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forest area was 3.18 hm2 × 105 hm2. In the forest land, D. giganteus

forest land was 1.49 hm2 × 104 hm2, accounting for 4.67%. Yunnan

is one of the main distribution areas of D. giganteus. Bamboo forests

are very important in maintaining the balance of the forest

ecosystem, global warming, carbon sequestration, and emission

reduction (Ni et al., 2023). The physiological and biochemical

parameters of vegetation can well reflect the growth of vegetation.

Therefore, accurately estimating chlorophyll content facilitates

human understanding of vegetation growth and forest ecological

health, promoting ecological protection, resource management, and

disaster monitoring, and providing scientific basis for local

governments to make informed decisions and manage forestry

production precisely, thereby promoting the sustainable

development of forests.
2.2 Ground survey data collection
and processing

The 52 chlorophyll content data used in this study were

collected from a standard sample plot measuring 25 m × 25 m

(approximately 0.0491 km²) in the towns of Gasa, Shuitang, and

Laochang in Xinping County (Figure 1). The number of samples

saves the cost of field investigation and meets the principle of large

sample field investigation (50). The rainy season in Yunnan spans

fromMay to October, while the dry season extends from November

to April. The peak rainfall occurs from mid-June to mid-August,

accounting for approximately 60% of the annual precipitation. This

period marks the main growth phase of D. giganteus and is the most

representative period for reflecting changes in its chlorophyll

content. Considering the comprehensive factors such as weather,

road safety, representativeness and typicality of field plot setting,

and stability of chlorophyll content of D. giganteus, it was found

that the weather was sunny from 4 to 15 January. Therefore, from 7

to 14 January, the field survey was carried out in the study area to

collect experimental data. The diameter at breast height,

coordinates, and other factors were measured, and the materials

required for the experiment (including standard D. giganteus and

standard leaves) were collected. Among them is the diameter of the

diameter at breast height (DBH, namely the diameter at the position

between the root collar and breast height (Li, 2019). There are

differences among various countries in the regulation of breast

−height position. In China and continental Europe, it is

approximately 1.3 m. In the UK, it is around 1.32 m. In the USA

and Canada, it is about 1.37 m, and in Japan, it is 1.2 m.) is set to

5 cm, and the D. giganteus with a DBH of 10 cm is used as the

standard plant. The coordinates of each sample plot were measured

using a differential locator in the fixed solution state of the southern
Frontiers in Plant Science 04
surveying and mapping real-time kinematic (RTK), with an error

margin of less than 2 cm.

2.2.1 D. giganteus standard selection and
sampling method

In 52 sample circles, different age classes of D. giganteus with no

pests and diseases, no mechanical damage, and healthy growth were

randomly selected as standard samples, totaling 141 D. giganteus

plants. The DBH was measured from the base, and all fresh leaves of

141 D. giganteus were collected and weighed (Table 1).
2.2.2 Selection of standard leaves and
determination of samples

Forty-nine standard D. giganteus plants were randomly selected,

and leaves of varying sizes—new, old, and young—were collected

from the upper, middle, and lower sections of each plant to serve as

standard sample leaves. The determination of chlorophyll content

involves three main steps: first, the surface of the standard leaves was

cleaned, and samples were evenly collected from the upper, middle,

and lower parts on both sides of the central vein. A 0.2-g fresh sample

was then weighed. In the second step, the weighed sample was cut

into pieces and placed in a mortar. Liquid nitrogen was added to

powder the sample, followed by the addition of 80% acetone for

grinding into a homogenate, which was then filtered and brought to a

constant volume. In the third step, the chloroplast pigment extract

was poured into a colorimetric dish with a light path of 1 cm, using

80% acetone as a blank control. The absorbance was then measured

using a spectrophotometer at 663 nm and 645 nm. The results are

presented in Table 2. The specific method for the determination of

chlorophyll in the standard leaves of D. giganteus refers to the plant’s

physiological and biochemical experiment principle and technology

(Wang and Huang, 2015), and the calculation formula is as follows:

Ca = 12:72b663 − 2:59b645

Cb = 22:88b645 − 4:67b663

Ct = Ca + Cb = 20:29b645 + 8:05b663

where Ca, Cb, and Ct represent the contents of chlorophyll a,

chlorophyll b, and total chlorophyll, respectively (in units of mg/g).

b663 and b645 denote the absorbance of the chloroplast pigment

extract at wavelengths of 663 nm and 645 nm, respectively.

2.2.3 Measurement of chlorophyll of D. giganteus
at plot scale

Based on the allometric growth equation, the chlorophyll

content and DBH of 141 individual D. giganteus were used as
TABLE 1 Statistical table of measuring index of single Dendrocalamus giganteus plant.

Name Sample size Maximum Minimum Average SD

DBH (cm) 141 12.8 3.2 8.5 2.3

Total fresh weight of leaves (kg) 141 6.54 0.05 1.91 1.32
frontiersin.org

https://doi.org/10.3389/fpls.2024.1492560
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xia et al. 10.3389/fpls.2024.1492560
dependent and independent variables, respectively, to construct a

basic model for predicting the chlorophyll content of individual D.

giganteus. Using this model, the chlorophyll content of 52 sample

plots was calculated (Table 3).
2.3 Acquiring and extracting information
from RS data

2.3.1 GEDI data
The GEDI is a new multibeam full-waveform LiDAR sensor

(Liang et al., 2023; Xu et al., 2023). It is mounted on the United

States International Space Station (ISS) and was successfully

launched by NASA on 5 December 2018 at the Kennedy Space

Center in the USA. The sampling collection encompasses data from

latitudes of 51.6° North to 51.6° South worldwide. The GEDI

employs three lasers, which produce a total of eight beams. Each

footprint sample measures approximately 25 m, with an orbital

interval of about 60 m. The beams are spaced approximately 600 m

apart in the cross-orbit direction. Additionally, the cross-track

width is around 4.2 km. The GEDI comprises four product-level

datasets: L1 is geo-referenced return energy waveform data, L2

provides georeferenced surface elevation and canopy height, L3

offers gridded vegetation structure, and L4 includes footprint-level

and gridded aboveground biomass data (Xia et al., 2024).

This study utilizes L2B data, which provides more

comprehensive information than L2A data, including variables

such as cover, pai, and fhd_normal (Crockett et al., 2023; Xu

et al., 2023; Zhou et al., 2024). The GEDI data utilized in this

study was downloaded from the Earthdata website (https://

search.earthdata.nasa.gov/) in March 2024. The selection process

focused on beam data that covered Xinping County from 1 January

2022 to 31 March 2023. This resulted in a total of 41 orbit datasets,

comprising 164 orbits and 328 orbit beams. To ensure the

acquisition of high-quality footprint points, we filtered out invalid

light spots, drawing on methodologies from previous studies

(Table 4) (Liang et al., 2023; Xu et al., 2023; Xia et al., 2024; Zhou

et al., 2024).

After screening out the target points through the above five

indicators, 51,669 effective footprint points were obtained in the

study area, and then the spatial overlay analysis of the light spots in
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the D. giganteus forest area was carried out using the 2016 Forest

Resources Survey data. There are 1,670 spots in the D. giganteus

forest land and 49,999 spots in the non-D. giganteus forest land, as

shown in Figure 2. The meaning of the GEDI feature parameters

extracted in this study can be obtained by searching the “GEDI L2B

Product Data Dictionary” through the browser, which covers 31

modeling alternative feature variables and five quality screening

parameters used in the study.

2.3.2 Sentinel-2 data
Sentinel-2 is the second component of the European Space

Agency (ESA) Copernicus series of satellites. It consists of two

complementary satellites, satellites 2A and 2B. The satellite belongs

to the medium-resolution multispectral optical imaging satellite.

The revisit period is 6 days. The spectrum obtained on the sensor

contains 13 bands. The spectral range is 0.4~2.4 μm, covering visible

light, near-infrared, short-wave infrared, and other image data in

different wavelength ranges. The ground resolutions are 10 m

(bands B2, B3, B4, and B8), 20 m (bands B5, B6, B7, B8a, B11,

and B12), and 60 m (bands B1, B9, and B10) (Phiri et al., 2020). In

this study, 2A-level product data were used. The data were

downloaded from the official website of Google Earth Engine

(GEE) dataset (https://developers.google.com/earth-engine/

datasets) for free. The access date was April 2024. The data

acquisition time range was from 1 May 2023 to 14 January 2024.

The cloud amount was set to ≤ 5%, and the resolution was set to

25 m. After downloading, the software ENVI 5.6 was used to extract

12 factors such as vegetation index (Ma et al., 2021) and

topographic features (extracted from 25 m DEM after

resampling) (Wu et al., 2016) as explanatory variables of

EBKRP (Table 5).

The 12.5-m DEM data used in this study were derived from the

polarimetric synthetic aperture radar (PALSAR) sensor of the Advanced

Land Observing Satellite (ALOS). The data were downloaded from the

Earthdata website (https://search.earthdata.nasa.gov/search), and the

access date was April 2024. After download, it was resampled to

25 m × 25 m using the resampling tool under the geostatistical

software ArcGIS 10.8 to match it with the plot size. In addition, this

study also used the subcompartment data of the forest resources

survey in the study area in 2016, which was used for mask extraction

of D. giganteus forest land.
TABLE 3 Statistical table of chlorophyll content in D. giganteus sample circles.

Name Sample size Maximum Minimum Average SD

ChlT (g/m²) 52 2.74 0.17 1.32 0.57
TABLE 2 Statistical table of chlorophyll content of D. giganteus leaves.

Chl (mg/g) Sample size Maximum Minimum Average SD

Ca 49 2.67 1.78 2.36 0.26

Cb 49 2.73 0.35 1.27 0.54

Ct 49 5.34 2.13 3.63 0.78
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2.4 Research method

The process for estimating and inverting the chlorophyll

content of D. giganteus at a regional scale using the BO algorithm

involves several key steps: (1) First, constructing a basic model for

the chlorophyll content of individual D. giganteus; (2) Next,

selecting the Kriging regression method and assessing its

accuracy; and (3) finally, optimizing the RS modeling parameters

are optimized for regional-scale chlorophyll content estimation.

This optimization process utilizes the basic model to calculate

chlorophyll content at the sample plot level. The calculated values

serve as the training samples (dependent variables) for RS

modeling, while characteristic values of feature variable factors,

extracted from corresponding sample plot points by GEDI L2B, are

used as modeling samples (independent variables). This approach

facilitates the construction of an optimal predictive model for D.

giganteus chlorophyll content at a regional scale. Subsequently, this
Frontiers in Plant Science 06
model is applied to invert the chlorophyll content of D. giganteus in

Xinping County (Figure 3).

2.4.1 Construction of the basic model for the
chlorophyll content of individual D. giganteus

This study utilized the allometric growth equation to investigate

the potential of GEDI parameters for directly estimating the

chlorophyll content of D. giganteus at a regional scale. By

destroying a small number of limited samples, a power function

relationship between chlorophyll content and the DBH of a single

plant (Wang et al., 2021) was established as the basic model of

chlorophyll content of a single plant. The chlorophyll content of 52

sample circles was then calculated using the following formula.

ChlT   = aDBHb

Where ChlT denotes the chlorophyll content of an individual D.

giganteus plant, while DBH refers to its diameter. The parameters a

and b are those to be estimated in the model for a single plant.
2.4.2 Geostatistics method
2.4.2.1 EBKRP method

The EBKRP method is a geostatistical spatial regression method

combining least squares regression and the OK method. The data

are processed by the geostatistical software ArcGISpro 2.8, and the

known sample data in the test area is used to estimate the

unmeasured data in the test area, and then the contour map of

GEDI parameters and the area attribute data map predicted by

EBKRP are generated (Goovaerts, 1997; Chilès and Delfiner, 2012).

The transformation of GEDI data from point to surface enables the

extraction of regionalized variables for constructing functional
FIGURE 2

(A) Distribution of all spots. (B) Distribution of light spots in D. giganteus forest.
TABLE 4 GEDI footprint quality filtering criteria.

Parameters Retention
value

Retention basis

lon_lowestmode 101°–103° E The geographical longitude range of
Xinping County.

lat_lowestmode 23°–25° N The geographical latitude range of
Xinping County.

quality_flag 1 Indicates good quality of the
footprint spots.

Sensitivity ≥ 0.90 Close to 1, good quality.

degrade_flag 0 Indicates good data performance.
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relationships with chlorophyll content, thereby allowing for the

determination of chlorophyll content’s spatial distribution

characteristics (Curran and Atkinson, 1998). The main steps

include (1) preparing sampling light spot attribute data (GEDI)

and explanatory variable grid attribute data (Sentinel-2 and DEM)

to enhance the relationship with chlorophyll content and improve

the prediction accuracy; (2) constructing the variogram, setting

main variogram parameters (such as nugget value) or selecting

models (such as index, subtraction function, or K-Bessel); (3)

assessing the anisotropy of Kriging estimation, as spatial

correlation typically depends on both the distance between points

and the direction of sampling; and (4) establishing the experimental

variance diagram and testing the cross-validation results.

2.4.2.2 Accuracy evaluation of EBKRP

For the regression results and fitting accuracy of the EBKRP

method, this study uses cross-validation in geostatistics to evaluate

its accuracy. The process of this verification method is to remove a

point in the dataset, use the remaining points to predict the position

of the removed point, and compare the measured value with the

predicted value to determine the accuracy of the prediction (Zhou

et al., 2023, 2024). The determination coefficient (R-squared [R2]),

root mean square error (RMSE), relative root mean square error

(rRMSE), and continuous ranked probability score (CRPS) were

utilized in this study as the comprehensive evaluation indexes for

the EBKRP method. A model’s goodness of fit improves as the R2
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value approaches 1. Greater model accuracy is indicated by lower

values of RMSE and rRMSE. A model’s performance is deemed

better when the CRPS value is closer to 0. Conversely, the regression

performance of the GEDI parameter space was found to be less than

optimal. The definition formula of each evaluation index:

R2 = o
n
i=1½Ẑ (xi) − �Z(xi)�2

oN
i=1½Z(xi) − �Z(xi)�2

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1½Z(xi) − Ẑ (xi)�2
n

s

rRMSE =
RMSE
�Z(xi)

CRPS(A,F) =
Z

½F(x) − 1 x≥yf g�2dx

Where Z
∧
(xi) is the predicted value of x at i position, �Z(xi) is the

predicted average value of x at i position, Z(xi) is the observed value

of x at i position, n is the number of spots, A is the cumulative

distribution function (CDF) of the real value, F is the predicted

cumulative distribution function of the model, and 1 x ≥ yf g is the

indicator function, when x ≥ y the value is 1, otherwise it is 0.

2.4.3 BO algorithm
In the process of parameter adjustment, the objective function is

unknown and nonconvex, resulting in a huge amount of calculation

and a poor solution. In order to solve such problems, the BO

algorithm is introduced. The KNN, RFR, and GBRT (Sun et al.,

2021; Zhang et al., 2021) models are used as the initial model of the

chlorophyll content of D. giganteus, and the BO algorithm is used to

optimize the machine learning model. Its core idea is to use prior

knowledge to approximate the posterior distribution of the

unknown objective function and then select the next sampling

hyperparameter combination according to the distribution (Zhang

et al., 2021). The probability model is used to represent the complex

black box function, which makes the model more accurately meet

the behavior of the black box function, effectively reduces the

unnecessary evaluation of the objective function, and theoretically

guarantees the final convergence to the global optimal solution (Cui

and Yang, 2018; Zhou et al., 2023), so as to reduce the model

calculation amount and optimize the objective model parameters,

thereby improving the model estimation accuracy.

This study primarily optimizes the key parameters of KNN,

RFR, and GBRT models through 2,000 iterations to identify the

optimal parameters for modeling. The definitions of each optimized

parameter (Zhang et al., 2021) are presented in Table 6. BO is an

iterative process consisting of six steps (Figure 4), which include

three core steps: (1) The next most potential evaluation point xt =

argmaxx∈Xa(xjD1 : t−1) is selected according to the maximum

acquisition function. (2) Calculate the objective function value yt =

q(xt) + et according to the selected evaluation point xt (3) The

newly obtained input-observation pair xt , ytf g is added to the

historical observation set D1 : t−1 and the probabilistic surrogate

model is continuously updated to prepare for the next model
TABLE 5 Lis of Sentinel-2 data RS factor information extraction.

Variables Amount Description

DVI 1 Difference vegetation index: DVI = rNIR − rR ,
rNIR , rR , the reflectance of the near-infrared

band and the red band, respectively.

RVI 1 Ratio vegetation index: RVI = rNIR=rR .

NDVI 1 Normalized vegetation
index: NDVI = (rNIR − rR)=(rNIR + rR)

SAVI 1 Soil-adjusted vegetation

index: SAVI =
1:5(rNIR − rR)
rNIR + rR + 0:5

EVI 1
Enhanced vegetation index EVI =

2:5
(rNIR − rR)

(rNIR + 6:0rR − 7:5rB + 1)

� �
, rBis the

reflectivity of the blue band.

NPCI 1 Normalized pigment chlorophyll index: NPCI =
(rR − rG)=(rR + rG), rGis the reflectivity of the

green band.

GNDVI 1 Green normalized difference vegetation
index: GNDVI = (rNIR − rG)=(rNIR + rG)

GRVI 1 Green ratio vegetation index: GRVI = rNIR=rG

GDVI 1 Green difference vegetation
index: GDVI = rNIR − rG

Elevation 1 Elevation

Slope 1 Slope factor extracted by DEM

Aspect 1 Slope aspect factor extracted by DEM
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iteration. In order to find the best number of simulation

optimizations and the best model parameters for modeling, the

optimization process uses the Bayes theorem (Cui and Yang, 2018):

      p(qjD1 : t) = p(D1 : t jq)p(q)
p(D1 : t)  

Where q represents the initial parameters, the observed set is

denoted by D1 : t = (x1, y1), (x2, y2),…, (xt , yt)f g the decision vector

is denoted by x1 the observed value is denoted by y1 = q(xt) + et and
the observation error is denoted by et . The likelihood distribution of

y is denoted by p(D1 : t jq) and the posterior probability distribution
Frontiers in Plant Science 08
of q is denoted by p(q). The marginal likelihood distribution of the

marginalized q , primarily used for hyperparameters in Bayesian

analysis, is denoted by p(D1 : t). The posterior probability

distribution of q is denoted by p(qjD1 : t).
2.5 Accuracy evaluation of the model

In this study, leave-one-out cross-validation (LOOCV) was

used to verify the prediction accuracy of the chlorophyll content

RS estimation model and the accuracy of its estimation results. For
FIGURE 3

Technical route.
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small sample data, LOOCV was applied to iteratively train and

validate the model, addressing issues related to using the same

training and validation sets and helping to avoid local optima in

model fitting (Song et al., 2022; Zhou et al., 2023, 2024). Compared

with K-fold cross-validation, the results of this verification method

have higher reproducibility and are not affected by random factors,

so it has stronger robustness (Song et al., 2022; Xia et al., 2024). At

the same time, it can also effectively solve the overfitting or

underfitting problem of the model. In the RS estimation model of

chlorophyll content of D. giganteus, comprehensive evaluation

indexes, including R2, RMSE, rRMSE, and overall prediction
Frontiers in Plant Science 09
accuracy (P), were used. A higher value of R2 indicates a better fit

of the model. Conversely, lower values of RMSE and rRMSE, along

with a higher P value, suggest increased accuracy of the model.

Therefore, achieving values close to 1 for R2 and larger values for P,

while minimizing RMSE and rRMSE, are indicative of better model

accuracy. Conversely, suboptimal values of these metrics indicate a

less ideal model fit. The evaluation metrics are defined by the

following formulas:

R2 = o
n
i=1(ŷ i − �y)2

oN
i=1(yi − �y)2

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1 ð9 yi − ŷ i)
2

n

s

rRMSE =
RMSE

�y

P = 1 −
RMSE

�y

� �

Where n is the number of samples, ŷ i is the predicted value of

the model, yi is the measured value of chlorophyll content, and �y is

the predicted average value of the model, �y = 1
non

i=1yi   (Xia

et al., 2024).
3 Results and analysis

3.1 Accuracy evaluation of the model

In this study, a basic model was created to explore the

relationship between the chlorophyll content per plant of D.

giganteus and the DBH per plant. The independent variable in

the model was the DBH per plant, while the chlorophyll content per

plant of D. giganteus served as the dependent variable (Figure 5). A

power function was employed as the noncurve fitting function, with

a confidence interval set at 95%. Analysis of the fitting curve

revealed that the predictive variable values closely aligned with

the upper or lower limits of the confidence interval. It can be seen

from the R2 value of the model fitting evaluation index that the

model has a good fitting degree and stable performance. It can be

seen from the RMSE and P values that the accuracy of this model is

similar to that of the single-plant model established by Xia et al.
TABLE 6 Description of KNN, RFR, and GBRT model parameters.

Model Parameters Description Type

KNN
n_neighbors The number of neighbors to use by default for neighbor’s queries. int

weights The weight function used in the prediction. Str or callable

RFR, GBRT

max_depth The maximum depth of the tree. int

n_estimators The number of trees in the forest. int

min_samples_split The minimum number of samples required to split an internal node. int or float

min_samples_leaf The minimum number of samples required to be at a leaf node. int or float
FIGURE 4

The algorithmic flow of BO for KNN, RFR, and GBRT models.
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(2024). Furthermore, a positive correlation was established between

the chlorophyll content of individual plants and their respective

DBH. This implies that, under specific growth conditions, an

increase in the DBH corresponds to a rise in chlorophyll content,

reflecting the natural growth patterns of D. giganteus.
3.2 The regression results of GEDI
characteristic parameters

The EBKRP method was utilized in this study to forecast the

unknown spatial distribution of GEDI characteristic parameters

within the study area. It can be seen from Figure 6 that the

prediction accuracy R2 of 37 parameters was 0.34~0.99, RMSE was

0.012~3,134.005, rRMSE was 0.011~0.854, and CRPS was

965.492~1,626.887. Among them, the spatial regression prediction

results of digital_el and modis_treecover parameters are the best, the

prediction accuracy of rx_energy series parameters is good, the

e s t ima t i on accu racy o f s ing l e pa r ame t e r s such a s

modis_nonvegetated, leaf_on_doy, leaf_off_doy and series

parameters such as rg and rv is high, and the prediction accuracy

of pgap_theta series parameters is the lowest. In general, the

estimation accuracy and prediction results vary significantly across

different types of parameters, whereas the prediction results for the

same type of parameters are similar. The closer the characteristic

parameters are to the covariate vegetation index and terrain factors,

the higher the prediction accuracy. Therefore, it shows that the

EBKRP method respects the basic attributes of the initial measured

data values. The data distribution between different types of

parameters is relatively discrete, while the data distribution of the
Frontiers in Plant Science 10
same type is relatively concentrated, reflecting the volatility of

data distribution.
3.3 Characteristic variable selection results

In order to analyze the interaction between GEDI characteristic

variables and chlorophyll content, this study used Pearson (the

absolute value of the correlation coefficient is between 0 and 1, the

closer to 1, the stronger the correlation, and vice versa) and RF

(through a large number of decision trees to obtain the importance

of characteristic variable factors for comprehensive scoring

ranking) two methods to select the optimal characteristic variable

factors as modeling parameters. According to Figure 7, the

parameters with strong correlation were selected as the

independent variable factors for RS estimation of chlorophyll

content. Among the 37 parameters, the Pearson correlation level

was set to be significant at the 0.05 level, and the absolute value of

the correlation coefficient was 0.079~0.509. To comprehensively

consider factors such as prediction accuracy requirements, sample

size, and model interpretability, the study set a correlation threshold

of greater than 0.37 and selected five characteristic variables as the

optimal modeling variables. The top five characteristic variable

factors of the correlation from high to low are cover, pai,

fhd_normal, rv, rx_energy_a3, and the correlation coefficients are

0.51, 0.48, 0.41, − 0.39, and − 0.37, respectively.

In addition, the 37 GEDI parameters extracted in this study

were sorted and evaluated by RF. Figure 8 shows that the

contribution is 0.21%~17.19%. In order to select high-quality RS

modeling parameters, an importance greater than 5.5% was set as
FIGURE 5

Single plant chlorophyll content model of D. giganteus.
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the threshold, and a total of 5 high-quality parameters were selected.

The feature importance from high to low is cover, fhd_normal,

sensitivity, rh100, and modis_nonvegetated. The contribution rates

were 17.79%, 13.58%, 5.73%, 5.54%, and 5.47%, respectively.

In summary, using two different methods to screen the GEDI

feature variables, it is found that the best modeling parameters

selected by different methods are also different. However, in this

study, the two parameters of cover and fhd_normal are the

common independent variables of RS modeling. Specifically, the

cover parameter indicates the total vegetation coverage. Given that

chlorophyll mainly exists within leaves, higher coverage implies

more vegetation and leaves, thereby accommodating more

chlorophyll. The fhd_normal, a leaf-height diversity index, reflects

the structural complexity of the canopy in the vertical direction and

thus indirectly influences the chlorophyll content. Vegetation at

different heights and levels experiences variations in environmental

conditions such as light, temperature, and humidity. Typically, the

leaves in the upper part of the canopy receive more light, motivating

plants to synthesize more chlorophyll for photosynthesis. In

contrast, the leaves in the lower canopy have a lower chlorophyll

content due to light limitation. Consequently, in the modeling

process, the cover serves as a macroscopic and intuitive measure

of chlorophyll content, while fhd_normal, which reflects the

complexity of the vertical structure of the canopy and indirectly

affects chlorophyll content, can be regarded as an important

independent variable for predicting regional chlorophyll content.
3.4 Results of RS Modeling

After optimizing the independent variable factors of two groups

of RS modeling of different chlorophyll content by Pearson and RF
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methods, the BO-KNN, BO-RFR, and BO-GBRT three algorithm

models were used to develop the best RS estimation model of

chlorophyll content of D. giganteus at regional scale. The

parameter modeling optimized by the Pearson method found that

after 2,000 times of model kernel parameter optimization, 1,000, 500,

and 1,000 times were finally determined as the best optimization

times of BO-KNN, BO-RFR, and BO-GBRT models, respectively.

The parameter modeling optimized by the RF method found that

after 2,000 times of model kernel parameter optimization, 600, 700,

and 1,100 times were finally determined as the best optimization

times of BO-KNN, BO-RFR, and BO-GBRT models, respectively.

The optimal number of iterations for each model is determined by

observing a smooth convergence trend after continuous iterations

and improvements on the original basic model. This process ensures

the model avoids underfitting and overfitting, ultimately yielding the

optimal solution. It can be seen from Table 7 and Figure 9 that the

estimation accuracy R2 of KNN, RFR, GBRT, and the model before

optimization is 0.30~0.46, RMSE is 0.387~0.512 g/m2, rRMSE is

0.291~0.396 g/m2, and P is 63.26%~74.09%, indicating that although

LOOCV is more stable than K-fold cross-validation, the estimation

accuracy of the model is not high and needs to be further improved.

After optimization, the estimation accuracy R2 of BO-KNN, BO-RFR,

and BO-GBRT models was 0.51~0.86, RMSE was 0.219~0.407 g/m2,

rRMSE was 0.167~0.309 g/m2, and Pwas 69.50%~84.13%. Compared

with the model before optimization, the accuracy of the optimized

model is effectively improved, and the accuracy of the prediction

results is enhanced.

Combined with Table 7 and Figure 9, from a vertical perspective,

the estimation accuracy of the best variables selected by different

models for the same feature variable selection method is quite

different, while the improved regression model based on the BO

algorithm has higher estimation accuracy than the initial regression
FIGURE 6

GEDI characteristic parameters and evaluation indexes based on the EBKRP method.
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FIGURE 8

The feature importance contribution ratio of GEDI modeling parameters.
FIGURE 7

The correlation matrix between GEDI parameters and chlorophyll content.
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model, and the predicted chlorophyll content is more accurate. Among

them, the BO-GBRT model has the best overall performance. From a

horizontal perspective, the same model shows slight differences in

accuracy when using the best variables selected by different feature

variable selection methods. Notably, the feature variables selected by

the RF method are more accurate than those selected by the traditional

Pearsonmethod. Therefore, the BO-GBRTmodel established using the

five best characteristic variables selected by the RF method was

ultimately chosen as the best RS estimation model for the

chlorophyll content of D. giganteus in the study area. The maximum

R² of the model was 0.86, the minimum RMSE was 0.220 g/m², the

minimum rRMSE was 0.167 g/m², and the maximum P was 84.13%.
3.5 Regional-scale distribution of
chlorophyll content in D. giganteus

In this study, the best BO-GBRT model was selected to predict

the spatial distribution of chlorophyll content in the study area

(Figure 10). The chlorophyll content of D. giganteus ranges from

0.20 g/m² to 2.50 g/m², with an average of approximately 1.44 g/m².

The maximum chlorophyll content is 2.50 g/m², while the minimum

is 0.20 g/m². Throughout the study area, regions of high and low

chlorophyll content are interspersed, indicating significant regional

differences. Areas of high chlorophyll content are mainly

concentrated at the junctions of Shuitang Town, Laochang

Township, and Gasa Town, as well as near the Gasa River and the

western region of Mosha. Conversely, the eastern region, which has a

higher population density and fewer D. giganteus distributions,

exhibits lower chlorophyll content. Additionally, the spatial

distribution map indicates that the chlorophyll content of D.

giganteus is primarily concentrated between 1.12 g/m² and 1.58 g/

m². This range has the highest number and proportion of pixels,

reflecting the favorable growth conditions ofD. giganteus in the study

area. This distribution pattern may be related to the ecological habits

and environmental factors of D. bambusoides. It was found that the

altitude of the western region coincides with the optimal growth

altitude of D. giganteus (300~1,200 m), while the eastern region does

not. Future studies should include factors such as light, temperature,
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precipitation, and soil nutrients to further analyze the interaction

between chlorophyll content and ecological or environmental factors.
4 Discussion

This study introduces a novel method for converting point attribute

data into area attribute data to estimate the chlorophyll content of D.

giganteus. A BO algorithm was employed to refine the initial machine

learning regressionmodel, thereby enhancing estimation accuracy. First,

a relative growth equation model for the chlorophyll content of

individual D. giganteus plants was established and subsequently used

to estimate the chlorophyll content of 52 sample plots. Finally, by

applying the BO machine learning model, the chlorophyll content of

Xinping County was successfully estimated, achieving the goals of

reducing costs, improving efficiency, and enhancing accuracy. In this

study, spaceborne LiDAR data were used as the dependent variable,

combined with optical RS data as explanatory variables to estimate

vegetation chlorophyll content. The main challenge lies in addressing

the discreteness of GEDI spots and explaining the relationship between

optical RS data from Sentinel-2 and DEM-extracted variable factors

with GEDI feature parameters. Therefore, this study aims to tackle these

challenges to improve the accuracy and precision of estimating the

chlorophyll content of D. giganteus. By tackling the aforementioned

issues, the focus is on exploring the ability of the EBKRP method to

improve the accuracy and precision of regression prediction results after

converting GEDI point data into area data. Additionally, the potential of

the BO algorithm in RS modeling and inversion of chlorophyll content

at the county scale is evaluated, providing a reference for medium- and

large-regional-scale chlorophyll content inversion.
4.1 Analysis of EBKRP results

To efficiently, cost-effectively, and accurately obtain the area

attribute information of GEDI feature parameters, this study

employed the EBKRP method. The EBKRP method involves

determining fixed covariates (such as vegetation index and terrain

factor) as explanatory factors for the main variables (GEDI
TABLE 7 Results of RS initial estimation model for chlorophyll content of D. giganteus.

Regression
model

Modeling
parameter

optimization
method

R² RMSE rRMSE P (%)

KNN
Pearson 0.30 0.511 0.396 62.36

RF 0.37 0.452 0.340 69.60

RFR
Pearson 0.35 0.495 0.376 65.43

RF 0.41 0.445 0.313 70.86

GBRT
Pearson 0.37 0.454 0.340 68.99

RF 0.46 0.387 0.291 74.09
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parameters), which improves the prediction accuracy of GEDI

parameters in unknown spatial distributions and to strengthens

their relationship with chlorophyll content. This method overcomes

the discontinuity of GEDI spot data distribution and provides a new

research perspective for the RS estimation of vegetation chlorophyll

content at medium and large regional scales. Additionally, the

results of this study showed that the accuracy of each GEDI index

predicted by the EBKRP method was high; the R² values ranged

from 0.34 to 0.99, RMSE values from 0.012 to 3,134.005, rRMSE

values from 0.011 to 0.854, and CRPS values from 965.492 to

1,626.887. This significantly reduced error transfer and was

consistent with the findings of Giustini et al. (2019) and Lötter

and Le Maitre (2021), laying a solid foundation for the accurate

estimation of chlorophyll content in the study area. Compared with

the results of Xu et al. (2023) and Zhou et al. (2023), this method

not only surpasses OK interpolation in prediction accuracy but also
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produces GEDI parameter maps with smooth characteristics and

without obvious striping effects (strip effects refer to regular strips

or ripples in the images of Kriging interpolation or Kriging

regression results). This indicates that as prediction accuracy

increases, the striping effect gradually weakens, which aligns with

the First Law of Geography (spatial autocorrelation), the Second

Law (spatial heterogeneity), and the Third Law (geographical

similarity) (Zhu et al., 2020). When comparing the prediction

accuracy of different spatial interpolation or spatial regression

methods, researchers can use ANUSPLIN software (Guo et al.,

2020), the Bayesian Maximum Entropy (BME) method (Christakos

and Li, 1998), or the Stepwise Principal Component Logistic

Regression-Kriging method (Hengl et al., 2004). To mitigate the

striping effect in kriging interpolation, spectral data from the same

or adjacent strips can be thinned using geostatistical software like

ArcGIS or programming software such as Python, operating at 100-
FIGURE 9

The results of the BO algorithm model construction using Pearson and RF method selection variables. Note: Horizontally, BO-KNN, BO-RFR, and
BO-GBRT are arranged from top to bottom, while vertically, Pearson and RF are organized from left to right.
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m intervals (Xu et al., 2023). However, it is important to note that

this method requires stringent selection criteria for the quality of

spot data and is not applicable in studies where spot data are scarce.

Data thinning may result in the loss of a large amount of sample

data, reducing the accuracy of interpolation and making the

estimation results less precise. In contrast, the EBKRP method

maintains interpolation accuracy while effectively mitigating the

striping effect.
4.2 The influence of parameter selection
on model accuracy

The rationality of the selection of independent variables is

directly associated with the performance of the model, the

reliability of the estimation results, and the universality of the

model. In this study, the selection of independent variables

focuses on those relevant to both the individual plant model and

the regional scale estimation model. The selection of independent

variables for individual plant models has been rarely addressed in

previous studies. However, some scholars have conducted related

work in the study of tree biomass and found a significant correlation

between tree aboveground biomass and DBH. However, in the

process of field measurement, the measurement of tree height often

has large errors, so the height is not an ideal modeling parameter

(Araújo et al., 1999; Chave et al., 2001). To reduce costs, enhance
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work efficiency, and avoid errors associated with height

measurements that could affect the results, the study suggests that

a regression model using DBH as an independent variable can more

accurately reflect the aboveground biomass of various bamboo

species as DBH changes (Chave et al., 2001; Yang et al., 2008; Ji

et al., 2015). Compared with the traditional destructive sampling

method, the modeling method based on the relative growth

equation has a wider range of general adaptation, which provides

an important reference value for the estimation of chlorophyll

content and forest health monitoring in the future.

In selecting independent variables for the regional-scale

estimation model of D. giganteus chlorophyll content, many

previous studies have focused on extracting relationships between

optical RS image data and measured chlorophyll content samples to

estimate chlorophyll content in the study area (Houborg et al., 2015;

Ma et al., 2021), while overlooking the rich feature information

provided by GEDI L2B product data. Its parameters, such as pai,

cover, and fhd_normal, show strong correlations with chlorophyll

content and provide better interpretive accuracy. According to the

results of Pearson and RF methods, it can be seen that the

independent variables and the number of RS modeling variables

selected by different methods will be different, but the factors with

strong explanatory power and large contributions to modeling will

be retained. Compared with the Pearson method, the RS estimation

model constructed by the parameters selected by the RF method is

more accurate, and the best estimation model (BO-GBRT) of the
FIGURE 10

Spatial distribution of chlorophyll content in the study area for D. giganteus.
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chlorophyll content of the D. giganteus in the study area was

explored in the RF. The R2 is 0.86, the RMSE is 0.291 g/m2, the

rRMSE is 0.167 g/m2, and the P is 84.13%, which may be related to

the characteristics of the RF itself. When sorting the importance of

features, it can not only ensure randomness but also eliminate data

redundancy (Wu et al., 2017), making the RS estimation model

more stable and generalized. It also reflects that this parameter

selection method is suitable for the BO-GBRT model, and is

consistent with the results of Zhou et al (Zhou et al., 2023, 2024).

using this method to estimate the forest canopy density in

northwest Yunnan, China. In future research, methods such as

KNN, GBRT, and Boruta (Zhang et al., 2022) can be introduced to

screen the modeling factors. First, the KNN method can be used to

calculate the distance correlation index between each potential

factor and the target variable, and then we can find the factor

combination that is closer to the target variable in the feature space

for modeling. Alternatively, the GBRT method can be employed. By

iteratively training the decision tree to minimize the loss function,

we can identify parameters that contribute more to the prediction of

the target variable for modeling. Additionally, the Boruta method

can also be utilized to overcome the possible deviation of the RF

itsel f in evaluating the feature importance. Through

comprehensively assessing the importance of factors, more

superior feature parameters can be selected, thereby improving

the accuracy of chlorophyll content modeling and the precision of

the estimation results. Additionally, this study confirmed the

application of GEDI L2B product data extends beyond studying

tree biomass and carbon storage. It can also be used for RS

estimation and inversion of chlorophyll content at medium

and large.
4.3 Model error propagation and the
potential of BO algorithm

The selection of sampling methods, the layout of field plots, and

the uncertainty of remote sensing estimation models and their

parameters may affect the accuracy of remote sensing estimation,

thus impacting the precise estimation of chlorophyll content (Qin

et al., 2017). The number of modeling samples is closely related to

the representativeness of the chosen model. As the number of

modeling samples increases, the representativeness of the

estimation model increases, and the uncertainty of the estimation

correspondingly decreases. However, once a certain threshold is

reached, further increasing the number of samples does not

significantly enhance the accuracy of the estimation model.

Therefore, in order to conserve manpower, material, and financial

resources, plots containing D. giganteus of different slopes, altitudes,

and ages were evenly and randomly established. Meanwhile, to meet

the large-sample principle (50) and the accuracy requirements of

field investigation (Hua and Zhao, 2021; Song et al., 2022), 52

measured-plot data were investigated in this study for the purpose

of modeling research. Based on the inversion results of chlorophyll,

it is categorized into five grades, ranging from low to high. The

number of samples in each grade is six, 10, 21, nine, and six,

respectively, and the proportion of each grade’s pixels to the total
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pixels is 2.55%, 20.64%, 31.36%, 31.02%, and 14.43%, respectively

(Figure 10). All these grades are normally distributed, indicating

that the sampling is representative and the modeling results are

reasonable, thereby reducing the uncertainty and error propagation

caused by sampling.

To reduce the inaccuracy of estimation results caused by model

error transfer, this study uses the BO algorithm to optimize the

hyperparameters of the KNN, RFR, and GBRT models. Under the

same non-parametric initial model, the BO algorithm achieves

better model estimation accuracy and operates faster compared to

PSO, GA, and DE (Cui and Yang, 2018; Cho et al., 2020). The

results show that the BO algorithm can significantly improve the

prediction accuracy of the machine learning model and make the

prediction results more accurate. Compared with before

optimization, the R2 of the optimized KNN, RFR, and GBRT

models increased by 0.34 on average, the RMSE decreased by

0.144 g/m2 on average, the rRMSE decreased by 0.093 g/m2 on

average, and the P increased by 8.96% on average. Compared with

the method of simulation optimization by fixed parameter times

(Zhang et al., 2021; Zhou et al., 2023), this study uses the BO

algorithm to search the best simulation optimization times of BO-

KNN, BO-RFR, and BO-GBRT models in 2,000 iterations, which

significantly improves the prediction accuracy of the model and

saves time. The BO-GBRT model (R² = 0.86, RMSE = 0.219 g/m²,

rRMSE = 0.167 g/m², p = 84.13%) was selected as the best

estimation model for the chlorophyll content in the test area, with

values ranging from 0.20 to 2.50 g/m². Currently, there are few

studies on the chlorophyll content of bamboo plants, particularly D.

giganteus. Compared to the RS estimation of total chlorophyll

content in wheat leaves by Jin et al. (2012) (R² = 0.868, RMSE =

0.384 g/m²), the estimation accuracy of this study is similar.

Compared to the studies by Richardson et al. (2002) and Gitelson

and Merzlyak (1997), which only examined the chlorophyll content

of single leaves in higher plants, this study extrapolated the

chlorophyll content of individual plant leaves to the RS

estimation of the overall chlorophyll content in the test area. This

offers a crucial reference for evaluating forest health and

implementing scientific management of forest resources.

However, compared to the study by Xia et al. (2024), this study

only utilized a single GEDI dataset for modeling. In the future,

collaboration with multisource RS data (such as UAV hyperspectral

data and high-resolution data) can be pursued for further research.

Additionally, if time cost is not considered, it is possible to try to

expand the scope to search for more accurate models or to

introduce deep forest algorithms to allow small sample data to

undergo deep neural network learning to simulate the optimal

estimation model (Xia et al., 2022).
4.4 Prospects for estimating large-scale
chlorophyll content using GEDI data

The observation range of GEDI covers most regions between

51.6° N and 51.6° N (Crockett et al., 2023), which not only meets the

needs of chlorophyll content research in small areas and model

portability tests for chlorophyll content in different research areas
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(Zhu et al., 2022) but also provides data for the estimation and

inversion of vegetation chlorophyll content on medium and large

regional scales or globally. Although the characteristic parameters

such as pai, cover, and fhd_normal are related to the chlorophyll

content in spaceborne LiDAR GEDI L2B products, the prediction

accuracy of unknown parameter points using different Kriging

interpolation methods (Zhu and Lin, 2010; Wang et al., 2014;

Khouni et al., 2021) remains to be improved due to the

discontinuous light spots and large volume of data. To overcome

this challenge, this study explores the use of a Kriging regression

method (the EBKRP method). GEDI characteristic parameters are

used as main variables, while vegetation index and topographic

factor serve as explanatory variables to convert GEDI point

attribute data into area attribute information. Additionally, this

study introduces the BO algorithm to optimize the machine model,

improving the prediction accuracy of unknown GEDI parameter

points and enhancing the accurate estimation of chlorophyll

content. This study opens up new ideas for the real-time, rapid,

and accurate estimation of forest biochemical parameters (Xia et al.,

2024), forest structure parameters (Potapov et al., 2021; Xu et al.,

2024; Zhou et al., 2024), and agricultural quantitative RS (Kacic

et al., 2021) using spaceborne LiDAR data (such as GEDI, ICESat-2/

ATLS) or representative sampling points (such as the main variable

is chlorophyll content or biomass, fixed covariates are soil nutrients,

temperature, light, etc.) in the future. It also provides a reference

and potential for research on the inversion of forest biochemical

parameters, such as chlorophyll content of vegetation, at medium

and large scales with high efficiency and low cost. This is of great

significance for studying forest health status, ecosystem function,

and carbon cycle process, and offers useful data support for

ecological environment protection and sustainable development.
5 Conclusions

In order to explore the estimation potential of multi-beam

LiDAR data with respect to forest biochemical parameters, the

following conclusions have been drawn:
Fron
1. The GEDI indexes predicted by the EBKRP method exhibit

good accuracy and reliable estimation results. The R² ranges

from 0.34 to 0.99, and the RMSE ranges from 0.012 to

3134.005. Among these, the wide range of RMSE may be

attributed to the complexity and heterogeneity of the data

itself. For instance, due to the influence of vegetation structure

and irregular terrain, the energy signal returned by the laser

becomes complex and unstable, thereby increasing the

difficulty and error of spatial regression. The rRMSE ranges

from 0.011 to 0.854, and the CRPS ranges from 965.492 to

1,626.887, indicating that the EBKRP method has good

development potential in predicting unknown spatial

distribution information.

2. The relative growth equation can be used not only as the

basic model of individual tree biomass but also as the basic
tiers in Plant Science 17
model of D. giganteus chlorophyll content, demonstrating

good modeling accuracy and estimation results (R² = 0.67,

RMSE = 2.01, p = 68.45%).

3. Based on different feature variable selection methods, the

selected modeling parameters and results differ. Notably,

common parameters such as vegetation coverage (cover)

and leaf height diversity index (fhd_normal) are closely

related to chlorophyll content. Moreover, the model

constructed with parameters selected by the RF (with R²

ranging from 0.65 to 0.86) performs better than the model

constructed with parameters selected by the Pearson

correlation coefficient method (with R² ranging from 0.51

to 0.74).

4. The utilization of the BO algorithm to optimize the key

parameters of the machine learning model significantly

enhances the accuracy of the RS estimation model. The

R2 of the optimized machine learning models BO-KNN,

BO-RFR, and BO-GBRT increased by an average of 0.34,

RMSE decreased by an average of 0.144 g/m2, rRMSE

decreased by an average of 0.093 g/m2, and P increased

by an average of 8.96%. This greatly reduces the model

error transfer, making the RS estimation results for the

chlorophyll content of D. giganteus more reliable.

Therefore, GEDI data, in addition to its application to

forest structure parameters like biomass, canopy closure,

and canopy height, is also feasible and reliable for

estimating forest biochemical parameters. This not only

lays the foundation for global forest ecosystem monitoring

research but also advances the application and

development of RS technology.
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