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The Leaf Area Index (LAI) is a crucial parameter for evaluating crop growth and

informing fertilization management in agricultural fields. Compared to traditional

methods, UAV-based hyperspectral imaging technology offers significant

advantages for non-destructive, rapid monitoring of crop LAI by

simultaneously capturing both spectral information and two-dimensional

images of the crop canopy, which reflect changes in its structure. While

numerous studies have demonstrated that various texture features, such as the

Gray-Level Co-occurrence Matrix (GLCM), can be used independently or in

combination with crop canopy spectral data for LAI estimation, limited research

exists on the application of Haralick textures for evaluating crop LAI across

multiple growth stages. In this study, experiments were conducted on two early-

maturing potato varieties, subjected to different treatments (e.g., planting density

and nitrogen levels) at the Xiaotangshan base in Beijing, during three key growth

stages. Crop canopy spectral reflectance and Haralick textures were extracted

from ultra-low-altitude UAV hyperspectral imagery, while LAI was measured

using ground-based methods. Three types of spectral data—original spectral

reflectance (OSR), first-order differential spectral reflectance (FDSR), and

vegetation indices (VIs)—along with three types of Haralick textures—simple,

advanced, and higher-order—were analyzed for their correlation with LAI across

multiple growth stages. A model for LAI estimation in potato at multiple growth

stages based on spectral and textural features screened by the successive

projection algorithm (SPA) was constructed using partial least squares

regression (PLSR), random forest regression (RFR) and gaussian process

regression (GPR) machine learning methods. The results indicated that: (1)

Spectral data demonstrate greater sensitivity to LAI than Haralick textures, with

sensitivity decreasing in the order of VIs, FDSR and OSR; (2) spectral data alone

provide more accurate LAI estimates than Haralick textures, with VIs achieving an
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accuracy of R² = 0.63, RMSE = 0.38, NRMSE = 28.36%; and (3) although Haralick

textures alone were not effective for LAI estimation, they can enhance LAI

prediction when combined with spectral data, with the GPR method achieving

R² = 0.70, RMSE = 0.30, NRMSE = 20.28%. These findings offer a valuable

reference for large-scale, accurate monitoring of potato LAI.
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1 Introduction

The potato, ranked fourth in the global list of food crops, is

irreplaceable in achieving development goals such as the eradication

of hunger, poverty and malnutrition (Ahmed et al., 2024). Its

production in developing countries has grown significantly over

the past two decades, making the monitoring of its growth critical to

the security and stability of the global food supply (Badr et al.,

2022). The Leaf Area Index (LAI) represents the total one-sided leaf

area of a crop per unit ground area and is closely linked to key

physiological processes such as respiration, transpiration,

productivity, and photosynthesis (Li et al., 2016; Ilniyaz et al.,

2022). Rapid and accurate estimation of LAI is essential for

diagnosing crop growth and predicting yield (Cohrs et al., 2020;

Kaplan and Rozenstein, 2021). While traditional manual

measurement methods are precise, they are also time-consuming,

destructive to crops, and incapable of providing large-scale

spatiotemporal data, thereby limiting the effectiveness of crop

management. Remote sensing, which involves detecting and

obtaining information about objects from a distance without

direct contact (Kokubu et al., 2020; Raj et al., 2021), has become

increasingly important in monitoring crop LAI due to its non-

destructive nature and high-throughput capabilities. Among the

various remote sensing technologies available, UAV (Unmanned

Aerial Vehicle) remote sensing has emerged as the preferred

method for estimating crop LAI, owing to its ability to configure

multiple sensors, its flexibility in data collection, and the high spatial

and temporal resolution of the images it captures (Dong et al., 2019;

Revill et al., 2020).

There are three primary approaches to crop LAI estimation

using UAV remote sensing imagery: physical models, hybrid

models, and empirical statistical models (Verrelst et al., 2015).

Physical models are based on light-crop interactions, such as

reflection and absorption, providing a mechanistic and

generalizable framework (Fu et al., 2022). These models simulate

crop canopy spectral reflectance, which can indirectly estimate LAI.

However, despite their mechanistic nature, physical models require

numerous input parameters, making them costly to implement.

Hybrid models leverage simulation data from physical models to

train machine learning algorithms, offering an effective method for
02
estimating LAI without extensive ground-truthing data (Verrelst

et al., 2015). On the other hand, empirical statistical models

establish a statistical relationship between crop characteristics and

LAI (Cao et al., 2020). This approach is user-friendly, easy to

implement, and has gained popularity. UAV hyperspectral remote

sensing has high spectral resolution and strong band continuity,

and its original spectral reflectance (OSR) contains a large amount

of spectral information, which can be effectively used for crop

physicochemical parameter estimation (Chen et al., 2024). In order

to improve the accuracy of hyperspectral remote sensing in the

estimation of crop physicochemical parameters, the OSR need to be

preprocessed to reduce noise and improve accuracy. First-order

differential spectral reflectance (FDSR) not only eliminates the effect

of background, but also resolves the overlapping signals and

improves the sensit ivity of spectral features to crop

physicochemical parameters. Additionally, vegetation indices

(VIs) are also an effective form of extracting spectral features of

crop canopies, which are mainly formed by combinations of

reflectance in two or more bands in the visible to near-infrared

region (Fan et al., 2022; Liu et al., 2024b). Optical VIs can mitigate

the effects of canopy structure and soil on crop reflectance spectra,

thereby enhancing and highlighting relevant crop information (Liu

et al., 2024a). Numerous VIs are currently used to estimate crop

LAI. For example, Lu et al. (2022) evaluated the performance of

several VIs in estimating wheat LAI at multiple growth stages and

found that the normalized red-edge index exhibited a significant

linear relationship with LAI (R² = 0.53). Similarly, Gong et al.

(2021) assessed the LAI of rice throughout its growth stages using

different VIs and discovered that the Enhanced Vegetation Index 2

produced higher estimation accuracy (R² = 0.38). These studies

show a gradual decrease in the sensitivity of VIs to LAI over

different growth stages, thus challenging the use of VIs for

multiple growth stages LAI estimation.

The band reflectance used to form VIs is primarily influenced

by leaf morphology and canopy structure (Croft et al., 2014; Zhang

et al., 2021b). Compared to maize and wheat, potatoes exhibit more

complex changes in canopy structure throughout their growth

phases (Li et al., 2020; Yang et al., 2021). During the nutrient

reserve stage, potato stems grow randomly, and leaves increase in

size. As the crop enters the pre-mid reproductive stage, the canopy
frontiersin.org
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becomes denser, leading to VI saturation under high LAI

conditions. As underground tubers begin to form, nutrients

accumulated during the earlier growth stages are transferred to

these tubers. At this stage, potato leaves start to yellow and wither,

significantly affecting the reflectance spectrum of the potato canopy.

Consequently, estimating LAI without considering the growth stage

of the potato, which accounts for changes in canopy structure, is

challenging. To achieve accurate LAI estimation, the differences in

potato canopy structure across growth stages must be quantified.

Texture features of an image, which define the variability between

neighboring pixels within a given window, can describe variations

in canopy structure (Wulder et al., 1998; Yue et al., 2019; Zhang

et al., 2022c). Recent studies have incorporated texture features

when estimating LAI across multiple crop growth stages (Li et al.,

2019). For instance, Qiao et al. (2024) improved multi-growth stage

LAI estimation in peanut by combining VIs with image texture

features extracted using the Gray-Level Co-occurrence Matrix

(GLCM). Similarly, Zhou et al. (2022) demonstrated that texture

features extracted using discrete wavelet transform, when combined

with VIs, provided more accurate LAI estimates for rice compared

to using VIs alone. While combining texture features with VIs is

expected to enhance LAI estimation across different crop growth

stages, it remains uncertain whether existing texture feature

extraction methods can accurately capture the complex changes

in potato canopy structure at various growth stages. Therefore, it is

essential to explore texture features that effectively reflect these

structural changes to assist VIs in improving LAI estimation

accuracy across multiple growth stages in potatoes.

Among texture features, the Haralick texture feature is the most

prominent, relying on the GLCM. Typically, one or more summary

statistics, known as Haralick features, are used to summarize the

GLCM for ease of interpretation (Haralick et al., 1973; Das and

Naskar, 2024). Different types of texture features, including simple,

advanced, and high-order features, can be extracted using the Haralick

texture extraction method based on the GLCM (Jiang et al., 2021).

Among these features, it is possible to filter out those that are

particularly sensitive to changes in potato canopy structure, which,

when combined with VIs, can enable accurate estimation of LAI across

multiple growth stages. Compared to digital or multispectral images,

UAV hyperspectral images can provide richer spectral information.

When captured under ultra-low-altitude flight conditions, these high-

spatial-resolution hyperspectral images can also extract canopy texture

features that respond to crop LAI (Duan et al., 2019). Consequently,

UAV-based hyperspectral imaging technology offers significant

potential for improving LAI estimation. However, extracting sensitive

features from hyperspectral image-derived variables is challenging due

to the high dimensionality and complexity of the data. As a result,

sensitive feature selection methods, such as genetic algorithms,

successive projection algorithms (SPA), and stepwise regression

algorithms, have been employed to identify the optimal combination

of spectral and texture features (Gu et al., 2022; Ji et al., 2022; Ma et al.,

2022). Zhang et al. (2021a) demonstrated that features extracted using

SPA combined with machine learning can yield more accurate LAI

estimation results. Although machine learning methods are

increasingly powerful tools for analyzing spatial variations in LAI

from multiple remotely sensed feature datasets, not all machine
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learning approaches are equally effective for crop LAI estimation at

multiple growth stages. The choice of appropriate regression methods

is also crucial for improving the accuracy of LAI estimation. To the best

of our knowledge, few studies have investigated the use of hyperspectral

imagery to extract spectral and Haralick texture features for estimating

LAI across multiple growth stages in potato.

To enhance the accuracy of potato LAI estimation acrossmultiple

growth stages, this study aimed to: (1) evaluate the performance of

spectral information and Haralick texture features extracted from

UAV hyperspectral imagery for LAI estimation independently; (2)

determine whether combining spectral information with Haralick

texture features improves LAI estimation accuracy; and (3) identify

the optimal combination of variables and the most effective

regression method for estimating potato LAI at various growth

stages. The findings of this study offer insights into utilizing UAV

hyperspectral imaging technology to obtain both canopy spectral and

structural information, thereby improving the precision of LAI

estimation and establishing a foundation for monitoring potato

growth at the field scale.
2 Materials and methods

2.1 Experiment design

Potato trials were conducted at the National Precision Agriculture

Experimental Base in Changping District, Beijing, China (Figure 1).

Two early-maturing potato varieties, Zhongshu 3 (Z3) and Zhongshu 5

(Z5), were planted. To increase the spatial variability of LAI, three

treatments were performed, including different planting densities,

nitrogen gradients, and potassium gradients. Planting density was

categorized into three levels: 60,000 (P1), 72,000 (P2), and 84,000

(P3) tubers/hm2. Nitrogen treatments were categorized into four levels:

0 (N0), 112.5 (N1), 225 (N2), and 337.5 (N3) kg/hm2 of pure nitrogen.

Potash treatments were categorized into three levels: 0 (K0), 495 (K1,

applied to the planting density and nitrogen test areas), and 990 (K2)

kg/hm2 of K2O. In this experiment, each plot size of 32.5 m2 was

applied with 90 kg/hm2 P2O5 and each treatment was replicated three

times, totalling 48 plots. Field management practices, including

weeding, fertilization, and irrigation, were consistent with local

agricultural conditions. To calibrate the UAV hyperspectral images

acquired during the study, 11 ground control points were evenly

distributed around the experimental field. The spatial locations of

these points were determined using the Qianxun SR2 high-precision

RTK measurement system.
2.2 Hyperspectral images acquisition
and processing

In 2019, UAV hyperspectral images were acquired during three

critical stages of potato development: tuber formation (28 May),

tuber growth (10 June), and starch accumulation (20 June). These

stages correspond to BBCH codes 41, 44, and 47 (referred to as

BBCH41, BBCH44, and BBCH47), respectively. The images were

captured using an M600 UAV (SZ DJI Technology Co., Ltd.,
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Shenzhen, China) equipped with a UHD 185-Firefly imaging

spectrometer (Cubert GmbH, Ulm, Germany). The UHD185 has

125 spectral channels covering a wavelength range of 450–950 nm,

with a sampling interval of 4 nm. The UAV followed identical flight

paths across all three growth stages, maintaining consistent take-off

positions. The image acquisition was conducted under clear,

cloudless, and windless conditions, between 11:30 am and 13:30

pm, when direct sunlight reached the ground. Flights were carried

out at an altitude of 20 meters, resulting in a spatial resolution of

1.43 cm, with a flight speed of 1.5 m/s. To facilitate the efficient

stitching of orthophotos, the heading and sidelap overlaps were

manually set to 85% and 93%, respectively. Given the small size of

the field, each hyperspectral image acquisition took approximately

12 minutes. Before each take-off, dark current and radiometric

calibration were performed on the ground using a black-and-white

calibration plate.

The processing of UAV hyperspectral images involves several key

steps: panchromatic image stitching, fusion of panchromatic and

hyperspectral images, and extraction of canopy spectral reflectance.

First, Agisoft PhotoScan software (Agisoft LLC, St. Petersburg,

Russia) was used to correct the topography of the panchromatic

images by integrating the positional data from the ground control

points. Next, the panchromatic images were mosaicked using the

structure-from-motion algorithm, and orthophotos of the test field

were generated. The panchromatic orthophoto was then fused with

the hyperspectral image using Cube-Pilot software (Cubert GmbH,

Ulm, Germany) to create a new hyperspectral image. Finally, the

average spectral reflectance of the potato canopy was extracted from

the vector files of the 48 plots using ENVI software, and this data was

used for subsequent analysis.
Frontiers in Plant Science 04
2.3 LAI measurement

To obtain LAI data, three uniformly growing plants were

destructively sampled at each growth stage of tuber formation,

tuber growth, and starch accumulation. Plants were transported

quickly to the laboratory to prevent water loss leading to leaf

curling. After manual separation of the stems and leaves, 60 leaf

discs were punched out with a 0.8 cm diameter punch and their wet

weights were measured using a high-precision balance (W1). The

remaining leaves of the three plants were also measured for their

wet weight (W2). Finally, the LAI of each plot was calculated using

the weight ratio and planting density. The formula for LAI was as

follows:

LAI =
(W1 +W2)
3�W1

� S�M (1)

Where WI and W2 were the wet weight of 60 leaf discs and the

remaining leaves of three plants respectively. S was the area of leaf

discs. M was the number of potato plants per unit area.
2.4 The extraction of spectral and
textural feature

The spectral information extracted from UAV hyperspectral

images in this study primarily includes canopy original spectral

reflectance (OSR), first-order differential spectral reflectance

(FDSR), and vegetation indices (VIs). Additionally, simple,

advanced, and higher-order texture features were derived using

Haralick texture extraction methods.
FIGURE 1

The spatial planting distribution of potatoes in this study.
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2.4.1 The extraction of FDSR
A first-order differential transformation of the raw canopy

spectra can eliminate the interference of linear background noise

on the canopy spectral signals and enhance the spectral absorption

and reflectance features in the visible to near-infrared region, which

is conducive to the improvement of the spectral reflectance

response to LAI (Imanishi et al., 2004; Li et al., 2014).

Hyperspectral data are well-suited for first-order differential

processing due to their large number of continuous bands. The

first-order differentiation formula used in this study is as follows:

FDSRl(i) =
Rl(i−1) − Rl(i+1)

Dl
  (2)

where FDSRl(i) is the first-order differential spectral reflectance

at a central wavelength i between waveband i − 1 and i + 1. Rl(i−1)

and Rl(i+1) are the reflectance in the waveband i − 1 and i + 1,

respectively. Dl is the sampling interval.

2.4.2 The extraction of VIs
VIs are effective spectral signals used to enhance vegetation

information (Sone et al., 2009; Hu et al., 2021; Wengert et al., 2021).

In this study, thirty VIs were selected for estimating LAI, with their

specific expressions and names provided in Table 1.

2.4.3 The extraction of Haralick texture features
Haralick texture features are computed from a GLCM, which

records the co-occurrence of neighboring gray levels in an image

(Brynolfsson et al., 2017). The GLCM is a square matrix, where the

number of rows and columns corresponds to the number of gray

levels in the region of interest. Each texture feature is derived from

the elements of the GLCM and represents a specific relationship

between neighboring voxels. In this study, we utilized the Python

package and Orfeo Toolbox 7.2.0 (https://www.orfeo-toolbox.org/

download/) to extract the Haralick features.

In order to reduce the difficulty of extracting texture features,

principal component analysis (PCA) was performed on the raw

hyperspectral images using ENVI software. It was found that the

first principal component image could explain 90% of the image

information. Consequently, various Haralick texture features were

extracted from this first principal component image. Simple,

advanced, and higher-order textures were derived using a 5×5

window size in the 45° direction. The names and quantities of the

extracted Haralick texture features are listed in Table 2.
2.5 Statistical analysis and methodology

The optimal combination of variables for estimating LAI was

determined using the SPA. SPA is a forward variable selection

algorithm based on the projection analysis of vectors (Sun et al.,

2019). Initially, a set of vectors is randomly selected as the starting

variables. These vectors are then projected onto the unselected

vectors, and the magnitudes of the projected vectors are compared.

The variable with the largest projected vector is selected, and this
Frontiers in Plant Science 05
process is repeated through several iterations. Ultimately, the

optimal combination of variables is chosen based on the

minimum root mean square error (RMSE) of cross-validation.

Partial Least Squares Regression (PLSR) is a statistical method

used to develop a linear regression model by projecting independent

and dependent variables into a new space. This method involves

both the extraction of principal components from the independent

and dependent variables and the maximization of the correlation

between these components during the regression modeling process

(Tao et al., 2020). Random Forest Regression (RFR) is a machine

learning technique that integrates a large number of decision trees

(Yue et al., 2018). The accuracy of the RFR model is primarily

influenced by the number of decision trees (ntree) and the number

of nodes (mtry), with mtry typically set to one-third of the input

variables and ntree set to 500. Gaussian Process Regression (GPR) is

a method based on Bayes’ theorem that models the relationship

between dependent and independent variables using a kernel

function (Liu et al., 2022b). Compared to other popular machine

learning methods, GPR models are simpler to optimize and

particularly suitable for training on small sample datasets. In this

study, MATLAB software was used for training and validating LAI

models with the aforementioned machine learning methods. A total

of 96 samples (replicates 2 and 3 for each growth stage) were used

for model training, while 48 samples (replicate 1 for each growth

stage) were reserved for model validation.

Our flowchart from different types of spectral and texture

extraction to model construction and evaluation in this study is

shown in Figure 2.

The coefficient of determination (R²), root mean square error

(RMSE), and normalized root mean square error (NRMSE) were

used to evaluate the accuracy of the models. The corresponding

equations are shown in Equations 3–5:

R2 =
(on

i=1yi − �y)2

(on
i=1xi − �y)2

(3)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1,j=1(xi − yi)
2

n

s
(4)

NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1,j=1(xi − yj)
2

n

r
�y

(5)

Where xi is the measured potato LAI; yi is the estimated potato

LAI; �y is the mean value of the measured potato LAI; n is the

number of samples.
3 Results and analysis

3.1 Analysis of measured LAI

In the field experiment, LAI values of potato at each growth

stage in 48 experimental plots were determined. A total of 144 LAI
frontiersin.org
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samples were obtained at three growth stages of potato in 2019. The

box line plot of potato LAI is shown in Figure 3. With the dynamic

change of potato growth stage, the mean LAI value first decreased

and then levelled off. During the tuber formation stage, the LAI

ranged from 0.43 to 3.29, with an average of 1.50. During the tuber

growth stage, the LAI ranged from 0.34 to 3.00, with an average of

1.32. During the starch accumulation stage, the LAI varied from

0.29 to 3.75, with an average of 1.28.
Frontiers in Plant Science 06
3.2 Correlation of LAI against hyperspectral
image-derived features

The correlation coefficients between different types of

characterization variables and the LAI of potatoes across multiple

growth stages are presented in Figures 4, 5. LAI exhibited a highly

significant correlation with OSR in the wavelength ranges of 454–

702 nm and 718–950 nm (p< 0.01), with a particularly strong
TABLE 1 The VIs used in the study.

VIs Number Formula Reference

Difference vegetation index (DVI) 1 R890-R670 (Richardson and
Wiegand, 1977)

Enhanced vegetation index (EVI) 2 2.5×(R800-R670)/(R800+6×R670-7.5×R450+1) (Ahamed et al., 2011)

Enhanced vegetation index2 (EVI2) 3 2.5×(R800-R670)/(R800+2.4×R670+1) (Jiang et al., 2008)

Green normalized-difference vegetation index (GNDVI) 4 (R750-R550)/(R750+R550) (Gitelson et al., 1996)

Greenness index (GI) 5 R554/R677 (Zarco-Tejada et al., 2005)

Linear combination index (LCI) 6 (R850-R710)/(R850+R670)
1/2 (Datt, 1999)

Modified chlorophyll-absorption ratio index (MCARI) 7 ((R700-R670)-0.2×(R700-R550))(R700/R670) (Haboudane et al., 2002)

Modified simple ratio index (MSR) 8 (R800/R670-1)/(R800/R670+1)
1/2 (Chen, 1996)

Modified soil adjusted vegetation index (MSAVI) 9 0.5×[2×R800+1−((2×R800+1)
2-8×(R800-

R670))
1/2]

(Haboudane et al., 2002)

Modified triangular vegetation index 1 (MTVI1) 10 1.2×[1.2×(R800-R550)-2.5(R670-R550)] (Haboudane et al., 2004)

Modified triangular vegetation index 2 (MTVI2) 11
1.5×(1.2×(R800-R500)-2.5×(R670-R550))/

(2×(R800+1)
2-(6×R800-5×(R670)

1/2)-0.5)1/2
(Haboudane et al., 2004)

Normalized-difference vegetation index (NDVI) 12 (R800-R680)/(R800+R680) (Rouse et al., 1974)

Normalized difference red edge (NDRE) 13 (R790-R720)/(R790+R720) (Fitzgerald et al., 2010)

Normalized pigment chlorophyll ratio index (NPCI) 14 (R670-R460)/(R670+R460) (Peñuelas et al., 1994)

Normalized difference index (NDI) 15 (R850-R710)/(R850+R680) (Apan et al., 2003)

Nitrogen reflectance index (NRI) 16 (R570-R670)/(R570+R670) (Barnes et al., 1992)

Optimizing soil-adjusted vegetation index) (OSAVI) 17 1.16×(R800-R670)/(R800+R670+0.16) (Li et al., 2016)

Plant senescence reflectance index (PSRI) 18 (R680-R500)/R750 (Merzlyak et al., 1999)

Pigment‐specific normalized difference (PSND) 19 (R800-R470)/(R800+R470) (Blackburn, 1998)

Plant biochemical index (PBI) 20 R810/R560 (Rama Rao et al., 2008)

Ratio vegetation index (RVI) 21 R810/R660 (Xue et al., 2004)

Renormalized-difference vegetation index (RDVI) 22 (R800-R670)/(R800+R670)
1/2 (Roujean and Breon, 1995)

Ratio analysis of reflectance spectra (RASI) 23 R760/R500 (Chappelle et al., 1990)

Red‐edge vegetation stress index (RVSI) 24 [(R712+R752)/2]-R732 (Merton and Huntington, 1999)

Soil-adjusted vegetation index (SAVI) 25 1.5×(R800-R670)/(R800+R670+0.5) (Huete, 1988)

Spectral-polygon vegetation index (SPVI) 26 0.4×[3.7×(R800-R670)-1.2×|R550-R670|] (Vincini et al., 2006)

Triangular vegetation index (TVI) 27 0.5×[120×(R750-R550)-200×(R670-R550)] (Broge and Leblanc, 2001)

Transformed chlorophyll absorption ratio index (TCARI) 28 3×[(R710-R680)-0.2×(R700-R560)(R710/R680)] (Haboudane et al., 2002)

Visible atmospherically resistance index (VARI) 29 (R555-R680)/(R555+R680-R480) (Gitelson et al., 2003)

Wodified wide dynamic range vegetation
index (WDRVI)

30 (0.1×R800-R670)/(0.1×R800+R670) (Stamatiadis et al., 2006)
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correlation observed at 750–922 nm (Figure 4A). The correlation

between LAI and FDSR showed greater variability after the first-

order derivation of OSR, with highly significant correlations

occurring at 454–506 nm, 550–642 nm, 690–774 nm, and 790–

950 nm (p< 0.01). The highest correlation between LAI and FDSR

was noted at 734–758 nm (Figure 4B). The VIs selected in this study

also demonstrated highly significant correlations with LAI across

multiple growth stages of potatoes (Figure 5A). Additionally, the
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extracted Haralick textures, including Inverse Difference Moment,

Cluster Shade, Haralick Correlation, Mean, Sum Average, Low

Grey-Level Run Emphasis, Short Run High Grey-Level Emphasis,

and Long Run Low Grey-Level Emphasis, showed highly significant

correlations with LAI (Figure 5B).

The variables with the highest correlation to LAI across multiple

growth stages of potatoes were 886 nm for OSR (r = 0.55, p< 0.01),

742 nm for FDSR (r = 0.67, p< 0.01), NDRE for VIs (r = 0.65, p<

0.01), and the Mean for Haralick texture (r = -0.50, p< 0.01). The

mean absolute correlation coefficients of OSR (450–950 nm), FDSR

(450–950 nm), VIs, and Haralick texture features with LAI were

0.48, 0.35, 0.53, and 0.17, respectively. These results suggest that VIs

may better capture the spatial variability of potato LAI, whereas

Haralick texture features may be less effective.
3.3 Sensitive feature acquisition using
SPA method

The results of filtering five feature datasets using the SPA

method are presented in Table 3, including OSR, FDSR, VIs,

Haralick textures, and their combined features. From a total of

125 OSR features, 125 FDSR features, 30 VIs, 28 textures, and 308

combined features, 10, 7, 8, 10, and 17 features were selected,

respectively. This selection indicates that the unselected features

were either uninformative or contained redundant information for

estimating LAI across multiple growth stages of potatoes.

Although the selected wavelengths for LAI estimation using OSR

and FDSR differ, they share a common characteristic: these

wavelengths span the visible to near-infrared regions and exhibit a

high correlation with LAI. Typically, VIs containing near-infrared or

red-edge wavelengths are chosen for LAI estimation. Three features

were selected from simple textures, five from advanced textures, and

two from higher-order textures; however, not all of these features

achieved a high correlation with LAI. For instance, features such as

Inertia, Sum of squares: variance, Difference entropy, and Information

measures of correlation IC1 did not fully reach the highly significant

correlation level with LAI. This suggests that the SPA method helps to

prevent the omission of features that significantly contribute to LAI

estimation. In total, four OSR, seven FDSR, three VIs, and three

textures were selected from the combined features, all of which

remained highly sensitive to LAI, except for Inertia, which did not

achieve a highly significant correlation. These findings indicate that the

integration of different types of features is crucial for accurately

estimating LAI across multiple growth stages in potatoes.
3.4 Estimation of LAI in multiple growth
stages of potato

The calibration and validation results obtained using PLSR,

RFR, and GPR based on the variables screened in Table 3 are

presented in Figure 6. X1, X2, X3, X4 and X5 in Figure 6 represent

OSR, FDSR, VIs, Haralick textures and All. Among the models, the

LAI estimation model constructed using the GPR method

demonstrated higher fitting accuracy and lower error compared
TABLE 2 The Haralick texture used in the study.

Type
of textures

Number Names

simple

1 Energy

2 Entropy

3 Correlation

4 Inverse difference moment

5 Inertia

6 Cluster shade

7 Cluster prominence

8 Haralick correlation

advanced

9 Mean

10 Sum of squares: variance

11 Dissimilarity

12 Sum average

13 Sum variance

14 Sum entropy

15 Difference variance

16 Difference entropy

17 Information measures of
correlation IC1

18 Information measures of
correlation IC2

higher order

19 Short run emphasis

20 Long run emphasis

21 Grey-level nonuniformity

22 Run length nonuniformity

23 Run percentage

24 Low grey-Level
run emphasis

25 High grey-Level
run emphasis

26 Short run low grey-
level emphasis

27 Short run high grey-
level emphasis

28 Long run low grey-
level emphasis
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to the others. When using the same regression method, LAI

estimation based on different types of spectral information was

more accurate than that based on Haralick texture features, with the

best results achieved using the GPR method with VIs (Calibration:

R² = 0.63, RMSE = 0.41, NRMSE = 31.32%; Validation: R² = 0.63,

RMSE = 0.34, NRMSE = 22.84%). Although using Haralick texture

features alone to estimate LAI across multiple growth stages of

potatoes is not ideal, combining texture features with different

forms of spectral information can enhance the accuracy of LAI

estimation, suggesting that Haralick texture can compensate for the

limitations of spectral information. Compared to the PLSR and RFR
Frontiers in Plant Science 08
methods, the GPR method was the most accurate for estimating

multi-stage LAI in potatoes using 17 features that included both

spectral and texture information (Calibration: R² = 0.68, RMSE =

0.38, NRMSE = 29.04%; Validation: R² = 0.70, RMSE = 0.30,

NRMSE = 20.28%).

The fitted relationship between the estimated and measured

LAI values of potatoes across multiple growth stages, obtained

using the best regression method based on four types of spectral

information, one type of texture, and a combination of spectral

and texture features, is illustrated in Figure 7. The results indicate

the following: (1) Estimating LAI using only spectral information
FIGURE 2

Flowchart of the experimental research.
FIGURE 3

Box line plot of measured leaf area index at each growth stage.
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or Haralick textures yields significant errors, particularly with

Haralick textures, leading to low model accuracy (R² = 0.45, RMSE

= 0.41, NRMSE = 27.60%). (2) Among the spectral information,

VIs demonstrated the best estimation performance (R² = 0.63,

RMSE = 0.34, NRMSE = 22.84%). (3) The combination of spectral

information and texture features reduced the error in LAI

estimation across multiple growth stages and enhanced the

accuracy of the model. Notably, when LAI was greater than 2,

the estimates based on the fused sensitive features were closer to

the 1:1 line with the measured values (R² = 0.70, RMSE = 0.30,

NRMSE = 20.28%), suggesting that integrating multiple types of

features can mitigate the inaccuracies associated with using a

single type of feature for LAI estimation.
3.5 Applicability of estimated LAI for
different growth stages

The study combines three types of spectra and Haralick textures

with the GPR machine learning method to estimate LAI in two

potato varieties. Figure 8 illustrates the effect of this estimation to

assess the model’s applicability across different growth stages. The

results showed that the performance of the method proposed in this
Frontiers in Plant Science 09
study differed significantly in the estimation of LAI for the three

growth stages, as evidenced by the poorer performance of the model

in terms of accuracy in tuber growth (Figure 8B). This is due to the

high canopy cover of potato in tuber growth compared to the other

two growth stages. Spectral information saturation is more severe

and textural information contribution is reduced. In contrast, the

accuracy of the model was satisfactory in all three growth stages,

although it still varied, so the method of combining different types

of spectral information with Haralick textures still has potential for

predicting potato LAI in different growth stages.
3.6 Mapping potato LAI

The optimal estimation model of potato LAI for multiple

growth stages was constructed based on the three spectral

information and Haralick textures, and the model was used to

generate the spatial distribution map of potato LAI in the study

area, as shown in Figure 9. This method helps to provide a more

comprehensive understanding of the growth conditions and spatial

distribution pattern in the study area. Analyzing LAI spatial

distribution maps aids in assessing plant water use efficiency,

optimizing irrigation and fertilizer strategies, and enhancing
FIGURE 4

Pearson’s correlation coefficient of LAI with OSR and FOD: (A) OSR (B) FOD.
FIGURE 5

Pearson’s correlation coefficient of LAI with VIs and Haralick textures. (A) VIs, (B) Haralick textures. The numbers in Panel (A) match the Number
column in Table 1, and the numbers in Panel (B) match the Number column in Table 2.
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overall water and fertilizer efficiency. Additionally, it supports early

detection of pests and diseases, minimizing yield loss, and serves as

a preliminary tool for predicting crop yields, ultimately improving

agricultural production and management.
4 Discussion

Miniature UAV-imaging hyperspectral systems not only

acquire spectral reflectance information of the crop canopy but

also capture image data of the canopy structure, enabling rapid and

non-destructive monitoring of crop LAI (Yan et al., 2019; Verma
Frontiers in Plant Science 10
et al., 2022). Estimating crop LAI across multiple growth stages

using only the optical information of the crop canopy is challenging,

as the performance of optical data can be inconsistent due to the

influence of phenology and crop variety. Given the variations in

potato canopy structure and the advantages of hyperspectral

imaging, this study explored the applicability and potential of

combining Haralick texture features with canopy spectral

information for LAI estimation.
4.1 Response of spectral and texture
features to LAI

The spectral reflectance of the potato canopy reflects the crop’s

physiological and geometrical characteristics, while VIs enhance the

contrast between crop and soil, allowing for the quantitative

description of crop growth. This spectral information is frequently

used to estimate crop growth parameters such as LAI (Kayad et al.,

2022). The three types of spectra used in this study varied

significantly in their sensitivity to LAI across multiple growth

stages of potatoes (Figures 4A, B, 5A). After differential

transformation, FDSR reduced the effects of soil background and

overlapping signal interference compared to OSR, thereby enhancing

the sensitivity of spectral signals to LAI across different growth stages

(Figures 4A, B). This finding is consistent with the results obtained by

Zhang et al. (2022a) using differentially transformed spectra to

estimate the LAI of rice. The VIs selected in this study exhibited

higher sensitivity to LAI across multiple growth stages than OSR and

FDSR. This increased sensitivity is due to the combination of multiple
TABLE 3 Sensitive features were obtained based on different datasets
using the SPA method.

Type
of

featur-
es

Features

OSR 462, 474, 514, 542, 594, 674, 694, 714, 798, and 914 nm

FDSR 466, 486, 502, 506, 670, 778, and 946 nm

VIs EVI, GNDVI, NDRE, NRI, PSRI, PSND, PBI, RVSI

Haralick
textures

Inverse difference moment, Inertia, Cluster shade, Mean, Sum of
squares: variance, Sum average, Difference entropy,
Information measures of correlation IC1, Low grey-level run
emphasis, Long run low grey-level emphasis

All
650, 710, 886, and 922 nm (OSR); 478, 530, 586, 630, 702, 738,
and 770 nm (FDSR); GNDVI, NDRE, TCARI; Inertia, Cluster
shade, Short run high grey-level emphasis
FIGURE 6

The Accuracy of LAI estimation based on different types of variables. (A) R2(Cal), (B) RMSE(Cal), (C) NRMSE(Cal), (D) R2(Val), (E) RMSE(Val), (F) NRMSE
(Val). X1: OSR, X2: FDSR, X3: VIs, X4: Haralick textures and X5: All features.
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bands, which can mitigate the interference of external environmental

signals on LAI response (Figure 5A). However, previous studies by

Liu et al. (2022a) and Shi et al. (2022) have shown that the sensitivity

of VIs to LAI across different growth stages can be affected by climatic

variations and varietal differences, potentially limiting the accuracy of

LAI estimation models. Spatial information such as texture of high-

resolution UAV remote sensing data correlates with the spatial

structure of the crop, reflecting more effectively the shading and

internal structural information of the crop canopy. Given the

importance of texture information in describing changes in canopy

structure, this study attempted to use Haralick texture features to

estimate LAI. The application of Haralick texture in the estimation of

crop physicochemical parameters has not been extensively

investigated. It remains unclear whether the sensitive bands of

texture features align with the spectral bands. To address this, we

employed the PCA downscaling method, which preserves the

majority (>90%) of the image information and offers a robust

foundation for subsequent studies. However, compared to canopy

spectral information, the simple, advanced, and higher order textures
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did not effectively capture changes in LAI across multiple growth

stages due to the low sensitivity of Haralick texture to potato LAI

(Figure 5B), which is similar to the previous work of Qiao et al.

(2024). The extraction of texture features from an image is often

affected by a variety of factors, such as noise in the image and changes

in lighting conditions, which may interfere with the stability of the

texture features. This limitation may be related to the size of the

window used for texture extraction and the calculation method

employed. Consequently, we conclude that Haralick texture alone

does not adequately reflect changes in LAI across multiple growth

stages of potatoes.
4.2 Optimization of model parameters

To reduce the number of input parameters for the LAI

estimation model and minimize errors due to subjective variable

selection, the feature variables obtained using the SPA algorithm are

presented in Table 3. For both OSR and FDSR, the characteristic
FIGURE 7

Fitting relationship between measured and estimated LAI based on different types of spectral information and Haralick textures. (A) OSR, (B) FDSR,
(C) VIs, (D) Haralick textures, and (E) spectral information combined with texture features.
FIGURE 8

Applicability of estimated LAI for different growth stages based on the optimal model. (A) Tuber formation (B) Tuber growth (C) Starch accumulation.
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wavelengths identified after SPA screening, although not identical,

fall within the visible to near-infrared regions. Since LAI is

determined by plant leaves, and the absorption and reflection of

pigments within these leaves, along with scattering between leaf

tissues, influence the crop canopy spectra across the visible to near-

infrared ranges, the differences in the sensitive spectral positions of

various transformed spectral data and LAI are expected to be

minimal (Zhou et al., 2022). The eight VIs selected through

screening all include red-edge or near-infrared wavelengths, as

these spectral regions are more responsive to changes in LAI

(Figures 2A, B), a finding consistent with studies by Tao et al.

(2020) and Liu et al. (2022a) in monitoring winter wheat LAI. The

fact that not all of the 10 variables selected from the 28 Haralick

textures achieved a highly significant correlation with potato LAI

suggests that the variables identified by the SPA algorithm are

objectively determined, allowing for the retention of those that

significantly contribute to LAI estimation and thereby avoiding the

large estimation errors that can result from subjective variable

selection. To evaluate the performance of combining spectral and

texture information for LAI estimation, four OSR, seven FDSR,

three VIs, and three textures were selected from 308 combined

features, underscoring the importance of feature fusion in

accurately estimating LAI in potatoes across multiple growth

stages (Table 3).
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4.3 Performance evaluation of LAI
estimation model

Compared to traditional algorithms, machine learning

regression models can make effective use of data when dealing

with complex data and obtain higher model prediction accuracy.

The modeling and validation results obtained using the GPR

method for the variables identified in Table 3 were superior to

those achieved with the PLSR and RFR methods. This finding aligns

with the results reported by Caballero et al. (2022) for estimating

LAI in winter wheat. The superior performance of GPR may be

attributed to its ability to effectively handle nonlinear relationships

between independent and dependent variables, as well as its

suitability for small sample datasets (Upreti et al., 2019; Zhang

et al., 2022b). In this study, the modeling and validation datasets

were small, and the spectral and texture information extracted from

UAV hyperspectral imagery likely exhibited a stronger nonlinear

relationship with LAI, making GPR a fitting choice for constructing

the LAI estimation model. Analyzing the results in Table 3, the

accuracy of LAI estimation across multiple growth stages of

potatoes was higher when using the three forms of spectral

information compared to Haralick texture alone. This is

consistent with the findings of Zhang et al. (2022b) in estimating

LAI for maize, where the grey-scale covariance matrix texture was
FIGURE 9

Spatial distribution of LAI in potato at different growth stages. (A) Tuber formation, (B) Tuber growth, (C) Tuber accumulation.
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less effective than crop canopy spectral information. Among the

spectral information types, the order of performance in estimating

LAI was VIs, FDSR, and OSR, which corresponds to the sensitivity

of these spectral types to LAI (Figures 4A, B, 5A). Although

Haralick texture alone was not effective for estimating potato LAI

(Table 3, Figure 3), combining it with crop canopy spectral features

improved the accuracy of LAI estimation, consistent with Zhou et al

(Zhou et al., 2022), who combined wavelet texture with spectral

features for estimating rice LAI. Further illustrating that different

types of feature coupling provide unique and complementary

information with great potential in crop monitoring (Ochiai et al.,

2024). Yu et al. (2023) also demonstrated that combining different

types of features can improve the prediction performance of LAI in

potato. This study highlights the limitations of Haralick texture, but

also demonstrates its value as auxiliary information when combined

with spectral features for LAI estimation. The combination of

spectral and Haralick texture information in this study explained

69% of the variability in LAI across multiple growth stages in

potatoes, which is lower than the 85% of spatial variability in maize

LAI explained by Zhang et al. (2022b) using fusion information.

This discrepancy may be due to differences in crop variety and

canopy structure.
4.4 Advantages and limitations of research

Haralick texture differs from spectral information in response to

potato canopy structure, and their complementary information

helps to improve LAI estimation accuracy. This complementary

information can enhance the accuracy of LAI estimation. In this

study, models for LAI estimation that integrated both spectral and

texture data outperformed those relying on a single type of data.

Thus, combining spectral information with Haralick textures offers

valuable insights for LAI estimation across various growth stages of

potatoes. The study derived the spatial and temporal distribution of

potato LAI at the field scale using the optimal estimation model

(Figure 9), facilitating the assessment of the model’s potential for

practical field applications. Despite achieving satisfactory results,

some limitations remain. Future research should consider

incorporating additional crop structural characteristics, such as

vegetation cover, plant height, and volume, to improve model

construction. This study compared the potential of three machine

learning methods for UAV estimation of LAI in wheat, but found

that deep learning performed better for potato biomass prediction

(Liu et al., 2024c), suggesting that deep learning has greater

potential for application in the field of UAV spectral monitoring

of crop growth. Therefore, future research will deeply explore the

application of methods such as deep learning in this field. In

addition, since the UAV and ground data used in this study were

limited to a single location, within one year, and two varieties, we

will further explore the impact of multi-year and multi-variety

potato data on improving the performance of Haralick texture

features. Future work will focus on different varieties and multiple

years of data to analyze the robustness of canopy spectra and

Haralick texture features in estimating potato LAI.
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5 Conclusions

To accurately and timely estimate potato LAI, this study utilized

UAV hyperspectral image data to extract three types of spectral

information and Haralick textures, and analyzed their combined

ability to estimate potato LAI. The effectiveness of this method was

validated using plot test data, yielding the following results:
1. Using the SPA feature selection method, 17 sensitive

features were identified as significant contributors to

potato LAI, including four OSR wavelengths (650, 710,

886, and 922 nm), seven FDSR wavelengths (478, 530, 586,

630, 702, 738, and 770 nm), three VIs (GNDVI, NDRE,

TCARI), and three Haralick textures (Inertia, Cluster

shade, Short run high grey-level emphasis).

2. Among the single-type feature models, VIs demonstrated

the best performance. In contrast, the regression

performance of Haralick textures was less effective when

used independently.

3. The accuracy of potato LAI estimation improved when

combining features as input parameters, achieving an R² of

0.70 and an RMSE of 0.30. This model outperformed the

optimal VIs model based on univariate parameters (R² =

0.63, RMSE = 0.34), suggesting that the combination of

spectral information and Haralick textures provides better

accuracy for LAI estimation and offers a feasible approach

for monitoring potato growth.
Combining different types of spectral information and Haralick

textures from UAV hyperspectral imagery can improve the

estimation of LAI for potatoes with multiple growth stages to

some extent compared to using a single type of feature. However,

UAV multispectral data can provide higher spatial resolution and

may be more suitable for texture feature extraction. Therefore, an

attempt was made to validate the feasibility of this study’s method

using low-cost UAV multispectral in future studies.
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