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YOLOv8-based BHC target
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leaf disease and defect
in real-world scenarios
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1School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, China,
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Introduction: The detection efficiency of tea diseases and defects ensures the

quality and yield of tea. However, in actual production, on the one hand, the tea

plantation has high mountains and long roads, and the safety of inspection

personnel cannot be guaranteed; on the other hand, the inspection personnel

have factors such as lack of experience and fatigue, resulting in incomplete and

slow testing results. Introducing visual inspection technology can avoid the

above problems.

Methods: Firstly, a dynamic sparse attention mechanism (Bi Former) is

introduced into the model backbone. It filters out irrelevant key value pairs at

the coarse region level, utilizing sparsity to save computation and memory;

jointly apply fine region token to token attention in the remaining candidate

regions. Secondly, Haar wavelets are introduced to improve the down sampling

module. By processing the input information flow horizontally, vertically, and

diagonally, the original image is reconstructed. Finally, a new feature fusion

network is designed using a multi-head attention mechanism to decompose the

main network into several cascaded stages, each stage comprising a sub-

backbone for parallel processing of different features. Simultaneously, skip

connections are performed on features from the same layer, and unbounded

fusion weight normalization is introduced to constrain the range of each

weight value.

Results: After the above improvements, the confidence level of the current

mainstream models increased by 7.1%, mAP0.5 increased by 8%, and reached

94.5%. After conducting ablation experiments and comparing with mainstream

models, the feature fusion network proposed in this paper reduced

computational complexity by 10.6 GFlops, increased confidence by 2.7%, and

increased mAP0.5 by 3.2%.
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Discussion: This paper developed a new network based on YOLOv8 to

overcome the difficulties of tea diseases and defects such as small target,

multiple occlusion and complex background.
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1 Introduction

Tea leaf defects and diseases significantly impact both the yield

and quality of tea. Statistics show that these issues result in an

annual loss of nearly 5% of tea production (Chen et al., 2020).

Traditional preventive measures heavily rely on farmers’ experience

and manual inspection, which present various challenges (Atila

et al., 2021). Some tea gardens are located in steep terrains, making

timely inspections difficult. Additionally, large areas of tea

cultivation mean that manual inspection efficiency is low, posing

potential risks (Baranwal et al., 2021). Given the current production

landscape, manual identification methods are insufficient to meet

the demands of modern large-scale cultivation (Barburiceanu

et al., 2021).

With the continuous development of image processing

technology, traditional manual agriculture in China is

transitioning towards computerized, intelligent, and digital

agriculture (Dhaka et al., 2021). Utilizing computer vision (Li

et al., 2022) to prevent tea leaf defects not only reduces economic

losses from manual labor but also enhances tea yield and quality

(Tiwari et al., 2021). Sun et al. (2019) proposed a new method

combining simple linear iterative cluster and SVM to achieve

accurate of tea tree leaf disease salinity maps in a complex

background context. With the advancement of deep learning, an

increasing number of researchers are exploring its application in

detecting crop leaf diseases and pest infestations. The rise of image

recognition technologies has particularly highlighted the

effectiveness of convolutional neural networks (CNNs) in the

automatic classification and identification of plant diseases (Chen

et al., 2019). For example, Chen et al. (2019) developed a CNN

model named LeafNet, designed to automatically extract features

from images of tea tree diseases.

While the above methods have performed well in the treatment

of crop diseases, they focus solely on either crop disease image

identification or classification. In recent years, with the rapid

development of chip computing power, deep learning technology

relying on computing power has also been applied in the field of

image detection and processing. Its advantages are mainly reflected

in its powerful feature extraction ability, high accuracy, strong

generalization ability, real-time performance, and intelligent

processing (Wang et al., 2024b). Algorithms based on deep

learning can learn effective feature representations from massive
02
image data, capturing subtle and complex features, which is crucial

for accurate detection; meanwhile, deep learning models can learn

advanced features of images and accurately detect and classify new,

unseen images. Image detection networks based on deep learning

have been categorized into two main types: two-stage and one-stage

detection networks (Jiao et al., 2019). Faster Region-Based

Convolutional Neural Networks (Faster R-CNN) stand out as a

prominent example of the former. Although Faster R-CNN offers

high detection accuracy (Ren et al., 2016), its slower processing

speed fails to meet real-time application demands. In contrast, one-

stage detection networks, including You Only Look Once (YOLO)

(Redmon et al., 2016), Single Shot MultiBox Detector (SSD) (Liu

et al., 2016), and RetinaNet (Lin et al., 2017), are favored for their

efficiency. The YOLO family, in particular, has gained significant

traction in agriculture due to its ability to deliver both speedy and

accurate detections. Tian et al. (2019) employed YOLOv3 to design

a system capable of real-time detection of apples at three different

growth stages within an orchard. Roy et al. (2022) enhanced

YOLOv4 to create a high-performance, real-time, fine-grained

target detection framework adept at navigating challenges such as

dense distribution and irregular morphology. Sun et al. (2022)

introduced an innovative approach by integrating the YOLO-v4

deep learning network with computer graphics algorithms for

improved segmentation of overlapping tree crowns. Additionally,

Dai and Fan (2022) developed a crop leaf disease detection method

named YOLOv5-CAcT, which is based on the latest YOLOv5

model, showcasing the ongoing evolution and application of these

networks in agricultural settings. Weihao et al. (2023) proposed a

tea disease identification model based on YOLOv7, achieving a

recognition accuracy of 94.2% for five types of tea diseases.

However, these methods were trained on single leaf datasets

rather than directly captured from tea plants in real production

environments, limiting their applicability in practical scenarios.

In production and daily life, drone inspection is a very practical

means. However, in order to ensure their own safety, drones need to

be 40-100cm away from tea trees, and the captured images will

inevitably capture fallen leaves and weeds in the gaps between tea

trees (Yuan et al., 2022), which will seriously interfere with the

accuracy of the model. To solve the above problems, this paper

inserts the BiFormer attention module into the backbone layer and

adds a detection head to improve the detection success rate in

complex backgrounds; at the same time, conventional sampling
frontiersin.org
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modules cannot distinguish between fallen leaves and pests and

diseases. This paper introduces Haar wavelet function to improve

the downsampling module, which can identify disease defects

without interference from fallen leaves and weeds. Finally, in

order to ensure the lightweighting of the model, a new feature

fusion network was designed for the entire model to reduce

computational complexity and facilitate deployment on

mobile devices.
2 Materials and methods

2.1 Image data

Due to the lack of authoritative public tea datasets, the data used

in this article was collected in April and May at longitude 115°

8'14.54''E and latitude 32°43'47.75''N. These images were captured

under natural light using a Huawei Mate60 portable device and a

Sony ILME-FX30B camera, with a total of 4000 data samples

collected. The pixel resolution of the image is 3024 * 4032.

Among them, tea farmers and tea experts identified 43 images as

red leaf spots, 213 images as algal leaf spots, 324 images as bird eye

disease, 1102 images as gray wilt, 43 images as white spots, 75

images as anthrax, 1213 images as brown wilt, and 987 images as

healthy leaves. Due to the limited data collected on tea defects and

diseases, and the fact that the images were taken under clear

weather conditions, this paper simulated adverse conditions to

improve the generalization performance of the model. These

simulation conditions include defocused images, partial data loss,

heavy rain and snow. Data augmentation simulated conditions such

as partial image loss, motion blur, early morning and dusk lighting,

as well as fog, rain, snow, and wind. This method not only simulates

various situations encountered in actual production, but also

improves the generalization performance of the training dataset.

After scaling up the original dataset by 2.5 times, a total of 10000

images were obtained. The dataset includes 10000 annotated

bounding boxes (BBOX) for all defect types. Among them, 80% is

the training set and 20% is the validation set. Each bounding box is

manually annotated using open-source annotation tools to ensure

that every defect is fully included in BBOX. Figure 1 shows a subset

of the enhanced dataset.
2.2 YOLOv8 detection algorithm

The model in this paper adopts an improved CSPDarknet53 as

the backbone network (Wang et al., 2023) for YOLOv8. It conducts

down sampling on input features five times, resulting in five

different scales of features, denoted as B1 to B5. The structure of

the backbone network is illustrated in Figure 2F. The CSP (Cross

Stage Partial) module in the original backbone network of previous

versions is replaced by the C2f module. The structure of the C2f

module is shown in Figure 2D, where ‘n’ represents the number of

bottlenecks. The C2f module adopts gradient parallel connections,

enriching the information flow of the feature extraction network

while maintaining a lightweight design. The ConvModule module
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conducts convolutional operations on input information, followed

by batch normalization, and then utilizes the SiLU activation

function to obtain the output result, as shown in Figure 2C. The

backbone network concludes by utilizing an improved down

sampling module to pool input feature maps into fixed-size

adaptive-sized outputs. Compared to the original Spatial Pyramid

Pooling (SPPF) structure, the new connection layers can retain

more feature information, as shown in Figure 2A.

Inspired by PANet, the original YOLOv8 incorporates a PAN-

FPN structure at the neck (Wang et al., 2023). Compared to the

neck structures of YOLOv5 and YOLOv7 models, YOLOv8

removes the convolutional operation after up sampling in the

PAN structure, as shown in Figure 2E achieving model

lightweighting while maintaining the original performance.

YOLOv8 adopts a top-down and bottom-up network structure to

integrate semantic information from deep and shallow features.

However, this fusion is superficial. To address this, we designed a

new feature fusion network based on the PAN-FPN architecture.

Through the analysis of tea leaf defect images, it was determined

that spatial positional information of features is not necessary in

practical applications. Therefore, part of the feature information

flow can be trimmed to reduce computational costs .

Simultaneously, feature fusion is achieved by merging different

nodes of the same feature layer, retaining more features of tea

pests and diseases without increasing computational costs.

The detection part of YOLOv8 adopts a decoupled head structure,

as shown in Figure 2B. This structure employs two independent

branches for object classification and bounding box regression

prediction, each using different loss functions. For the classification

task, binary cross-entropy loss (BCELoss) is used. For the bounding

box regression task, Distribution Focal Loss (DFL) and Complete

Intersection over Union (CIoU) are employed. This detection

structure improves detection accuracy and accelerates model

convergence. YOLOv8 is an anchor-free detection model, which

simplifies the specification of positive and negative samples. It also

utilizes the Task-Aligned Assigner to dynamically assign samples,

enhancing the detection accuracy and robustness of the model.
2.3 Bi Former

To focus the detection model on tea leaf defects and diseases while

reducing attention on other regions, we introduce a dynamic sparse

attention mechanism called Bi Former (Zhu et al., 2023) into the

backbone network of the model. Bi Former utilizes adaptive querying to

filter out the least relevant key-value pairs in the coarse-grained regions

of the input feature map. It then efficiently identifies the key-value pairs

with higher relevance and performs attention computation on them.

This significantly reduces computational and storage costs, enhancing

the model’s ability to perceive the input content. YOLOv8 is a

convolutional neural network (CNN) model. The essence of a CNN

is local processing, which limits its ability to capture relationships

between global features. Compared to traditional CNN models,

transformers use an attention mechanism to capture the relationships

between different pieces of data, providing a global receptive field. An

effective attention mechanism can build robust and powerful data-
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driven models, making them more flexible when handling complex,

large-scale data.

The Bi Former module is designed based on a dual-stage

routing attention mechanism, as shown in Figure 3. In this block,

DW Conv represents depth wise separable convolution, which

reduces the number of parameters and the computational load of

the model. LN stands for layer normalization, which accelerates

training and improves the model’s generalization ability. MLP, or

multilayer perceptron, further processes and adjusts attention

weights, enhancing the model’s focus on different features. The

addition symbol in Figure 3 represents the concatenation of two

feature vectors.

The introduction of the Bi Former block into the backbone

network in this paper serves two purposes. First, Bi Former
Frontiers in Plant Science 04
considers the limited computational power and storage resources

of mobile platforms. Second, the dynamic attention mechanism

within this block enhances the model’s focus on crucial target

information, thereby optimizing the model ’s detection

performance. To fully leverage the efficient attention mechanism

of this block, we added the Bi Former block between the model

backbone networks B1 and B2.
2.4 Down sampling

Down sampling can aggregate local information, expand the

receptive field, and reduce computational costs. Conventional down

sampling operations mainly involve max-pooling and stride
FIGURE 2

YOLOv8 architecture diagram. (A) Pooling. (B) Detect. (C) ConvMoudule. (D) C2f. (E) Bottleneck. (F) backbone. (G) backbone. (H) Head.
FIGURE 1

Tomato samples and cross sections.
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convolution. However, pooling operations on local regions can lead

to the loss of important spatial information, which is detrimental to

accurate detection. To address this, we introduce down sampling

operations based on the Haar (Xu et al., 2023) wavelet.

The core idea of the new down sampling operation is to use

Haar wavelet transformation to reduce the spatial resolution of

feature maps while preserving more information. This approach

enhances the ability of semantic segmentation and reduces

information uncertainty. For 2D image Haar decomposition, it

can be seen as performing 1D Haar decomposition separately on

all columns and all rows. Depending on the order of decomposing

rows and columns, two different decomposition methods can be

generated. The specific process is shown in Figure 4.

From Figure 5 it can be seen that the module first preprocesses the

input information flow in the horizontal and vertical directions by

performing averaging and differencing operations on the information

flow separately. Then, down sampling is performed.Next, the processed

information flow undergoes diagonal direction processing, where it is

averaged and differenced to obtain diagonal subbands. Each of these

subbands is then down sampled. This process iteratively repeats for

each subband.
Frontiers in Plant Science 05
Finally, an inverse transformation is applied to each subband to

reconstruct the original image. These steps constitute the lossless

feature encoding module primarily based on the Haar wavelet

transform. Subsequently, the output information flow undergoes

convolution, normalization, and activation function processing to

reduce the number of channels.
2.5 Feature fusion

YOLOv8 itself uses a simplified FPN-PANet in its neck to perform

feature fusion, reducing the loss of information. The core idea of FPN is

to construct a feature pyramid at different levels of the image to capture

objects at different scales: by up sampling the deep feature maps to

match the size of the shallow feature maps (Gong et al., 2021), and then

performing an addition operation. PAN, on the other hand, employs a

cascaded operation, which can retain more detailed information,

thereby improving detection accuracy (Wang et al., 2019).

However, the above operations have two drawbacks: first, they

do not focus on features at the same level; second, the merging

process can introduce delays, leading to suboptimal merging effects.
FIGURE 4

The operational process of the Haar wavelet.
FIGURE 3

Principle and operational diagram of BI FORMER.
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Considering that in tea plantation inspections using drones,

multiple photos are taken of the same area, the edge features of a

single photo are not our primary concern. At the same time, when

the drone takes photos, it is approximately 50 cm away from the top

of the tea trees. Each photo contains a large number of tea leaves,

which implies there are many instances of defects and diseases.

To address these issues, our approach focuses on refining the

feature fusion process to enhance the detection of tea leaf defects

and diseases in such scenarios. By prioritizing crucial target features

and optimizing the merging process, we aim to achieve more

accurate and efficient detection results.

Based on the limited receptive field of CNN networks, they can

only localize regions with distinctiveness. As shown in Figure 6,

Therefore, the first step is to use a multi-head attention mechanism

to segment the image into patches with distinctive features. Since

deep features reflect specific information about objects and require

global context, a transformer encoder is used to process deep

features to enhance object detection performance.

Next, under the condition of unchanged computational resources,

allocating more parameters for feature fusion can be achieved by
Frontiers in Plant Science 06
intuitively reducing the backbone layers and expanding the fusion

modules. From Figure 7, To achieve this, the backbone network is

decomposed into several smaller cascaded stages, generating richer scale

features. Each stage consists of a sub-backbone and a

transformation module.

Performing skip connections on the same feature layer helps

preserve more feature information. The Transition block utilizes 1x1

convolutions to align the channel numbers in the sampling points and

uses bilinear interpolation to align the spatial sizes of features. The

Focal Block, on the other hand, enlarges the convolutional kernel to

expand the receptive field, thereby acquiring more feature information.

By implementing these modifications, the model can better

handle complex scenes with multiple instances of tea leaf defects

and diseases, improving detection accuracy and robustness.

The contributions of features from images with different

resolutions are unequal, hence an additional weight is introduced

for learning. Building upon Unbounded Fusion, normalization of

weights is conducted to constrain the value range of each weight.

Unbounded Fusion refers to integrating features from different

resolutions without explicit boundaries.
FIGURE 6

Arithmetic unit structure diagram.
FIGURE 5

Downsampling Module.
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3 Results and discussion

3.1 Experimental facilities

To verify the positive impact of each module on the model,

YOLOv8n was used as the baseline model, and ablation

experiments were conducted separately on the BiFormer module,

Haar module, and feature fusion module. In order to ensure the

accuracy of the experimental results, the parameter settings in each

individual module are the same.

At the same time, in order to ensure that the pre trained weight

structure and the target model structure are the same in the

experiment, all three experimental groups will undergo weight pre

training before the formal experiment, and the weight pre training

dataset will use the dataset from Chapter 2, which will not

cause overfitting.
3.2 Ablation experiment

3.2.1 The attention mechanism
comparative experiment

To verify the superiority of introducing Bi Former, we

conducted comparative experiments using Bi Former and some
Frontiers in Plant Science 07
mainstream attention mechanisms on the YOLOv8n baseline

model while keeping other training conditions consistent. The

experimental results, as shown in Table 1 indicate that when

BiFormer is incorporated into the backbone network of the

model, it achieves the best detection performance. Furthermore,

the model with the attention module incorporated shows a 16.5%

increase in mAP50 compared to when the attention module is

not introduced.

For achieving optimal performance after adding the Bi Former

block, this paper conducted the following comparative experiments.

We used YOLOv8n as the baseline model and added Bi Former

blocks at different layers of the backbone network. The results are

shown in Table 2 From the experimental results, it can be observed

that adding the Bi Former block to deeper layers of the network

leads to higher detection performance, but also increases

computational complexity. Adding Bi Former to layers B4-B5

increased the computational load by 9.5 times, yet the

improvements in various metrics were less than 3%. In order to

balance detection performance and computational requirements,

this paper added the Bi Former block to layers B1-B2.

In the experimental results, we can see that the total amount

calculated by BiFormer varies greatly at different depths, but the

difference in results is not significant. This is because the module

runs in four stages, each of which reduces the resolution of the input
TABLE 1 Detection results of different attention mechanism.

Metrics Precision/% Recall% mAP0.5/% mAP0.5:0.95/%

Nothing 80.4 64.8 72.2 47.7

SE 81.1 63.0 70.1 49.2

CBAM 81.0 71.1 70.2 49.5

ECA 80.3 68.5 69.9 48.3

ContextAggregation 84.9 75.2 83.3 61.5

BIFORMER 89.8 82.3 88.7 65.9
Bold indicates the optimal value of the current indicator.
FIGURE 7

The running diagram in the model.
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image while increasing the number of channels C. The total

calculation amount is shown in the following formula:

FLOPs = 3HWC2 + 3Ck
2
3 (2HW)

4
3 (1)

Where k is the number of regions to participate in.

The number of channels in feature maps with different layers

will increase with the increase of layers.

BIformer will divide the input sequence into two parts,

performing self-attention calculation and cross attention

calculation respectively. The former captures the internal

dependencies of the sequence, while the latter captures the

dependencies between sequences. Although they perform better

when placed at a deeper level, their principle is to filter out key value

pairs that are irrelevant to the query at a coarse-grained level, and

adaptively focus on the most relevant key value pairs at a fine-

grained level; placing it into a deeper network can provide it with

more detailed information, but shallower networks can also provide

the vast majority of key information, so its performance growth is

not significant.
Frontiers in Plant Science 08
3.2.2 Haar wavelet experiment
In convolutional neural networks, pooling layers are used to

reduce the spatial size of data, decrease computational complexity,

while retaining important features. Commonly used pooling

methods include: max pooling, average pooling, and adaptive

average pooling.

Pooling convolutional layers can easily lose feature data and

spatial location information, affecting detection performance. In the

baseline model of YOLOv8n, spatial pyramid pooling is used when

transitioning from the backbone network to deeper layers. The

fundamental unit of spatial pyramid pooling is max pooling.

Although it improves upon the drawbacks of max pooling, it still

cannot entirely avoid the loss of feature information. The paper

introduces a down sampling module based on Haar wavelet

functions and compares it with common pooling methods. The

results are shown in Figure 8. When inputting the same image, it’s

evident that Haar wavelet-based pooling can preserve feature and

spatial information to a greater extent. From Table 3 we can see that

Haar has higher confidence and mAP than its peers, but its recall
FIGURE 8

Comparison of different pooling methods.
TABLE 2 Detection results of different depths of Bi Former module.

Model Precision/% Recall% mAP0.5/% mAP0.5:0.95/% FLOPS

B1-B2 89.8 82.3 88.7 65.9 17.6G

B2-B3 89.1 81.4 86.5 62.2 35.2G

B3-B4 90.2 83.3 89.1 67.4 78.9G

B4-B5 91.1 83.6 90.0 68.6 168.2G
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rate is not as good as Adbptpool. This is because Adbptpool

adaptively calculates weights, which increases its computational

load. Maxpool is the most commonly used method, with relatively

balanced performance but not as high accuracy as Haar. In

summary, we ultimately used Haar as the downsampling module.

3.2.3 Feature fusion network
In YOLOv8, the feature fusion network in the backbone is FPN-

PANet. To validate the improved feature fusion network proposed in

this paper, comparative experiments were conducted using v8n as the

baseline model. Several mainstream feature fusion structures were also

compared. The results are shown in Table 4. From the table, we can

observe that compared to the baseline modelFPN, as the earliest

proposed pyramid network, is the foundation for subsequent multi-

scale network design. Its disadvantages are twofold. Firstly, it only

adopts a top-down path, resulting in insufficient low-level information;

secondly, it lacks dynamic weights, leading to underutilization of some

important features. PANet introduced bidirectional paths, increasing

the complexity of feature fusion, but its performance was not as

expected in complex backgrounds. The NAS-FPN architecture is

optimized for specific tasks and datasets, with high search costs and

complex structures. BiFPN can learn weight dependencies, but it is

prone to getting stuck in local optima, resulting in limited performance

improvement. The model proposed in this article considers the

characteristics of tea disease detection tasks and takes into account

practical application situations, partially introducing bidirectional paths

and weight dependencies.

From the table, we can observe that compared to the baseline

model, our feature fusion structure exhibits better detection

accuracy, with a 19.5% increase in mAP0.5, while the

computational complexity decreases by 20.4%. Therefore, it can

be concluded that our structure preserves more feature information

during feature fusion with minimal computational overhead.
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3.3 Comparative experiment

To demonstrate the superiority and effectiveness of the proposed

improved algorithm, we conducted comparative experiments. First, we

compared various models in the YOLO series: YOLOv3 (Redmon and

Farhadi, 2018) nd its lightweight version YOLOv3-tiny (Adarsh et al.,

2020); YOLOv4 (Bochkovskiy et al., 2020) with the novel backbone

network CSPDarknet53; YOLOv5n (Xue et al., 2023), which improves

accuracy using mosaic data augmentation; and YOLOv9s (Wang et al.,

2024a), which introduces new structures based on YOLOv7. Also, we

compared the tea detection model developed by YOLO-Tea (Xue et al.,

2023), Hossain et al. (2018) andTSBA-YOLO (Lin et al., 2023), which can

now be applied to the prevention and control of tea diseases and pests.

From Table 5 we can analogize the advantages and disadvantages of

the model proposed in the above paper. Compared to models such as

YOLOv3 and YOLOv5, the later proposed YOLOv8 and v9 have better

performance, with mAP reaching over 70%. However, this is still not an

ideal accuracy rate. Because these four models are only a framework and

do not specifically detect the characteristics of tea pests, diseases, and

defects in images. However, YOLOv10b and YOLOv11n are

improvements based on YOLOv8 and YOLOv9, still retaining similar

shortcomings. Therefore, subsequent researchmainly focuses on targeted

optimization of this drawback, such as the attention mechanism and

feature fusion module proposed in this paper, which take into account

the characteristics of tea damage and the features captured during drone

inspections. After targeted optimization, our model achieved a precision

of 92.2% and an mAP of 94.5%, far exceeding similar models.
4 Conclusions

Due to the texture, shape, and color characteristics of tea leaves,

accurately detecting defects and pest damage is challenging. The
TABLE 3 Comparison of different pooling methods.

Metrics Precision/% Recall% mAP0.5/% mAP0.5:0.95/%

Maxpool 66.8 55.1 63.2 37.2

Haar 70.2 58.2 69.5 44.6

Avgpool 60.5 50.6 57.1 31.4

Adbptpool 62.3 58.9 61.2 36.1
Bold indicates the optimal value of the current indicator.
TABLE 4 Detection results of different feature fusion networks.

Model Precision/% Recall% mAP0.5/% mAP0.5:0.95/% FLOPS

FPN 78.9 58.1 63.1 37.2 7.9G

PANet 79.2 58.3 62.4 38.4 10.4G

NAS-FPN 78.5 57.6 62.6 37.6 9.3G

FPN-PANet 81.0 65.8 72.2 48.1 15.2G

BIFPN 83.7 76.3 83.1 62.0 22.7G

Ours 86.4 75.9 86.3 63.4 12.1G
Bold indicates the optimal value of the current indicator.
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small size of the leaves, in particular, renders existing models

insufficient for our research needs. Therefore, we have enhanced

the YOLOV8n model in various ways to improve its detection

capabilities for tea leaf defects and diseases.

(Chen et al., 2024b) proposed a new ViTNet model, which

mainly detects smile pest and disease features by introducing self-

attention mechanism and global feature extraction. Secondly, the

EMA PANet model was introduced to improve the multi-scale

information acquisition ability (Chen et al., 2024a) proposed using

transfer learning and freezing core strategies to improve timely

detection ability (Li et al., 2024) proposed embedding the CA

attention mechanism into MobileNetV2 and proposed a multi

branch parallel strategy to extract features, which can adapt to
Frontiers in Plant Science 10
different diseases. And use AutoML for Model Compression (AMC)

to compress the computational load (Zhou et al., 2024) proposes to

use the GS DeepLabV3 network, only Chen paid attention to the

attention mechanism, which can effectively reduce computational

complexity and improve accuracy. However, the adaptive attention

mechanism used by Chen calculates global features, which requires

a large amount of computation; the EMA PANet model is a feature

fusion network based on PANet, which improves performance by

adding fusion paths, but this can lead to difficulty in training and

slow convergence. Transfer learning and freezing core strategies can

lead to poor generalization performance of the model and neglect of

underlying features. The multi branch parallel strategy proposed by

Li for feature extraction is a great method.
TABLE 5 Test results of different models.

Model Precision/% Recall% mAP0.5/% mAP0.5:0.95/%

YOLOv3 49.5 40.3 37.2 18.6

YOLOv3-tiny 39.2 31.7 29.5 17.9

YOLOv4 57.8 45.4 48.4 25.5

YOLOv5n 71.0 64.8 65.7 37.6

YOLOv8n 80.2 69.7 72.2 47.3

YOLOv9s 79.8 75.0 75.2 45.0

YOLOv10b 81.2 77.8 83.9 68.2

YOLOv11n 86.2 80.4 87.3 70.1

Hossain S 72.3 74.2 68.6 43.1

TSBA-YOLO 67.6 81.5 71.5 51.2

YOLO-Tea 85.1 85.7 86.5 64.7

Ours 92.2 87.1 94.5 71.4
Bold indicates the optimal value of the current indicator.
FIGURE 9

Comparison of several excellent model results.
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Our model combines their strengths and discards their

weaknesses. Firstly, because YOLOV8 struggles to focus on small

targets such as disease defects, we employed the Bi Former attention

mechanism to direct the model’s attention towards these areas. Bi

Former filters out irrelevant feature information at the upper layers

of the network, retaining only a portion of the regions. Within these

regions, it then utilizes token-to-token attention for higher

precision. The DWconv reduces computational load, and the

MLP adjusts the attention weights accordingly (Chen et al., 2024a).

Secondly, the baseline model’s max pyramid pooling employs a

max pooling module. As shown in Figure 7, the effective

information retained by max pooling is not highly sensitive to tea

leaf defects and diseases. However, pooling operations using the

Haar function can preserve more feature information. The Haar

function can retain essential feature information to the greatest

extent when transmission channel performance is suboptimal, then

reconstruct the image for the next layer of computation. During this

process, feature maps computed using the Haar function are able to

preserve critical information to the maximum extent.

Finally, the new feature fusion network decomposes the

backbone network into sub-backbone networks with distinct

features under the transform framework. This leverages the

parallel processing advantages of GPUs, thereby accelerating

computation speed. When processing single features, the model

often exhibits better performance. Additionally, by summing the

feature maps of the same layer, more feature information can be

retained without increasing computational load.

Through a series of improvements, we ultimately developed the

BHC-YOLO model for detecting tea leaf defects and diseases. As

shown in Figure 9, the BHC model outperforms other tea leaf

detection models available on the market. Notably, the dataset

considers the impact of weather factors on practicality, and the

algorithm enhances the original images, thereby increasing the

model’s generalization capability.

However, there are still shortcomings and areas for

improvement in this model. Firstly, the computational complexity

is still relatively high, which requires a certain level of power

consumption for portable artificial intelligence chipsets and is not

easy to carry. In the subsequent work, we will prune the entire

model to further reduce computational complexity. Secondly, there

is a high demand for photo quality, and once in a low light

environment, the accuracy will suddenly decrease; the recognition

rate of sporadic tea pests and diseases is low, and there is still room

for improvement.
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