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chlorophyll density in winter
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derivative combined with
machine learning
Chenbo Yang1,2, Meichen Feng1*, Juan Bai1, Hui Sun3,
Rutian Bi2, Lifang Song1, Chao Wang1, Yu Zhao1, Wude Yang1,
Lujie Xiao1, Meijun Zhang1 and Xiaoyan Song1

1College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China, 2College of Resources and
Environment, Shanxi Agricultural University, Taigu, Shanxi, China, 3Life Sciences Department,
Yuncheng University, Yuncheng, Shanxi, China
Chlorophyll density (ChD) can reflect the photosynthetic capacity of the winter

wheat population, therefore achieving real-time non-destructive monitoring of

ChD in winter wheat is of great significance for evaluating the growth status of

winter wheat. Derivative preprocessing has a wide range of applications in the

hyperspectral monitoring of winter wheat chlorophyll. In order to research the

role of fractional-order derivative (FOD) in the hyperspectral monitoringmodel of

ChD, this study based on an irrigation experiment of winter wheat to obtain ChD

and canopy hyperspectral reflectance. The original spectral reflectance curves

were preprocessed using 3 FOD methods: Grünwald-Letnikov (GL), Riemann-

Liouville (RL), and Caputo. Hyperspectral monitoring models for winter wheat

ChD were constructed using 8 machine learning algorithms, including partial

least squares regression, support vector regression, multi-layer perceptron

regression, random forest regression, extra-trees regression (ETsR), decision

tree regression, K-nearest neighbors regression, and gaussian process

regression, based on the full spectrum band and the band selected by

competitive adaptive reweighted sampling (CARS). The main results were as

follows: For the 3 types of FOD, GL-FOD was suitable for analyzing the change

process of the original spectral curve towards the integer-order derivative

spectral curve. RL-FOD was suitable for constructing the hyperspectral

monitoring model of winter wheat ChD. Caputo-FOD was not suitable for

hyperspectral research due to its insensitivity to changes in order. The 3 FOD

calculation methods could all improve the correlation between the original

spectral curve and Log(ChD) to varying degrees, but only the GL method and

RL method could observe the change process of correlation with order changes,

and the shorter the wavelength, the smaller the order, and the higher the

correlation. The bands screened by CARS were distributed throughout the

entire spectral range, but there was a relatively concentrated distribution in

the visible light region. Among all models, CARS was used to screen bands based

on the 0.3-order RL-FOD spectrum, and the model constructed using ETsR

reached the best accuracy and stability. Its R2c, RMSEc, R
2v, RMSEv, and RPD were

1.0000, 0.0000, 0.8667, 0.1732, and 2.6660, respectively. In conclusion, based

on the winter wheat ChD data set and the corresponding canopy hyperspectral
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data set, combined with 3 FOD calculation methods, 1 band screening method,

and 8 modeling algorithms, this study constructed hyperspectral monitoring

models for winter wheat ChD. The results showed that based on the 0.3-order

RL-FOD, combined with the CARS screening band, ETsR modeling has the

highest accuracy, and hyperspectral estimation of winter wheat ChD can be

realized. The results of this study can provide some reference for the rapid and

nondestructive estimation of ChD in winter wheat.
KEYWORDS

hyperspectral, chlorophyll density, fractional-order derivative, competitive adaptive
reweighted sampling, machine learning
1 Introduction

Chlorophyll is an important pigment for photosynthesis in

most plants, so it plays a vital role in the growth and

development of plants (Xu et al., 2001; Chatterjee and Kundu,

2015). Wheat is an important food crop, and about one-third of the

world’s population eats wheat as a staple food (Jiang et al., 2021).

However, during its growth process, it is easily affected by factors

such as water, fertilizer, and diseases, which hinder the synthesis of

chlorophyll, thereby affecting photosynthesis and leading to

reduced yield (He et al., 2018; Yang et al., 2021). Chlorophyll

density (ChD) is an indicator that can evaluate the chlorophyll

content of crop populations. During the growth process of wheat,

obtaining ChD can be used to evaluate the overall growth status of

wheat and provide a reference for adjusting agricultural production

measures (Liu et al., 2017; Xie et al., 2020). However, traditional

methods for obtaining ChD commonly suffer from issues such as

destructive sampling, complex measurement processes, and unable

to obtain data in real-time. Therefore, there is an urgent need for a

fast, real-time, and non-destructive method to obtain wheat ChD to

meet the current needs of precision agriculture development.

Remote sensing technology has the advantage of quick and non-

destructive acquisition of target object features, providing technical

support for real-time acquisition of crop growth status. Especially

hyperspectral remote sensing technology, with its advantages of

high resolution and large spectral information, has been used by

many scholars to quantitatively monitor wheat chlorophyll. For

example, Li et al. (2022); Zhang et al. (2022), and Jiang et al. (2010)

all performed 1.0-order derivative preprocessing on the original

spectral curve, and used multiple vegetation indices combined with

linear, exponential, and power regression models to monitor wheat

chlorophyll content and ChD, respectively, all achieved good

monitoring results. Huang et al. (2010) performed multiple

scattering correction, 1.0-order derivative, and 2.0-order

derivative preprocessing on spectral curve, and constructed

monitoring models of wheat chlorophyll content using partial

least squares regression (PLSR) and stepwise multiple linear
02
regression. The results showed that the stepwise multiple linear

regression model combining multiple scattering correction with

2.0-order derivative reached the best performance. It can be

seen that previous scholars have conducted relatively mature

research on quantitative monitoring of wheat chlorophyll using

hyperspectral technology.

Through analysis of previous research, it can be seen that in the

process of constructing hyperspectral monitoring models of winter

wheat chlorophyll content or ChD, previous scholars preprocessed

the original spectral curve to varying degrees, such as derivatives, to

reduce noise interference, and to reduce model complexity by

constructing vegetation indices. Finally, by comparing the

accuracy of various modeling methods, to achieve rapid

estimation of winter wheat chlorophyll. It can be seen that

appropriate preprocessing, bands, and modeling algorithms are all

important means to improve the accuracy of hyperspectral models.

For preprocessing, derivative preprocessing was widely used in

hyperspectral studies of other crops and growth physiological

parameters, and was considered to have good effects (Ji et al.,

2022; Liu et al., 2022; Yang et al., 2023b). However, these studies all

used integer-order derivatives, but there is a significant difference

between the original spectral curve and the integer-order derivative

spectral curve. This means that there may be curves with higher

signal-to-noise ratios during the transition from the original

spectral curve to the integer-order derivative curve. In order to

find this curve, some studies used FOD to further analyze the role of

derivative preprocessing in hyperspectral monitoring models of

crop growth physiological parameters. For example, Li et al

(2021a; 2021b; 2023). applied FOD to hyperspectral monitoring

of wheat leaf moisture content, leaf area index, and chlorophyll

content, Bhadra et al. (2020) applied FOD to hyperspectral

monitoring of sorghum ChD, all achieved good monitoring

results. FOD is a mathematical concept that can be defined in

many ways, with Grünwald-Letnikov (GL), Riemann Liouville (RL),

and Caputo being the most widely used definitions (Benkhettou

et al., 2014). Among them, GL method is defined based on discrete

points. Both RL method and Caputo method calculate derivatives
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by curve fitting discrete points first. But when calculating the

traditional integer-order derivative, the curve fitting is performed

first and then the derivative is calculated. However, in the

preprocessing of spectral curves with FOD, most of the

predecessors used GL method. The reason is that the data

constituting the spectral curve itself is discrete point data, which

is more consistent with the definition of GL method. This leads to a

certain difference between its calculation of integer-order derivative

and traditional methods. Therefore, in order to more accurately

observe the role of different orders of FOD preprocessing in the

construction of winter wheat ChD, it is necessary to compare the

three calculation methods at the same time.

For band selection, many studies chosen to reduce model

complexity by constructing vegetation index when constructing

hyperspectral monitoring models of winter wheat ChD (Zhao et al.,

2011; Xing et al., 2022). However, the vegetation index often only

retains a few bands in the full spectrum band, which may result in

the loss of much useful spectral information in the spectral curve.

Therefore, it is necessary to use appropriate band selection

algorithms to screen an appropriate number of band to improve

the utilization rate of spectral information (Wang et al., 2022).

Competitive adaptive reweighted sampling (CARS) is a screening

algorithm based on the regression coefficients of the PLSR model,

which has a wide range of applications in hyperspectral model

research (Chen et al., 2023; Li and Yang, 2023). This study will use

CARS to screen band that are important to ChD.

For modeling algorithms, a large number of current studies

have shown that using machine learning algorithms to construct

hyperspectral monitoring models has become one of the hot

directions in the field of hyperspectral research, and there have

been many reports on wheat chlorophyll (Sun et al., 2007; Wang

et al., 2022; Feng et al., 2023; Huang et al., 2023). Based on previous

research, it can be seen that PLSR, support vector regression (SVR),

multi-layer perceptron regression (MLPR), random forest

regression (RFR), extra-trees regression (ETsR), decision tree

regression (DTR), K-nearest neighbors regression (KNR), and

gaussian process regression (GPR) are commonly used machine

learning algorithms. This study will use these algorithms to

construct hyperspectral monitoring models.

Based on the above analysis, this study will use winter wheat as

the research material, preprocess the original spectral curve using

GL, RL, and Caputo FOD calculation methods, screen the sensitive

band of winter wheat ChD using CARS method, and construct

hyperspectral monitoring models of winter wheat ChD using

various modeling methods such as PLSR, SVR, MLPR, RFR,

ETsR, DTR, KNR, and GPR. Hope to achieve hyperspectral

monitoring of ChD in winter wheat. The aims of this study are:

(1) Clarify the preprocessing effects of GL, RL, and Caputo FOD

calculation methods on the original spectral curve and their

relationship with winter wheat ChD; (2) Analyze the effects of

CARS method in screening ChD sensitive band in winter wheat; (3)

Under 3 types of FOD preprocessing, hyperspectral monitoring

models for winter wheat ChD were constructed using various

machine learning algorithms based on the full spectrum band and

the sensitive band screened by CARS, achieving rapid monitoring of

winter wheat ChD.
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2 Materials and methods

2.1 Experimental design

This study conducted a two-year winter wheat irrigation

experiment from October 2020 to July 2022 at the Agricultural

Station of Shanxi Agricultural University in Taigu District,

Jinzhong City, Shanxi Province. The tested variety was ‘Jintai

182’, which was sown in October every year and harvested in July

the next year. The average organic matter content of the tested soil

was 13.92 g·kg-1, total nitrogen content was 1.19 g·kg-1, available

phosphorus content was 17.43 g·kg-1, and available potassium

content was 189.21 g·kg-1. Treatment started from the jointing

stage of winter wheat, chose the jointing, flowering, and filling

stages for irrigation. A total of 5 treatments were set up: T1

(No irrigation), T2(Irrigation once during the jointing stage), T3

(Irrigation once each during the jointing and flowering stage),

T4(Irrigation once each during the jointing and filling stage), and

T5(Irrigation once each during the jointing, flowering, and filling

stage). Each irrigation amount was 60 mm, and each treatment was

repeated 3 times. The experimental site constructed a water tank

according to FAO standards, with a total of 15 plots, the area of each

plot was 6 m2(2 m×3 m). Nitrogen, phosphorus, and potassium

fertilizers were used as base fertilizers and applied uniformly before

sowing. The fertilization standards were N: 150 kg·hm-2, P2O5: 120

kg·hm-2, and K2O: 120 kg·hm-2, respectively. The spacing between

sowing rows was 20 cm. The remaining field operations were

consistent with local farmers.
2.2 Index measurement

Canopy hyperspectral reflectance data and ChD of winter wheat

were obtained at regreening, jointing, booting, heading, flowering,

early grain filling, later grain filling, and maturity stages, a total of 8

stages of data were obtained.

The canopy hyperspectral data was measured using a Field-Spec

3.0 spectrometer(ASD Company, Boulder, CO, USA), with a

collection wavelength range of 350-2500 nm. The 350~1000 nm

spectral sampling interval is 1.4 nm, and the spectral resolution is 3

nm; the 1000~2500 nm spectral sampling interval is 2 nm, and the

spectral resolution is 10 nm. In order to reduce the error caused by

light changes, the spectral collection should be conducted in sunny

and cloudless weather, with no wind or wind speeds below level 3,

the collection time was arranged at 10:00-14:00. When measuring,

place the probe 1 meter above the canopy and measure 10 times in

each plot. A whiteboard was used to correct before each

measurement. After removing the abnormal curve, the average

spectrum was calculated as the final spectrum of that plot.

Several representative functional leaves(Before the jointing

stage was first unfolded leaf, after the jointing stage was flag leaf)

were collected at the location where canopy hyperspectral data was

collected. The leaves were transferred to the room. After the veins

were removed, the leaves were cut into pieces. 0.0500 g was weighed

and put into a 25 ml volumetric flask. 96% ethanol was used to fix

the volume to the scale line. The volumetric flask was stored in the
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dark and away from light. The volumetric flask was shaken for 3 to 4

times in the middle. After 24 hours, the absorbance values at 649

nm and 665 nm were measured by spectrophotometer. The

concentration formula of chlorophyll a, b, and total chlorophyll

was as follows:

Ca = 13:95� A665 − 6:88� A649

Cb = 24:96� A649 − 7:32� A665

C = Ca + Cb

Where, Ca, Cb, and C were the concentration of chlorophyll a,

chlorophyll b, and total chlorophyll in the soaking solution (mg·L-1).

A649 and A665 were the absorbance values measured at the

wavelength of 649 nm and 665 nm respectively.

The calculation formula of chlorophyll content and ChD was:

Chlorophyll content(mg · g−1   FW) =
C � V

FW � 1000
� n

CHD(g ·m−2) = Chlorophyll content� Aboveground fresh leaf biomass � 1000

Where, V was the volume of soaking solution, which was 25 ml in

this study; FW was the blade weight; N was the dilution ratio; 1000

was the unit conversion factor; The aboveground fresh leaf biomass

refers to the fresh weight of all leaves per unit surface area (kg·m-2).
2.3 Data analysis methods

Before data analysis, the data set was divided into calibration set

and validation set according to the 2:1 ratio using the concentration

gradient method. Specifically, arranged the dependent variables

from small to large, selected the first and third samples from

every three samples to enter the calibration set, and the second

sample to enter the validation set. At the same time, ensure that the

maximum and minimum values of the data set were put into the

calibration set.

2.3.1 Fractional-order derivative
FOD was first proposed by Italian mathematician Samuelson in

1695 and had a history of over 300 years. However, systematic

research on FOD has mainly focused on the past few decades

(MaChado et al., 2011; Li et al., 2017). After years of development,

many forms of FOD definitions have emerged, among which GL,

RL, and Caputo are the most widely used definitions (Benkhettou

et al., 2014; Yang et al., 2022b). The as follows:

GL :
da f (l)
dla = lim

h→0

1
ha o

p−q
h
m=0( − 1)m

G (a + 1)
m !G (a −m + 1)

f (l −mh)

RL :
da f (l)
dla =

1
G (k − a)

dk

dxk

Z l

q

f (t )
(l − t )a−k+1

dt , 0 ≤ k − 1 < a < k

Caputo :
da f (l)
dla =

1
G (k − a)

Z l

q

f (k)(t )
(l − t )a−k+1

dt , 0 ≤ k − 1 < a < k
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Among them,awas a real number, representing any order, in this

study, its value range was [0,2], with a step size of 0.1; l and t were
wavelengths; For the GL method, f(l) was the spectral reflectance

value at l wavelength, for the RL method and Caputo method, f(l)
was the spectral curve formula at l; h was the differential step size,

which was 1 in this paper; p was the upper limit of differentiation; q

was the lower limit of differentiation; m represented the number of

bands before the l wavelength, and m=p-q; K was the smallest integer

greater than a; ∑ was the summation symbol; G(x) was the Gamma

function; ∫ was the integral symbol; f(k)(t) represented taking the k-th

derivative of function f(t).
From the above equation, it can be seen that the GL method is

based on a discrete definition. The FOD at point l is related to the

spectral reflectance of all wavelengths before that wavelength. For

the convenience of calculation, combined with previous research,

we uniformly selected the 40 points before l for calculation (Yang

et al., 2022b). Both the RL method and Caputo method need to first

fit the formula f(l) at l. In this paper, the spectral reflectance at

three consecutive wavelengths (i.e. l-1, l, l+1) was selected for

binomial fitting calculation of f (l).

2.3.2 Competitive adaptive reweighted sampling
CARS is an algorithm based on the regression coefficients of the

PLSR model. The main idea of this algorithm is to mimic the

“survival of the fittest” principle in Darwin’s evolutionary theory.

Each time, a certain number of samples (usually 80% of all sample

sizes) were selected through Monte Carlo sampling to construct the

PLSR model, and the bands with the higher absolute weight of

regression coefficients were selected as the new subset. Then

selected samples through Monte Carlo sampling to construct the

model. After multiple calculations, only two bands were retained to

enter the model, and the cycle ended. From multiple PLSR models

obtained, selected the band in the subset with the smallest root

mean square error of cross-validation as the final selected feature

band (Tang et al., 2023; Zhang et al., 2024).

2.3.3 Modeling algorithm
PLSR is a modeling method that combines principal component

analysis, canonical correlation analysis, and multiple linear

regression analysis. It is currently one of the most effective linear

regression methods in constructing hyperspectral models (Yang

et al., 2022b). The other seven algorithms are all nonlinear

regression methods. SVR mainly maps raw data to a high-

dimensional feature space, and achieves regression tasks by

finding a suitable hyperplane (Yang et al., 2022a). MLPR is a type

of artificial neural network, which is a relatively simple neural

network (Yang et al., 2022a). RFR is an ensemble algorithm based

on DTR, which completes regression tasks by integrating the

prediction results of multiple decision trees (Han et al., 2022).

ETsR is an improved algorithm of RFR, which is an ensemble

learning algorithm that reduces fitting errors by combining the

prediction results of multiple extreme random trees (Han et al.,

2022). DTR is a method of regression analysis of data by

constructing a decision tree model (Arjmandi et al., 2023). KNR

is an instance-based learning method that finds K nearest neighbor

samples in a sample and performs regression prediction based on
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their labels (Maraden et al., 2023). GPR is a non-parametric model

that uses Gaussian processes as priors and is a probability-based

machine learning algorithm (Sahoo et al., 2023).

In this paper, Microsoft Excel 2021 was used to organize data.

MATLAB 2021 was used to perform the FOD algorithm. Python

3.11 was used to perform CARS and modeling algorithms. Origin

2021 was used for mapping. Evaluate the accuracy of the model

using the coefficient of determination (R2), root mean square error

(RMSE), and relative predictive deviation (RPD).
3 Result and analysis

3.1 Descriptive statistical analysis

The descriptive statistical analysis results were shown in

Figure 1. From the figure, it can be seen that the maximum and

minimum values of the total data set were 11.5426 g·m-2 and 0.0129

g·m-2, respectively. When dividing the dataset, both the maximum

and minimum values were assigned to the calibration set. The

average value of the total data set was 3.5552 g·m-2, and the average

values of the calibration and validation sets were also close to this.

For the standard deviation, it showed that the total data set and

calibration set were slightly higher than the validation set. However,

the sample distribution of the three data sets does not conform to a

normal distribution to a certain extent. Based on this, this study

performed logarithmic processing on ChD data, and the results

were shown in Figure 2. From the figure, it can be seen that, similar

to Figure 1, the maximum and minimum values were also assigned

to the calibration set when dividing the data set. The average and

standard deviation of the three datasets were relatively close.

However, after logarithmic processing, the distribution of the data

sets was more in line with a normal distribution.
3.2 Changes in spectral reflectance

3.2.1 Changes in original spectral reflectance
From Figure 2, it can be seen that the Log(ChD) values were

mainly distributed in the range of 0 to 0.8. Therefore, this paper
Frontiers in Plant Science 05
mainly analyzed the changes in the original spectral reflectance of

samples with four gradients of Log(ChD)<0, 0<Log(ChD)<0.4,

0.4<Log(ChD)<0.8, and 0.8<Log(ChD), as shown in Figure 3. At

the same time, in order to reduce the effect of factors such as

moisture in the air, the bands within the range of 350-399 nm,

1351-1399 nm, 1801-1950 nm, and 2451-2500 nm in the original

spectrum were removed. From the figure, it can be seen that the

hyperspectral reflectance of winter wheat canopy mainly showed a

trend of first increasing and then decreasing with the increasing of

wavelength. In terms of details, a small reflection peak was formed

near 550 nm, a near-infrared reflection platform was formed in the

range of 780-1100 nm, and two obvious absorption valleys were

formed near 1000 nm and 1450 nm, which was consistent with the

basic characteristics of spectral reflectance of green plant canopies.

In addition, in the range of 400-700 nm, samples with different Log

(ChD) exhibited an overall trend of decreasing spectral reflectance

with increasing Log(ChD), while in the range of 740-1800 nm, it

showed an increasing trend with increasing Log(ChD). This

indicated that there may be a certain quantitative relationship

between Log(ChD) and the spectral reflectance at some

specific wavelengths.

3.2.2 The effect of FOD on spectral reflectance
Figure 4 showed the spectral reflectance curve based on GL-

FOD preprocessing. Combined with Figure 3, it can be seen that as

the order increased, there was a gradual change process in the GL

spectral reflectance. In terms of details, there was a clear trend of

gradual decreasing in the range of 0 to 1.0-order, and the smaller the

order, the greater the magnitude of the decrease. In the range of 1.0

to 2.0-order, there were various trends of variation, such as a

gradual decreasing in the visible light band range (such as 700-

750 nm). In the partial band range of near-infrared (such as 1000-

1050 nm), it generally showed a trend of first decreasing and then

increasing, and reached its lowest point in the 1.4-order. In

addition, compared to the change in spectral reflectance in the 0

to 1.0-order range, the change amplitude in spectral reflectance in

the 1.0 to 2.0-order range was relatively small.

Figure 5 showed the spectral reflectance curve based on RL-

FOD preprocessing. Unlike the spectral curve changing trend after

GL preprocessing, the 0.1-order RL-FOD spectral curve lost the
FIGURE 1

Descriptive statistical analysis of ChD. Num, Max, Min, Ave, and SD represent the number of samples, maximum, minimum, average, and standard
deviation of the dataset, respectively. The same below.
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basic characteristics of the original spectral curve and had a basic

changing trend of the 1.0-order derivative. As the order increased,

the overall change in RL spectral reflectance was also different from

that of GL spectral reflectance. The main performance was that as

the order increased, the RL spectral reflectance gradually increased

and gradually decreased alternately. For example, in the range of

700-750 nm, it showed a gradually decreased trend, while in the

range of 1100-1150 nm, it showed a gradually increased trend. And

during the continuous 0.1-order variation process, the amplitude of

the change in RL spectral reflectance was relatively small.

Figure 6 showed the spectral reflectance curve based on Caputo-

FOD preprocessing. Similar to the preprocessing results of the RL

method, began from the 0.1-order, the Caputo-FOD spectral curve

lost the basic characteristics of the original spectral curve. However,

in the range of 0.1-1.0 order and 1.1-2.0 order, Caputo spectral

reflectance exhibited similar changes with increasing wavelength.

As the order changed, the Caputo spectral reflectance at the same

wavelength alternated between increasing and decreasing. For

example, in the range of 0.1 to 0.5-order, the spectral reflectance

gradually increased in the range of 700 to 750 nm, while it gradually

decreased in the range of 1140 to 1150 nm. The change in the range

of 0.6 to 1.0-order was opposite to this, showing a gradual
Frontiers in Plant Science 06
decreasing in the range of 700-750 nm and an increasing in the

range of 1140-1150 nm. The performance in the range of 1.1 to 2.0-

order was similar to that of 0.1 to 1.0-order, with 1.5-order and 1.6-

order being the critical values for spectral reflectance changing at

the same wavelength. However, within the range of 1.1 to 2.0-order,

the changing amplitude of the Caputo spectral reflectance curve was

smaller. It was worth noting that, unlike the GL and RL methods,

the Caputo spectrum exhibited a significant changing amplitude

from 1.0 to 1.1-order, and a gradual change cannot be observed,

which may be related to different algorithmic properties.
3.3 Correlation analysis

Figure 7 showed the correlation coefficients between three FOD

spectra and Log(ChD). From the figure, it can be seen that most of

the bands in the original spectrum had a high correlation with Log

(ChD), with a maximum correlation coefficient of -0.8625. The

three types of FOD all increased the correlation between the original

spectrum and Log(ChD) to varying degrees, but the correlation

showed different laws of change. For GL-FOD, as the order

increased, it can be clearly observed gradually changing that the

correlation coefficient between the original spectrum to 2.0-order

spectrum and Log(ChD), and followed the law of higher correlation

with smaller order and shorter wavelength. For RL-FOD, only a

gradual change in the correlation coefficient between the 0.1 to 2.0-

order spectrum and Log(ChD) could be observed, and it also

showed a law of higher correlation with smaller order and shorter

wavelength. For Caputo-FOD, the correlation coefficients between

the 0.1 to 1.0-order spectrum with the 1.1 to 2.0-order spectrum and

Log(ChD) were the same basically. However, in the range of 0.1 to

1.0-order, the correlation between Caputo-FOD spectrum and Log

(ChD) was higher, and the trend of the correlation coefficient

between RL spectrum and Log(ChD) was similar.
3.4 CARS screened band results

Figure 8 showed the positions of bands screened by CARS based

on three FOD spectra, and Table 1 showed the number of bands

screened by CARS. It can be seen that under different FOD spectra
FIGURE 3

Changes in original spectral reflectance.
FIGURE 2

Descriptive statistical analysis of Log(ChD).
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and order conditions, the minimum number of bands screened by

CARS was 11 bands screened under 1.5-order RL-FOD spectral

conditions, and the maximum was 1060 bands screened based on

the original spectrum. Most of the number of screened bands were

less than 200. In terms of the position of the selected bands, they

were distributed throughout the entire spectral range. For the GL-

FOD spectrum, the bands selected at lower orders were mainly

concentrated in the visible light band range, with less distribution in

the near-infrared band. The bands selected at higher orders were

distributed throughout the entire spectral range. For RL-FOD and

Caputo FOD spectra, the selected band positions were evenly

distributed throughout the entire spectral range, but there was

also a relatively concentrated distribution in the visible light

band range.
3.5 Hyperspectral monitoring model for
ChD in winter wheat

3.5.1 Hyperspectral monitoring model based on
the full spectrum band

Figure 9 showed the results of using 8 machine learning

algorithms to construct models based on the full spectrum band

of GL-FOD spectra. From the figure, it can be seen that in terms of

modeling accuracy, all ETsR, DTR, and GPR models had high

calibration accuracy, with R2c of 1.0000 and RMSEc of 0.0000. Next,

was the model constructed based on RFR, whose R2c was generally

stable around 0.9600 and RMSEc was stable around 0.0900. The

model calibration accuracy based on PLSR and SVR was also high,

with R2c generally stable around 0.8000 and RMSEc stable around

0.2000. The model constructed based on MLPR and KNR only had
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high calibration accuracy when the order was low, and as the order

increased, its calibration accuracy decreased to varying degrees.

Unlike calibration accuracy, in models with ETsR, DTR, and GPR

with R2c of 1.0000, only ETsR had relatively stable validation

accuracy, with R2v stable around 0.8000, RMSEv stable in the

range of 0.2000 to 0.2500, and RPD stable in the range of 1.8000

to 2.2000. The validation accuracy of the DTR model varied greatly

with the changing of order, with R2v mainly distributed in the range

of 0.6000 to 0.7000. However, the change amplitude of RPD was

large, with a maximum of 1.7476 and a minimum of only 0.9091.

The validation accuracy of the GPR model was relatively low, and it

gradually decreased with increasing order, with lower R2v and RPD.

The model constructed based on RFR and PLSR still had relatively

stable validation accuracy, with R2v stable around 0.8000 and

RMSEv stable around 0.2000. For the same order, the RPD of the

RFR model was higher when the order was small, and the RPD of

the PLSR model was higher when the order was high. For the SVR

model, when the order was between 0.0-1.3, the model still had high

validation accuracy, but as the order increased, the validation

accuracy gradually decreased. Similar to calibration accuracy,

models constructed based on MLPR and KNR also had high

validation accuracy at lower order. Through comprehensive

comparison, the model constructed by RFR based on the 0.3-

order GL-FOD spectrum was the best among all models, with

R2c, RMSEc, R
2v, RMSEv, and RPD of 0.9640, 0.0931, 0.8442, 0.1865,

and 2.4762, respectively. It had high accuracy and stability.

Figure 10 showed the results of using 8 machine learning

algorithms to construct models based on the full spectrum band

of RL-FOD spectra. From the figure, it can be seen that the changes

in calibration accuracy and validation accuracy of the models

constructed based on RL-FOD spectra were similar to those of
FIGURE 4

Spectral reflectance curve based on GL method preprocessing.
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the models constructed based on GL-FOD spectra. Among all

models, the model constructed by ETsR based on the 0.3-order

RL-FOD spectrum had the highest accuracy, with R2c, RMSEc, R
2v,

RMSEv, and RPD of 1.0000, 0.0000, 0.8470, 0.1860, and

2.4823, respectively.
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Figure 11 showed the results of using 8 machine learning

algorithms to construct models based on the full spectrum band

of Caputo-FOD spectra. From the figure, it can be seen that similar

to the GL and RL methods, the models constructed based on

Caputo-FOD spectra by ETsR, DTR, GPR, and RFR still had high
FIGURE 5

Spectral reflectance curve based on RL method preprocessing.
FIGURE 6

Spectral reflectance curve based on Caputo method preprocessing.
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calibration accuracy, but only the ETsR and RFR models had

relatively stable validation accuracy. The R2c of the model

constructed based on PLSR and SVR was stable around 0.8000,

but the validation accuracy of the SVR model constructed in the

range of 1.1 to 2.0-order was significantly reduced compared to the

model constructed in the range of 0.1 to 1.0-order. The model

constructed based on MLPR and KNR only had relatively high

calibration accuracy and validation accuracy in the range of 0.0 to

1.0-order. Through comprehensive comparison, among all models

constructed based on the full spectrum band of Caputo-FOD

spectra, the model constructed by RFR based on the 0.8-order

Caputo-FOD spectrum had the best accuracy, with R2c, RMSEc, R
2v,

RMSEv, and RPD of 0.9594, 0.0989, 0.8408, 0.1892, and

2.4398, respectively.

By comparison, it can be seen that among the models

constructed based on the full spectrum band of the three FOD

spectra, the model constructed by ETsR based on the full spectrum

band of the 0.3-order RL-FOD spectrum had the highest accuracy.
3.5.2 Hyperspectral monitoring model based on
screening band

Figure 12 showed the results of using 8 machine learning

algorithms to construct models based on the CARS band of GL-
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FOD spectra. From the figure, it can be seen that the models

constructed based on ETsR, DTR, GPR, and RFR all had high

calibration accuracy, but only the models constructed based on

ETsR and RFR had relatively high validation accuracy. The R2c of

the model constructed based on PLSR and SVR was stable around

0.8000, and the RMSEc was distributed around 0.2000. For

validation accuracy, the validation accuracy of PLSR model

increased with increasing order, while the SVR model decreased

with increasing order. The MLPR and KNR models only had high

calibration and validation accuracy when the order was low, and the

KNR model generally had higher accuracy than the MLPR model.

Among all models, the model constructed by SVR based on the 1.0-

order GL-FOD spectrum had the best accuracy, with R2c, RMSEc,

R2v, RMSEv, and RPD of 0.8716, 0.1758, 0.8595, 0.1832, and

2.5205, respectively.

Figure 13 showed the results of using 8 machine learning

algorithms to construct models based on the CARS band of RL-

FOD spectra. From the figure, it can be seen that the calibration

accuracy of the models constructed based on ETsR, DTR, GPR,

RFR, PLSR, and SVR was relatively high, with R2c distributed in the

range of 0.8000 to 1.0000 and RMSEc distributed in the range of

0.0000 to 0.2000, respectively. The calibration accuracy of the model

constructed based on KNR was relatively low, with R2c mainly

distributed between 0.6000 and 0.8500, and RMSEc mainly
FIGURE 7

The correlation between different FOD spectra and Log(ChD). 0.0-order represents the original spectrum.
FIGURE 8

Position of bands screened by CARS based on three types of FOD spectra.
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distributed between 0.1900 and 0.3200. The calibration accuracy of

models constructed based on MLPR was all relatively low, with R2c

approaching 0. Only models constructed based on ETsR and RFR

had relatively high and stable validation accuracy in the validation

model. Among all models, the model constructed by ETsR based on

the 0.3-order RL-FOD spectrum had the best accuracy, with R2c,

RMSEc, R
2v, RMSEv, and RPD of 1.0000, 0.0000, 0.8667, 0.1732, and

2.6660, respectively.

Figure 14 showed the results of using 8 machine learning

algorithms to construct models based on the CARS band of

Caputo-FOD spectra. Similar to RL-FOD spectra, models

constructed based on ETsR, DTR, GPR, RFR, PLSR, and SVR all

had high calibration accuracy. Models constructed based on KNR

only had high calibration accuracy when the order was small, while
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models constructed based on MLPR had low calibration accuracy.

For validation accuracy, models constructed based on ETsR and

RFR all had high and stable validation accuracy. Excepted for the

MLPR model, the validation accuracy of all other models varied

significantly with the increasing in order. Among all models, the

model constructed by KNR based on the 0.7-order Caputo-FOD

spectrum had the best accuracy, with R2c, RMSEc, R
2v, RMSEv, and

RPD of 0.8234, 0.2062, 0.8345, 0.1954, and 2.3630, respectively.

Comparing all models constructed based on the CARS band, the

model constructed by ETsR based on the 0.3-order RL-FOD

spectrum had the best accuracy. At the same time, this was also

the model with the highest accuracy obtained in this study.

Supplementary Figure 1 showed the 1:1 fitting figure of measured

values and predicted values for this model. It can be seen from the

figure that the model had a good prediction effect and can realize

the hyperspectral estimation of Log(ChD).
4 Discussion

Proper preprocessing of the original hyperspectral reflectance

data to reduce noise interference and improve the final model

accuracy is an important step in the construction process of

hyperspectral monitoring models. By comparing some previous

studies, it can be seen that 1-order and 2-order derivative

preprocessing in derivative preprocessing are common and

effective spectral preprocessing methods (Ma et al., 2022;

Cozzolino et al., 2023). However, there are significant differences

in the original spectrum, 1-order derivative spectrum, and 2-order

derivative spectrum curves, and there are also certain differences in

the modeling results (Yang et al., 2023a). The emergence of FOD

provided the possibility for studying the process of changes from

original spectrum to integer-order derivative spectrum. There are
TABLE 1 Number of bands screened by CARS based on three types of
FOD spectra.

Order GL RL Caputo Order GL RL Caputo

0.0 1060

0.1 55 131 150 1.1 659 99 131

0.2 166 65 57 1.2 48 99 173

0.3 63 150 75 1.3 869 199 114

0.4 32 228 75 1.4 126 228 150

0.5 126 173 173 1.5 757 11 86

0.6 251 131 347 1.6 83 114 150

0.7 659 75 302 1.7 110 114 150

0.8 95 131 199 1.8 144 173 150

0.9 48 99 199 1.9 95 131 131

1.0 95 262 262 2.0 218 114 114
FIGURE 9

Modeling results based on the full spectrum band of GL-FOD spectra.
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many calculation methods for FOD, among which GL, RL, and

Caputo are the three most widely used calculation methods. From

its calculation method, it can be seen that the GL method is defined

based on discrete points, making it very suitable for processing

hyperspectral reflectance data. It is also the most commonly used

method for applying FOD to hyperspectral research at present

(Geng et al., 2024; Liu et al., 2023). The RL method and Caputo

method have a similar principle, both of which first perform

function fitting on discrete points before calculating FOD. The

difference is that the RL method first integrates the function and

then takes the derivative, while the Caputo method takes the
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derivative first and then the integral. It can be seen that the three

methods have different calculation principles. This paper compared

the roles of three FOD calculation methods in constructing

hyperspectral monitoring models for winter wheat ChD. Because

the ChD data obtained in this study does not follow a normal

distribution, logarithmic processing was performed on the ChD

data to make it conform to a normal distribution before further

analysis (Qi et al., 2024). The results indicated that there may be a

certain quantitative relationship between Log(ChD) and spectral

reflectance at specific wavelengths, which was consistent with the

research results of Feng et al. (2023). From Figures 4-6, it can be
FIGURE 10

Modeling results based on the full spectrum band of RL-FOD spectra.
FIGURE 11

Modeling results based on the full spectrum band of Caputo-FOD spectra.
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seen that the spectral curves preprocessed by the three FOD

calculation methods had different variation characteristics. The

GL-FOD spectra gradually lost the basic characteristics of the

original spectral curve as the order increased, and the trend of the

original spectral curve towards integer-order derivative can be

observed clearly, especially the trend towards 1.0-order derivative

curve. Previous studies have also shown that GL-FOD can display

the process of changes from the original spectra to integer-order

spectra, and it was believed that these subtle changes may provide

more spectral features, thereby improving the accuracy of the final
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model (Cheng et al., 2022; Yang et al., 2022b). Both RL-FOD and

Caputo FOD spectra lost the basic characteristics of the original

spectra at the 0.1-order, which may be due to the calculation

methods of these two methods. Because integer-order derivatives

occurred in the calculation process of these two methods, this may

directly lead to spectral curves in the range of 0.1-0.9 and 1.1-1.9

having varying characteristics of 1.0 and 2.0-order spectral curves,

respectively (Yu and Liang, 2023; Alshammari et al., 2024).

However, the trend of gradually changing from 0.1-order spectra

to 2.0-order spectra can still be observed. The difference was that the
FIGURE 12

Modeling results based on the CARS band of GL-FOD spectra.
FIGURE 13

Modeling results based on the CARS band of RL-FOD spectra.
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difference between Caputo-FOD spectra of adjacent orders was

smaller. Meanwhile, compared to the other two algorithms, the

spectral curves of Caputo-FOD were extremely close in the range of

0.1-1.0 orders and 1.1-2.0 orders, respectively. This indicated that

the Caputo method may not be sensitive to explaining the changes

between integer-order derivative spectra, and correlation analysis

also confirmed this. The correlation between Caputo-FOD spectra

and Log(ChD) at the same wavelength was consistent in the range

of 0.1-1.0 and 1.1-2.0 orders, respectively. Both GL and RL methods

can observe a gradual change in correlation with the order changed

at the same wavelength, and the correlation between GL-FOD

spectra and Log(ChD) was more sensitive to changes in order.

Moreover, the GL method can observe a trend in the correlation

between the original spectra towards FOD spectra and the log

(ChD), while the RL method and Caputo method cannot. This was

also related to the fact that the GL method can reflect the gradual

change of the original spectra towards the integer-order

derivative spectra.

With the development of remote sensing technology in recent

years, hyperspectral remote sensing technology not only has more

spectral information but also increases the redundancy of spectral

information. Meanwhile, according to the Hughes phenomenon,

the accuracy of hyperspectral monitoring models is closely related

to the number of bands entering the model (Hughes, 1968).

Therefore, selecting a certain number of spectral bands from the

full spectrum band of hyperspectral data to construct models has

become one of the important contents of current hyperspectral-

related research (Yang et al., 2023b). This paper used CARS to

screen the bands in the original spectrum and three FOD spectra.

From the screening results, it can be seen that in addition to 1060
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bands screened out from the original spectrum, GL-FOD screened

out 32-869 bands to varying degrees, RL-FOD screened out 11-262

bands, and Caputo-FOD screened out 57-262 bands. Excluding

most of the spectral bands provided the possibility to reduce model

complexity and improve model accuracy. The screening effect was

similar to the research results of Sudu et al. (2022) on maize SPAD.

In addition, although the bands screened by CARS were distributed

throughout the entire spectrum, there was a more concentrated

distribution in the visible light section when the order was low.

Correlation analysis also indicated that the visible light bands of

low-order FOD spectra had a high correlation with Log(ChD). This

may be due to the more important relationship between some bands

of visible light and the winter wheat chlorophyll. Feng et al. (2013)

believed that the 650 nm and 670 nm wavelengths were important

bands for monitoring winter wheat chlorophyll. Yang et al. (2023c)

believed that the hyperspectral reflectance at 549 nm and the 1.0-

order derivative spectrum at 735 nm had a strong correlation with

wheat chlorophyll. The spectral reflectance at 536 nm, 596 nm, 674

nm, and the 1.0-order derivative spectra at 756 nm and 778 nm can

be used to estimate winter wheat chlorophyll content. This study

screened out the bands at these positions to varying degrees.

Different model construction algorithms directly determine the

structure of the model, so choosing the appropriate modeling

algorithm to construct the model is an important step in

improving model accuracy. By analyzing previous research, it can

be seen that PLSR is a common and widely recognized linear

modeling algorithm with good performance (Yang et al., 2022b).

Meanwhile, comparing the effectiveness of different machine

learning algorithms in constructing models is also one of the

current hot topics in hyperspectral research (Graham Ram et al.,
FIGURE 14

Modeling results based on the CARS band of Caputo-FOD spectra.
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2023; Silva et al., 2024). Therefore, this study selected 8 modeling

algorithms, including PLSR, SVR, MLPR, RFR, ETsR, DTR, KNR,

and GPR, to construct hyperspectral monitoring models of winter

wheat Log(ChD) based on the full spectrum band and CARS band

of three FOD spectra. From the model constructed based on the full

spectrum band, it can be seen that the calibration accuracy of the

model was relatively high when using ETsR, DTR, GPR, and RFR to

construct the model. This was because DTR can effectively handle

outliers and noise interference, reducing their effect on model

accuracy, ETsR and RFR were both ensemble learning algorithms

based on multiple decision trees. While GPR can capture complex

structures and nonlinear relationships in the data. Therefore, the

accuracy of the models constructed by them was high, but it was still

necessary to be cautious of overfitting phenomena (Kwon et al.,

2022; Sahoo et al., 2023). Secondly, the calibration accuracy of PLSR

and SVR models was also relatively stable. The calibration accuracy

of models constructed by MLPR and KNR decreased with

increasing order. In terms of validation accuracy, models

constructed based on GL-FOD and RL-FOD spectra exhibited a

similar law of validation accuracy. The model constructed based on

ETsR, PLSR, SVR, and RFR had high and stable validation accuracy,

while the validation accuracy of the other 4 algorithms fluctuated

significantly with changes in order. The model constructed based on

Caputo-FOD spectra mainly showed that a certain algorithm had a

relatively close accuracy in the range of 0.1-1.0 orders and 1.1-2.0

orders, respectively. This may be related to the close reflectance of

Caputo-FOD spectra at the same wavelength, further indicating

that the Caputo method was not sensitive to changes in FOD

spectral curves. In addition, some algorithms such as GPR and DTR

showed varying degrees of overfitting among the 8 modeling

algorithms. Previous studies have suggested that this may be

related to the high complexity and excessive number of iterations

of the model. In future research, overfitting can be reduced by

adjusting the number of iterations or regularization methods

(Nansen et al., 2013; Singh et al., 2022). Among all models

constructed based on the full spectrum band, the model

constructed by ETsR based on the 0.3-order RL-FOD spectrum

had the highest accuracy, with R2c, RMSEc, R
2v, RMSEv, and RPD of

1.0000, 0.0000, 0.8470, 0.1860, and 2.4823, respectively.

This paper also constructed hyperspectral monitoring models of

winter wheat Log(ChD) based on the bands selected by CARS. The

results showed that the model constructed by ETsR, PLSR, SVR, RFR,

SVR, and PLSR all had varying degrees of high calibration accuracy,

but the calibration accuracy of the KNRmodel fluctuated significantly

with increasing order. When using MLRP to construct models based

on RL-FOD and Caputo FOD spectra, the calibration accuracy was

extremely low, indicating serious underfitting during model

construction, which made the model unusable. This indicated that

MLPR was not suitable for constructing Log(ChD) hyperspectral

monitoring models under these conditions. Excepted for models

constructed by ETsR and RFR, which had relatively stable validation

accuracy, the validation accuracy of other models had significant

fluctuations. Among all models constructed based on CARS band, the

model constructed by ETsR based on the 0.3-order RL-FOD spectrum

had the highest accuracy, with R2c, RMSEc, R
2v, RMSEv, and RPD of

1.0000, 0.0000, 0.8667, 0.1732, and 2.6660, respectively.
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Through comprehensive comparison, it can be seen that both

models based on full spectrum band and models based on CARS

band achieved the highest monitoring accuracy when calculating

FOD spectra using the RL method. It can be seen that compared to

GL and Caputo methods, the RL method was more suitable for

preprocessing hyperspectral reflectance data to improve model

accuracy. However, if it was necessary to observe the gradient

process from the original spectrum to the integer-order derivative

spectrum, the GL method needed to be used for calculation. Among

all the models constructed in this study, the original spectral curve

was preprocessed with 0.3-order RL-FOD, combined with CARS,

the model constructed by ETsR was the most accurate and could

achieve hyperspectral monitoring of Log(ChD). This model only

used 150 bands, reducing the number of bands by over 90%

compared to the full spectrum band, greatly reducing the

complexity of the model. For CARS, its advantage was that the

number of bands retained during each iteration can be adjusted by

adjusting the number of iterations, so that an appropriate number

of bands can be selected to construct a model as the number of

bands gradually decreases. However, due to the randomness

involved in its calculation process, it was still possible to screen

out some bands that were not related to ChD. At the same time, the

number of bands screened by this research was still large, which

makes the model may still have a high cost in actual use, thus

limiting the use of the model. Therefore, in subsequent research, it

may be considered to use algorithms such as the random frog

algorithm to perform secondary screening on the screening results,

while ensuring the accuracy of the model and further simplifying it

(Chen et al., 2023). In addition, in order to improve the reliability

and portability of the model, the accuracy of the model should also

be further validated through the combination of unmanned aerial

vehicles and other platforms in the follow-up research, so as to

realize the rapid estimation of winter wheat ChD more efficiently.
5 Conclusion

This study focused on winter wheat, measured its ChD and

corresponding canopy hyperspectral reflectance. By calculating Log

(ChD), three FOD calculation methods, GL, RL, and Caputo, were

used to preprocess the original spectral data. Based on the full

spectrum band and CARS band, 8 machine learning algorithms,

PLSR, SVR, MLPR, RFR, ETsR, DTR, KNR, and GPR, were used to

construct hyperspectral monitoring models of winter wheat Log

(ChD). The main conclusions were as follows:
1. GL-FOD can be used to observe the gradual change from

the original spectral curve to the integer-order derivative

spectral curve, while RL-FOD and Caputo-FOD spectra

both exhibited varying degrees of changes in integer-order

derivative spectra, but Caputo-FOD spectra were less

sensitive to changes in order compared to GL-FOD and

RL-FOD spectra. All three types of FOD spectra can

improve the correlation between the original spectral

curve and Log(ChD) to varying degrees, but only GL-

FOD and RL-FOD can observe the change process of the
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Fron
correlation between FOD spectra and Log(ChD) with

changes in order, and it showed that the shorter the

wavelength, the lower the order, and the higher

the correlation.

2. The CARS method can remove most of the spectral band,

and the screened bands were generally distributed

throughout the entire spectral range, but had a relatively

concentrated distribution in the visible light range.

3. The models constructed based on the full spectrum band

and the CARS band all had the best accuracy and stability at

using ETsR based on 0.3-order RL-FOD spectrum. Among

the three FOD calculation methods, the RL method was

more suitable for constructing hyperspectral monitoring

models for winter wheat ChD. The CARS method can

simplify the model while improving its accuracy. Among all

models, the model based on the 0.3-order RL-FOD

spectrum, using CARS to screen bands and combining

with ETsR, had the highest accuracy. Its R2c, RMSEc, R
2v,

RMSEv, and RPD were 1.0000, 0.0000, 0.8667, 0.1732, and

2.6660, respectively, which can achieve hyperspectral

monitoring of ChD in winter wheat.
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