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SGSNet: a lightweight deep
learning model for strawberry
growth stage detection
Zhiyu Li , Jianping Wang*, Guohong Gao, Yufeng Lei,
Chenping Zhao, Yan Wang, Haofan Bai, Yuqing Liu,
Xiaojuan Guo and Qian Li

School of Computer Science and Technology, Henan Institute of Science and Technology,
Xinxiang, China
Introduction: Detecting strawberry growth stages is crucial for optimizing

production management. Precise monitoring enables farmers to adjust

management strategies based on the specific growth needs of strawberries,

thereby improving yield and quality. However, dense planting patterns and

complex environments within greenhouses present challenges for accurately

detecting growth stages. Traditional methods that rely on large-scale

equipment are impractical in confined spaces. Thus, the development of

lightweight detection technologies suitable for portable devices has

become essential.

Methods: This paper presents SGSNet, a lightweight deep learning model

designed for the fast and accurate detection of various strawberry growth

stages. A comprehensive dataset covering the entire strawberry growth cycle

is constructed to serve as the foundation for model training and testing. An

innovative lightweight convolutional neural network, named GrowthNet, is

designed as the backbone of SGSNet, facilitating efficient feature extraction

while significantly reducing model parameters and computational

complexity. The DySample adaptive upsampling structure is employed to

dynamically adjust sampling point locations, thereby enhancing the detection

capability for objects at different scales. The RepNCSPELAN4 module is

optimized with the iRMB lightweight attention mechanism to achieve

efficient multi-scale feature fusion, significantly improving the accuracy of

detecting small targets from long-distance images. Finally, the Inner-IoU

optimization loss function is applied to accelerate model convergence and

enhance detection accuracy.

Results: Testing results indicate that SGSNet performs exceptionally well across

key metrics, achieving 98.83% precision, 99.45% recall, 99.14% F1 score,

99.50% mAP@0.5, and a loss value of 0.3534. It surpasses popular models

such as Faster R-CNN, YOLOv10, and RT-DETR. Furthermore, SGSNet has a

computational cost of only 14.7 GFLOPs and a parameter count as low as 5.86

million, demonstrating an effective balance between high performance and

resource efficiency.
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Discussion: Lightweight deep learning model SGSNet not only exceeds the

mainstream model in detection accuracy, but also greatly reduces the need for

computing resources and is suitable for portable devices. In the future, themodel

can be extended to detect the growth stage of other crops, further advancing

smart agricultural management.
KEYWORDS

deep learning, strawberry growth stages detection, lightweight, SGSNet,
GrowthNet, DySample
1 Introduction

Strawberries are highly valued for their rich nutrients and

unique flavor (Xiao et al., 2020). The ripeness of strawberries

directly determines the optimal harvest time (Wang et al., 2024f).

Harvesting too early results in adequate nutrition and good taste,

while harvesting too late leads to spoilage, affecting sales (Ma et al.,

2024). Determining the growth stages of strawberries primarily

relies on manual inspection, which is highly subjective, inconsistent,

labor-intensive, and prone to causing damage to the fruit during

observation (Chen et al., 2022). Using computer vision technology

(Wang et al., 2023d) to detect the growth stages of strawberries

ensures accuracy, helps farmers accurately predict the optimal

harvest time (Pan et al., 2024), enables timely picking, prevents

waste caused by delayed harvesting, and reduces physical damage

from manual inspection, thereby improving the quality and flavor

of strawberry products (Tang et al., 2023b).

Despite advancements in computer vision technology, existing

deep learning models for detecting strawberry growth stages

continue to encounter numerous challenges. First, most deep

learning models, such as Faster R-CNN and Mask R-CNN

(Mahmood et al., 2022), are designed with a large number of

parameters, leading to high computational complexity that limits

their applicability on lightweight devices like smartphones and

drones. Second, You Only Look Once (YOLO) models and their

variants are widely employed for real-time applications. While these

models are optimized for speed, this often compromises detection
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accuracy, making it difficult to accurately identify small objects or

those with complex features (Ye et al., 2023). In particular, the

direct application of YOLO models for detecting strawberry growth

stages presents significant challenges (Zhang et al., 2024a).

Additionally, factors such as uneven lighting and dense plant

growth in greenhouses complicate the environment, further

increasing the difficulty of detection at each growth stage of

strawberries. Therefore, developing a lightweight deep learning

model (Wang et al., 2023a) designed explicitly for detecting

strawberry growth stages is crucial.

This paper presents SGSNet, a novel lightweight deep learning

model designed to quickly and accurately detect the various

growth stages of strawberries. The main contributions are

as follows:
(1) We have constructed a comprehensive dataset covering

all stages of strawberry growth, providing a versatile

sample set tailored for training and testing deep

learning models.

(2) We designed GrowthNet as the backbone of SGSNet, a

lightweight convolutional neural network that efficiently

extracts data features while minimizing model parameters

and complexity. SGSNet also integrates the DySample

adaptive upsampling structure, which dynamically

adjusts sampling points to enhance detection across

multiple scales.

(3) We optimized the RepNCSPELAN4 module with the

lightweight iRMB attention mechanism, enabling efficient

multi-scale feature fusion and significantly enhancing the

accuracy of small object detection in long distance captures.

(4) We enhanced the loss function with Inner-IoU to improve

bounding box regression. This approach significantly

accelerates convergence and boosts detection accuracy,

especially when there is a large discrepancy between

predicted and ground truth boxes.
The rest of the paper is organized as follows: Section 2 discusses

related work; Section 3 introduces the materials and methods;
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Section 4 conducts experimental analysis; Section 5 is the

discussion; and finally, Section 6 summarizes this article.
2 Related work

The application of computer vision technology in the

agricultural sector has been increasingly widespread. Li et al.

(2024). proposed a lightweight and highly accurate pitaya fruit

detection model by improving the YOLOv5s architecture,

incorporating the ShuffleNetV2, C3RFE module, BiFPN feature

fusion, and SE attention mechanisms, successfully deploying the

model on Android devices. Evarist et al. (2024). developed a

convolutional neural network-based model that leverages image

processing and transfer learning techniques to achieve high-

precision detection of pesticide residues in the edible parts of

vegetables such as tomatoes, cabbages, carrots, and green peppers,

with the Inception V3 model achieving the highest accuracy at

96.77%. Computer vision technology provides an automated and

efficient method for detecting strawberry growth stages,

significantly reducing reliance on human labor, speeding up the

detection process, and effectively minimizing the number of under-

ripe or overripe strawberries entering the market. This technology

also facilitates the sorting and harvesting of strawberries, ensuring

they are delivered to consumers in high-quality batches, enhancing

their commercial value. Notable progress has been made in this

field. Xu et al. (2013). Histogram of Oriented Gradients (HOG)

descriptors are combined with a Support Vector Machine (SVM),

and the HOG descriptors are applied to the classifier to achieve

accurate strawberry detection.

However, traditional computer vision techniques require

manual feature design, which needs to be improved to meet the

real-time detection needs of strawberries at various growth stages.

To address this limitation, some studies have proposed optimizing

computer vision techniques for real-time strawberry detection using

deep learning. Chen et al. (2019). developed an automated

strawberry flower detection system using the Faster R-CNN

network and transfer learning from ImageNet, which accurately

detects strawberry flowers to predict yield. Wang et al. (2023c).

proposed an ASFA-net-based method that classifies strawberry

ripeness using the proportion of red pixels while achieving high-

precision localization and detection. Tang et al. (2023a). introduced

a method based on Mask R-CNN and image processing techniques

to achieve fine maturity recognition of strawberries in the field,

supporting precision farming management. Liu et al. (2024a).

developed a novel task-aligned single-stage object detection

method, offering a new approach for detecting strawberries with

complex shapes and classifying their maturity. Zhu et al. (2024)

proposed an unsupervised deep learning-based method for

detecting the external quality of strawberries, addressing the

limitations of supervised learning that relies on prior knowledge

to segment datasets. Soode-Schimonsky et al. (2017) applied a

product environmental footprint approach to compare and

analyze various strawberry farming systems in Germany and

Estonia. Anjom et al. (2018) developed an intelligent harvester

integrated with load sensors, RTK GPS, a microprocessor, and an
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inertial measurement unit, which measures strawberry yield in

blocks. Gao et al. (2020) estimated strawberry ripeness in field

and laboratory conditions using a hyperspectral imaging (HSI)

system. Yu et al. (2019). utilized Mask R-CNN, for instance, in

the segmentation of strawberries, outperforming traditional

computer vision methods in scenarios with complex backgrounds

and varying light conditions and cases of fruit overlap

and occlusion.

As the efficiency and precision of You Only Look Once (YOLO)

series single-stage object detection models become increasingly

prominent; more researchers have enhanced YOLO models for

detecting various growth stages of strawberries. Zhang et al. (2022).

developed a strawberry detection algorithm based on YOLOv4-tiny,

enabling real-time detection of strawberry fruits. Wang et al. (2022).

proposed the DSE-YOLO model for multi-stage strawberry fruit

detection, addressing challenges such as small strawberry size,

foreground-background imbalance, and complex natural

environments. Li et al. (2022b). introduced a computer vision-

based algorithm for detecting PM and IL in strawberry leaves and

improved the original YOLOv4 model by incorporating deep

convolution and hybrid attention mechanisms. Yang et al. (2023).

proposed a strawberry maturity detection model based on the

YOLOv8 algorithm integrated with the LW-Swin Transformer,

utilizing the Transformer’s multi-head self-attention mechanism to

capture long-range dependencies in the input data. Wang et al.

(2024c). developed a method combining deep learning with image

processing to identify and classify strawberry maturity, enhancing the

YOLOv8 model with an ECA attention mechanism and Focal-EIOU

loss function to improve recognition performance. Du et al. (2023).

developed an improved DSW-YOLO network model for strawberry

fruit recognition and occlusion detection. Zhou et al. (2021). applied

the YOLOv3 deep learning method to classify strawberry growth

stages using aerial and ground images, demonstrating that YOLOv3

can effectively classify growth stages regardless of image type. Yu et al.

(2020). proposed the R-YOLO model, which uses the lightweight

MobileNet-V1 as the backbone network for feature extraction,

improving the accuracy of locating picking points for trench-grown

strawberries. Constante et al. (2016). employed a noise-compensated

learning strategy to train a robust network-object relationship model,

enabling the recognition of complex strawberry features under

varying lighting conditions, sizes, and orientations. An et al. (2022).

developed the ZDNet model for strawberry growth stage detection,

based on the YOLOX model, to improve the accuracy of small fruit

detection and attention weighting.

In summary, although some progress has been made in

detecting strawberry growth stages, certain limitations remain.
(1) Deep learning techniques have introduced innovative

methods for detecting strawberry growth stages without

the need for manual feature design. However, the effective

training of these models typically relies on large-scale

datasets that encompass the entire growth cycle and

include precise annotations. Research indicates that

acquiring such comprehensive and high-quality datasets

is challenging, which limits the training efficiency and

overall performance of deep learning models.
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(2) Research on detecting strawberry growth stages

predominantly focuses on mature fruits, often neglecting

the entire growth cycle from planting to maturity. This

oversight hinders accurate predictions of fruit ripening

times. Significant technical challenges persist in detecting

strawberries of varying sizes, particularly in accurately

distinguishing between the fruit expansion and color-

turning stages.

(3) Most existing models for detecting strawberry growth

stages encounter challenges associated with large

parameter sizes and high computational costs. Since

strawberry growth stage detection must occur in real-time

within complex and variable greenhouse environments to

monitor the maturity of numerous strawberries, these

models must be deployable on lightweight devices.

Consequently, developing lightweight deep learning

models is essential for overcoming this bottleneck.
3 Materials and methods

3.1 Data sources

A dataset comprising images of strawberries at various growth

stages is utilized, collected from multiple strawberry plantations in

Xinxiang City, Henan Province, China (longitude: 113.9202062,

latitude: 35.3021133). Each plantation covers an area exceeding

5,000 square meters. The region, characterized by flat terrain, has

well-drained and aerated soil, efficiently improved through

cultivation and fertilization, providing an optimal environment

for strawberry growth.

The experiment primarily focuses on the Zhongmei Series,

Toyonoka, and Sweet Charlie, cultivated in greenhouses across

several strawberry plantations. These varieties exhibit consistent

morphology throughout their growth stages. Data collection is

primarily conducted through manual photography. Considering

the dense planting in some regions of the greenhouses, high-
tiers in Plant Science 04
resolution drone aerial imaging is employed as an auxiliary

method to prevent damage to ripening strawberries; the

strawberry greenhouse and the data collection method are shown

in Figure 1.

Specifically, high-resolution images of strawberries at various

growth stages are captured within local greenhouse strawberry

orchards using professional-grade equipment, including a Canon

camera (Canon Inc., Chaoyang District, Beijing, China) and a

DJIMini3 drone (DJI Innovations, Nanshan District, Shenzhen,

Guangdong Province, China).

The strawberry growth stage dataset includes five distinct

growth stages: Flowering, Young Fruit, Fruit Expansion, Color

Turning, and Maturation. To enhance the training performance

of deep learning models on the strawberry growth stage dataset,

multiple images capturing strawberries at various growth stages are

taken and collectively labeled as Multi-Stages, as shown in Figure 2.

The characteristics of strawberries at different growth stages

exhibit significant variations, detailed in Table 1.
3.2 Data processing methods

In this paper, advanced data processing techniques are

employed to optimize the quality of datasets across various stages

of the strawberry growth cycle (Zhang et al., 2024b). Given the

limitations in sample collection during different phases of

strawberry production and the scarcity of corresponding public

data resources (Wang et al., 2024g), this research innovatively

applies data augmentation techniques to expand the scale and

diversity of the existing dataset effectively. Specifically, the data

augmentation process is implemented through image flipping and

mirroring. Where image flipping includes both horizontal and

vertical methods.

We enhanced images under varying lighting conditions by

adjusting brightness, darkness, and chroma, which not only

augmented the original dataset but also improved image

quality, making the data more suitable for deep learning model

training. Brightness adjustment techniques effectively simulate
FIGURE 1

Data collection scenarios. (A) shows the greenhouse where different strawberry varieties are cultivated; (B) depicts the drone capturing data within
the strawberry greenhouse.
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lighting variations, reduce noise, and optimize overall image

quality. The pixel value after brightness adjustment is

represented as IBrightness(x,y,z).

IBrightness(x, y, z) = I(x, y, z) + SBrightness (1)

where I(x,y,z) represents the pixel value of the original image,

with (x,y,z) denoting the pixel coordinates, where z represents the

color channel, SBrightness indicates the intensity of the brightness

adjustment, which is added to each pixel value to brighten the image.
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Darkness adjustment is the inverse operation of brightness

adjustment, reducing the overall brightness of the image. The

pixel value after darkness adjustment is represented as IDarkness(x,

y,z), as shown in Equation 2.

IDarkness(x, y, z) = I(x, y, z) − Sdarkness (2)

where SDarkness represents the intensity of the darkness

adjustment, which is subtracted from each pixel value to darken

the image.

Chroma adjustment can enhance or reduce the color

saturation of an image, allowing it to adapt to varying

environmental conditions and improving image quality by

making features at different growth stages more distinct. This

process involves adjusting the color components of each pixel,

with the adjusted pixel values represented as IChroma(x,y,z), as

shown in Equation 3.

IChroma(x, y, z) = I(x, y, z) + SChroma � (I(x, y, z) − G(I(x, y))) (3)

where SChroma represents the intensity of the chroma

adjustment, while G(I(x,y)) denotes the average value of the color

channels at a specific position in the original image, used to

minimize the impact of noise or fine details.

The data preprocessing methods employed in this paper

significantly expand the scale and diversity of the strawberry

growth stage dataset, providing more robust and effective data

support for training deep learning models (Zhang et al., 2023c).

Specifically, through a series of carefully designed operations,

these preprocessing techniques increase the quantity of data and
TABLE 1 Detailed description of the characteristics of different growth
stages of strawberries.

Growth
Stage

Feature Description

Flowering
At this stage, the strawberry plant begins to flower. The petals are
white with a yellow center, and the calyx opens.

Young
Fruit

The strawberry begins to form young fruit, which is very small
and green. The seeds on the surface become more pronounced
and closely packed.

Fruit
Expansion

As the fruit enters the expansion stage, it increases in size, and its
color gradually changes from green to pale white. Both volume
and weight increase significantly.

Color
Turning

The fruit changes color, transitioning from light white to pink or
red. The seeds become more visible, and the color of the calyx
changes from green to light yellow.

Maturation
The fruit becomes plump, and its color becomes vibrant red or
deep red. The calyx color varies from deep to light, with some
parts turning brown.
FIGURE 2

Different growth stages of strawberries. (A) Flowering; (B) Young Fruit; (C) Fruit Expansion; (D) Color Turning; (E) Maturation; (F) Multi-Stage Images.
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enhance its quality. Figure 3 illustrates the improvements in

images following preprocessing.

To enhance the deep learning model’s ability to discern image

details and improve its prediction accuracy, all images are

uniformly resized to 640×640 pixels. This preprocessing step

ensures consistency in model input and optimizes the efficiency

of image feature extraction. To facilitate deep learning model

training, the labels of the annotated data are saved in both

PascalVOC and YOLO formats. Figure 4 presents the data

labeling results for each growth period.

After this adjustment, the dataset contains 7,528 images, with

the training set comprising 6,022 images for model training and

learning, while the test and validation set each contain 753 images

for evaluating the model’s generalization ability and other

performance metrics. Table 2 provides a detailed breakdown of

the dataset’s division and specific quantities.
3.3 The Architecture of SGSNet

The design of SGSNet draws on the structure of YOLOv9s (Liu

et al., 2024b) but omits the Programmable Gradient Information

(PGI) mechanism, replacing its backbone network GELAN with a

self-developed, more lightweight GrowthNet. Despite incorporating

deep feature fusion modules, YOLOv9s shows limitations in

detecting small objects. SGSNet addresses this by integrating the

DySample adaptive upsampling structure, which improves
Frontiers in Plant Science 06
sensitivity to objects of various sizes, and by utilizing the iRMB

module to enhance feature fusion, significantly improving the

accuracy of small object detection. These improvements ensure

that SGSNet meets the detection performance requirements across

all growth stages of strawberries, as shown in Figure 5.

After data is entered into SGSNet, the Silence module pre-

processes it, and the underlying features are extracted using the

GrowthNet backbone network. These multi-level feature maps

undergo processing through three fusion paths. The first path

focuses on small-scale target detection, where the feature map is

processed by adaptive upsampling through the DySample module

(Liu et al., 2023). The RepNCSPELAN4 layer is then optimized

using the iRMB attention mechanism (Zhang et al., 2023b) to

enhance multi-scale feature fusion and improve the detection

ability of small-scale targets. The second path targets mesoscale

detection, where the feature map undergoes similar processing as in

the first path and is further optimized through the AConv (Ma et al.,

2021) layer before being merged by the Concat layer to enhance the

model’s ability to detect mesoscale targets. The third path is

dedicated to large-scale target detection, utilizing the SPPELAN

layer for spatial pyramid pooling to improve the model’s capability

in detecting large-scale targets. Finally, the outputs from the three

paths are input into the Conv-reg and Conv-cls layers for bounding

box regression and classification. The P3, P4, and P5 layers

represent feature maps for small, medium, and large targets,

respectively, enabling accurate detection of strawberries from

flowering to ripening.
FIGURE 3

Image enhancement effects. (A) Original Image; (B) Image Flipping; (C) Image Mirroring; (D) Brightness Adjustment; (E) Darkness Adjustment; (F)
Chroma Adjustment.
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3.3.1 The Get_Featuremap layer
The Get_Featuremap layer extracts feature maps from the

GrowthNet network. After convolution operations, it produces

multi-level feature maps. Each layer of these feature maps

represents growth stage features at different scales, including

low-level edge features and high-level semantic information.

The feature extraction process of this module is illustrated in

Equation 4.

F(x) = Conv(W � x) (4)

where F(x) denotes the feature map, where x represents the

input image, W is the weight matrix of the convolution kernel, and

Conv refers to the convolution operation.
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3.3.2 The RepNCSPELAN4 layer
The RepNCSPELAN4 layer integrates reparameterization

techniques with multi-scale feature processing mechanisms to

enhance multi-scale object detection capabilities. During the

training phase, RepNCSPELAN4 employs a multi-branch feature

fusion structure, enriching feature representations. In the inference

phase, these branches are simplified into a single convolution

operation through reparameterization, significantly improving

inference speed and efficiency. Equation 5 illustrates the

reparameterization formula.

FOut = Conv(W1 � F1 +W2 � F2 +… +Wn � Fn) (5)

where F1, F2,…, Fn are the input feature maps from different

branches, W1, W2,…, Wn are the corresponding convolutional

weights, and the final output feature map is FOut.
3.3.3 The Concat layer
The Concat layer concatenates feature maps of different scales

along the channel dimension, enabling SGSNet to integrate

feature maps of various resolutions. This facilitates improved

handling of multi-scale objects and ensures the model can

simultaneously address detection tasks for large, medium, and

small objects.

3.3.4 The AConv layer
The Adaptive Convolution (AConv) layer is a lightweight

convolutional module that enhances the nonlinear representation

capabilities of convolutional networks through a dynamic activation
FIGURE 4

Different growth stages of strawberries. (A) Flowering; (B) Young Fruit; (C) Fruit Expansion; (D) Color Turning; (E) Maturation; (F) Multi-Stage Images.
TABLE 2 Data from different strawberry growth stages. “Raw Data”
refers to the unprocessed data volume for each category, while
“Processed Data” refers to the data after processing for each category.

Growth Stages Original Data Processed Data

Flowering 209 1331

Young Fruit 197 1293

Fruit Expansion 194 1289

Color Turning 192 1285

Maturation 206 1327

Multi-Stages 125 1003

Total 1123 7528
frontiersin.org

https://doi.org/10.3389/fpls.2024.1491706
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1491706
mechanism, thereby improving the expressiveness of feature maps.

Equation 6 illustrates the computational process of AConv.

FAConv = Conv(W � FConcat) (6)

where W represents the convolutional weights, FConcat denotes

the concatenated feature map from the Concat module, and FAConv
is the computed result.

3.3.5 The SPPELAN layer
The SPPELAN layer is designed based on Spatial Pyramid

Pooling, enabling pooling operations on feature maps at different

scales. This design allows the model to capture richer contextual

information across various scales, enhancing its robustness in

detecting large and small targets. Equation 7 illustrates the

pooling process of SPPELAN.

FSPPELAN = ½Pool(F1, s1),Pool(F2, s2),…, Pool(Fn, sn)� (7)

where FSPPELAN represents the feature map after pooling, Pool

denotes the pooling operation, F1, F2,…, Fn are the results of pooling

operations applied to the input feature maps, and s1,s2,…, sn
represent different pooling scales.

3.3.6 The DySample layer
DySample is an adaptive upsampling technique designed to

meet the multi-scale feature extraction needs for detecting different

stages of strawberry growth. As strawberries progress from

blooming to ripening, their size and shape undergo significant

changes, making traditional fixed upsampling methods

inadequate for accurately capturing these dynamic features. In

contrast, DySample offers a more efficient upsampling approach

with its flexible, adaptive sampling mechanism, making it
Frontiers in Plant Science 08
particularly suitable for complex tasks that require multi-scale

object detection.

The primary advantage of DySample lies in its ability to

dynamically adjust the sampling point positions, effectively

overcoming the limitations of fixed kernel upsampling methods.

By treating the upsampling process as a point-based resampling

problem, DySample learns the offset for each pixel and constructs

an adaptive set of sampling points, S. It then utilizes bilinear

interpolation to perform precise resampling of the input feature

map. This approach not only simplifies the complex convolutional

calculations but also significantly enhances the accuracy and

representative capacity of the upsampling process. The

upsampling process of DySample is illustrated in Equation 8.

x 0 = grid _ sample(x, S) (8)

where x denotes the input feature map, S represents the set of

sampling points dynamically generated based on the offset O, and x′
indicates the resampled feature map.

DySample generates a new set of sampling points S by

dynamically adjusting the offsets, with specific calculations

detailed in Equation 9.

S = G + O (9)

where G represents the original set of sampling points, and O

denotes the offsets generated by linear projection, which are

ultimately used for resampling the feature map.

3.3.7 The Conv-reg and Conv-cls layers
The Conv-reg layer is designed for regressing boundary box

coordinate parameters, which precisely define the position and

extent of target objects within an image. The Conv-cls layer
FIGURE 5

The architecture of SGSNet. The Backbone extracts primary features from input data. The Neck connects the Backbone to the Prediction module,
processing and fusing features. The Prediction module handles target bounding box regression and feature map classification. The 640×640
denotes the initial image resolution, while 80×80, 40×40, and 20×20 indicate feature map resolutions for detecting targets at different scales.
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accurately classifies each target object into its corresponding

category, effectively differentiating diverse targets in complex

scenes. The combination of these modules allows SGSNet to

predict the precise location of target objects and determine their

respective categories, thereby providing the final detection results.
3.4 The lightweight backbone network
of GrowthNet

To enhance the lightweight characteristics and efficiency of

SGSNet, a new architecture known as GrowthNet has been

developed based on MobileNetv4 (Qin et al., 2024). MobileNetv4

introduces a Universal Inverted Bottleneck (UIB) that integrates

multiple convolution strategies, thereby improving the network’s

flexibility and efficiency. In contrast, GrowthNet further innovates

by eliminating the fully connected layers found in the traditional

MobileNetv4 framework, significantly simplifying the network

structure and reducing computational overhead. This modification

renders GrowthNet a more suitable backbone network for the precise

detection tasks required across various growth stages of strawberries.

Additionally, GrowthNet optimizes the interaction between batch

normalization and ReLU activation layers, which stabilizes the

training process and enhances the network’s robustness to

variations in input data. These improvements are essential for

maintaining high accuracy in real-time detection and classification

tasks within SGSNet. The architectural design of GrowthNet not only

fulfills the demands for efficient computation but also ensures

optimal detection accuracy, making it particularly suitable for

integration with deep learning models that require real-time

processing and rapid inference capabilities, as illustrated in Figure 6.

After the 640×640 resolution image is input into GrowthNet, it

undergoes feature extraction and processing. The data first passes

through a 3×3 Conv2d layer for initial feature extraction and

resolution reduction. The Universal Inverted Bottleneck Block

(UIB) further compresses the image features, retaining core

information while minimizing computational overhead. Following

these bottleneck modules, the feature map is sent to the global
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average pooling layer, which aggregates the entire feature map into

a low-dimensional feature vector for subsequent classification. The

feature map is then refined through an additional Conv2d layer.
3.4.1 The Conv2d layer
The 2d convolutional (Conv2d) layer applies a 3×3

convolutional kernel to the input image, reducing spatial

resolution through a convolution operation with a stride of 2. This

step extracts low-level features, such as edges and textures of

strawberries at different growth stages, while decreasing

computational complexity by reducing the resolution. Equation 10

illustrates the computation process.

FOut = Conv2D(FIn,W, b) (10)

where FIn represents the input feature map, W denotes the

convolutional kernel, b is the bias term, and FOut is the output

feature map.
3.4.2 The universal inverted bottleneck
block layer

The Universal Inverted Bottleneck Block (UIB) is a core module

of MobileNetv4. This module initially expands the dimensionality

of the input feature map using an expansion convolution (Expand

Conv). It then extracts spatial features independently from each

channel using depthwise convolution. Finally, it projects the feature

map to a lower dimension using pointwise convolution. The UIB

structure is flexible and can be adjusted based on optimization

objectives. Expanding the feature space reduces computational

complexity through depthwise convolution, maintaining model

efficiency. Equation 11 illustrates the feature processing process of

this module.

FOut = PW(DepthwiseConv(ExpandConv(FIn))) (11)

where FIn denotes the input feature map, ExpandConv refers to

the expansion convolution operation, DepthwiseConv represents

the depthwise convolution operation, PW indicates the pointwise

convolution operation, and FOut signifies the output feature map.
FIGURE 6

The architecture of GrowthNet. The input is a three-channel (RGB) image with a resolution of 640×640. The output is processed using feature
visualization techniques to interpret the feature extraction outcomes of the model.
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3.4.3 The depthwise Conv layer
Depthwise Convolution (Depthwise Conv) is a critical operation

within the UIB module. It performs convolution independently on

each input channel, significantly reducing computational

complexity. Unlike standard convolution, depthwise convolution

does not perform operations across channels but applies convolution

separately to each channel. Equation 12 represents the depthwise

convolution operation.

y(i, j, c) = o
m,n

x(i +m, j + n, c)� w(m, n, c) (12)

where x represents the input feature map, w denotes the

convolutional kernel weights, m and n are the spatial position

indices of the kernel, y (i,j,c) is the result of the convolution

operation, and c indicates the channel index.

3.4.4 The projection Conv layer
Projection Convolution (Projection Conv) projects the

expanded feature maps back to the original dimensions,

maintaining efficient computational performance. It enables the

re-projection of high-dimensional features to lower dimensions,

thus reducing computational requirements. The operation process

is illustrated in Equation 13.

Fproj = PW(Fexp) (13)

where Fexp denotes the expanded high-dimensional feature

map, PW represents the pointwise convolution operation, and

Fproj refers to the projected low-dimensional feature map.

3.4.5 The BatchNorm layer
Batch Normalization (BatchNorm) is used to normalize the

output of each layer to accelerate model training and enhance

model stability. Normalizing each layer’s output to a consistent

distribution prevents issues such as vanishing or exploding

gradients. The normalization process is illustrated in Equation 14.

y = g � x − mffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 + e

p + b (14)

where x represents the input feature map, m and s2 denote the
mean and variance of the batch, respectively, e is a small constant to

prevent division by zero, and g and b are trainable scaling and

shifting parameters. y represents the normalized output

feature map.

3.4.6 The ReLU activation function
Rectified Linear Unit (ReLU) activation function introduces

non-linearity by truncating negative values to zero while retaining

positive values. This approach enhances the model’s expressive

power and effectively mitigates the vanishing gradient problem,

thereby improving the training performance of neural networks.

The operation process is illustrated in Equation 15.

y = max (0, x) (15)

where x represents the input features, and y denotes the output

after ReLU activation.
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3.4.7 The shortcut connection layer
Shortcut Connection creates a shortcut path by directly adding

the input features to the output, effectively bypassing some layers.

This approach ensures that part of the initial input information is

preserved even after undergoing expansion, depthwise, and

projection convolution, enhancing the network’s learning

capability and stability.

Average Pooling Layer (Avg Pooling Layer) reduces the

dimensionality of feature maps by applying global average pooling

to each channel, resulting in a 1x1 feature vector. This pooling process

significantly decreases the feature dimensions while preserving the

most critical global feature information. It reduces the risk of

overfitting and enhances the model’s generalization capability.

FPool =
1
No

N

i=1
FIn(i) (16)

where FIn represents the input feature map, N denotes the size

of the pooling window, and Fpool refers to the output after pooling.
3.5 Feature fusion enhancement algorithm
based on iRMB

The complex greenhouse environment limits the ability of

image acquisition equipment to capture images of strawberries at

various growth stages from close range. To address this challenge, a

lightweight attention mechanism known as the Inverted Residual

Mobile Block (iRMB) has been integrated into SGSNet to enhance

the detection capabilities for small targets and improve multi-scale

feature fusion. The iRMB is strategically positioned within the

GrowthNet architecture, as this location effectively consolidates

feature information from different scales, optimizing detection

accuracy for small targets. Furthermore, the introduction of iRMB

at this critical juncture allows the model to better adapt to the

challenges posed by size variations of strawberries throughout their

growth, thereby enhancing overall detection performance across all

growth stages. This approach ensures that the model retains its

lightweight characteristics while delivering exceptional detection

performance throughout the strawberry growth process.

The core of the iRMB module lies in its use of Expanded

Window Multi-Head Self-Attention (EW-MHSA) and Depthwise

Convolution (DW-Conv) to enhance long-range dependency

modeling and local feature extraction capabilities, respectively.

FiRMB(x) = DW �Conv(EW �MHSA(x)) (17)

where FiRMB (x) represents the feature map processed by the

iRMB module, where xxx denotes the input feature map. EW-

MHSA (x) is the output of the Expanded Window Multi-Head Self-

Attention mechanism, which captures long-range dependencies

across the entire feature map. DW-Conv (EW-MHSA (x)) applies

depthwise convolution to the features after self-attention

processing, enhancing the extraction of local information.

Combining the iRMB and RepNCSPELAN4 feature fusion

modules involves developing a hierarchical dual-stream feature

fusion approach. This method effectively integrates and optimizes
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these features, thereby enhancing the overall detection performance

of the model. The dual-stream feature fusion method consists of

three key components: feature weighting, feature dot product

fusion, and multi-layer feature output.

hCov(x) = o
m

i=1
lih

i
RepNCSPELAN4(x) + 1

 !
+ o

n

j=1
mjh

j
iRMB(x) + 1

 !
(18)

where hRepNCSPELAN4 denotes RepNCSPELAN4, hiRMB

represents the iRMB module, l and m are trainable weights, and x

denotes the input feature map.

Weighted addition introduces trainable weights l and m to each

element of the features. These weights are applied to the original

output to amplify or attenuate the model’s recognition capabilities.

The weighted outputs are then summed to produce a scalar value,

which quantifies the effectiveness of the neural network model based

on this weighted multiplication. This mechanism enhances the

model’s sensitivity to crucial features while effectively suppressing

irrelevant features and noise, optimizing the feature representation

quality. Subsequently, the weighted feature maps are fed into the

feature fusionmodule for deep integration, which aims to optimize the

overall expressiveness and robustness of the features by integrating

multi-source information. During the feature fusion phase, dot-

product fusion techniques facilitate deep interaction between feature

maps. This process involves performing dot-product operations on

the weighted feature maps to generate a richer and more

discriminative feature representation. This approach enhances the

intrinsic relationships between features and improves the model’s

recognition and understanding capabilities in complex and variable

scenarios. Ultimately, the model generates more accurate and reliable

bounding box predictions through the synergy of dot-product fusion

and multi-layer feature interaction. The overall process of the feature

fusion algorithm is detailed in Algorithm 1.
Fron
1: Input: F(x)//Input feature map x

2: for (i=1;i<=n;i++) do:

3: hRepNCSPELAN4(x)←sRepNCSPELAN4(F(x))//Extract RepNCSPELAN4

features

4: hiRMB(x)←siRMB(F(x))//Extract iRMB features

5: l,m←trainable  weights()  //Initialize trainable

weights

6: weightRepNCSPELAN4 ← l � hRepNCSPELAN4(x) + 1  //Apply weight

to RepNCSPELAN4 features

7: weightiRMB ←m � hiRMB(x) + 1//Apply weight to iRMB

features
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8: hcov(x)←weightRepNCSPELAN4 + weightiRMB//Combine weight

features

9: If confidence threshold  met(hcov(x)) then:

10: hcov(x)←finalfeature  fusion(hcov(x))

11://Refine fused features using the final layer for

output confidence

12: else

13: continue

14: endif

15: end for

16: Output hcov(x)//Output fused feature map
Algorithm 1. Feature fusion algorithm.
3.6 Loss function optimization based on
Inner-IoU

Accurate bounding box regression is crucial for detecting

strawberry growth stages. Although the traditional IoU loss

function is widely used in such tasks, it exhibits slower

convergence and limited generalization ability in specific contexts,

especially when the overlap between predicted and ground-truth

boxes is low or when significant scale differences exist. Given the

considerable variation in the size of strawberries during growth, the

loss function must possess more robust generalization capabilities.

To address these issues, the Inner-IoU loss function (Zhang et al.,

2023a) is introduced in the SGSNet. This approach markedly

enhances the model’s regression performance, particularly in

cases with substantial scale differences between predicted and

ground-truth boxes, thereby improving convergence speed and

detection accuracy. Figure 7 illustrates the Inner-IoU loss function.

The inner-IoU loss function introduces the concept of auxiliary

boundary boxes, with a scale factor serving as a tuning parameter to

flexibly adjust the handling strategy for samples with varying IoU

values. Equation 19 represents the inner boundary box of the

ground-truth box bgt, and Equation 20 represents the inner

boundary box of the predicted box bgtinner .

binnergt = xgtc −
wgt � ratio

2
, ygtc −

hgt � ratio

2
,wgt � ratio, hgt � ratio

� �
(19)

binner = xc −
w� ratio

2
, yc −

h� ratio
2

,w � ratio, h� ratio

� �
(20)

where xc and yc represent the center coordinates of the predicted

and ground-truth boxes, respectively, while w and h denote the
frontiersin.org

https://doi.org/10.3389/fpls.2024.1491706
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1491706
width and height, and the ratio is the scaling factor used to adjust

the size of the inner boundary box.

After defining the inner boundary box, it is necessary to

compute its intersection and union areas. Equations 21, 22

represent the calculation of the Intersection over Union (IoU) for

the inner boundary box.

Interinner = min(br , bgtr ) −max(bl , bgtl ) (21)

Unioninner = winner
gt � hinnergt + winner � hinner − interinner (22)

where br and bl represent the coordinates of the right and left

boundaries of the bounding box, respectively.

After calculating the Intersection over the Union of the inner

bounding boxes, the definition of the inner-IoU loss function can be

obtained, as shown in Equation 23.

LInner�IoU = 1 −
interinner
unioninner

(23)

The introduction of the inner-ioU loss function demonstrates

significant advantages for SGSNet in detecting different growth

stages in strawberries. Specifically, this loss function accelerates the

convergence process and improves regression accuracy when

strawberry sizes are small. As strawberry sizes increase, auxiliary

bounding boxes significantly reduce prediction errors, enhancing

the model’s generalization capability and detection accuracy.
4 Experiments

4.1 Parameter setting

We utilized Python 3.9 and CUDA 11.6 within the PyCharm

2023 to build our model, operating on a 64-bit CentOS Linux 7 OS.

The hardware setup included an Intel Xeon (R) Gold 6248R CPU and
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a Tesla V100S PCIE 32GB GPU. We extensively used the PyTorch

framework, Torchvision library, and other image processing tools.

This feature allowed for the real-time construction, modification, and

debugging of our model, facilitating the development of a real-time

strawberry growth period monitoring model. The specific parameter

settings are detailed in Table 3.

Model parameters have yet to converge in the initial stages of deep

learning model training. Utilizing a high learning rate during this

phase can result in substantial weight updates, potentially causing

model instability. The warmup phase gradually increases the learning

rate and momentum, smoothing the training process and effectively

preventing the gradient explosion caused by high initial learning rates.
4.2 Evaluation indicators

The performance of SGSNet on the strawberry growth stages

dataset is evaluated using metrics such as Recall, Precision, F1 score,
TABLE 3 Parameters settings.

Parameter Name Value Parameter Name Value

Momentum 0.937 Bounding Box Loss Factor 7.5

Initial Learning Rate 0.01 Classification Loss Factor 0.5

Final Learning Rate 0.01 Classification Loss Weight 1.0

Weight_Decay 0.0005 Objectness Loss Factor 0.7

Warmup_Epochs 3.0 Objectness Loss Weight 1.0

Warmup_Momentum 0.8 Dynamic Feature
Loss Factor

1.5

Warmup_Learning Rate 0.1 Anchor Matching Threshold 5.0

Image Size 640×640 Optimizer SGD

Batch Size 16 IoU Training Threshold 0.2
front
FIGURE 7

Description of Inner-IoU. The orange dots represent the centers of the predicted and ground-truth boxes. The dashed boxes denote the outer

boundaries of the expected box b and the ground-truth box bgt in traditional IoU. The solid boxes illustrate the auxiliary boundaries binner and bgt
inner

introduced by the Inner-IoU.
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Loss value, and mAP@0.5. “True positive” (TP) refers to the

number of instances where actual positives are correctly

identified. “False negative” (FN) indicates cases where positives

are incorrectly classified as negatives. “False positive” (FP) denotes

instances where negatives are wrongly identified as positives. “True

negative” (TN) represents instances where negatives are

accurately classified.

Precision is a metric used to measure the accuracy of a

classification model, reflecting the percentage of samples correctly

identified as positive out of all the samples predicted to be positive

by the model, as illustrated in Equation 24:

Precision =
TP

TP + FP
(24)

Recall, called Sensitivity or True Positive Rate, is a performance

metric used in classification models. It quantifies the proportion of

actual positive cases correctly identified by the model, as described

in Equation 25:

Recall =
TP

TP + FN
(25)

F1 Score is a metric that combines precision and recall,

providing a comprehensive evaluation of performance. It

calculates the harmonic mean of precision and recall, assessing

both the model’s positive predictive value and its ability to

accurately identify positive cases, as shown in Equation 26:

F1 =
2Precision� Recall
Precision + Recall

(26)

Loss primarily indicates the difference between the predicted

outcomes and the actual outcomes, as shown in Equation 27:

Loss =
−1
n

�o(a � log ha _ hat + (1 − a)� log (1 − ha _ hat)) (27)

where denotes the total number of samples, ha _ hat represents

prediction for the positive class, a denotes the ground truth, and log

is the natural logarithm function.

Mean Average Precision (mAP) is a comprehensive

performance metric that evaluates classification models, especially

in object detection tasks. The mAP@0.5 refers to the Intersection

over the Union threshold, the overlap ratio between the predicted

bounding box and the ground truth bounding box. It calculates the

average precision across multiple classes and at different thresholds.

The mAP value provides insight into the model’s accuracy in

identifying positive samples while minimizing false positives, as

described in Equation 28:

mAP =
1
No

N
i=1APi (28)

where N is the number of classes and APi represents the average

precision for the i-th class.

AP is the area under the PR curve, as shown in Equation 29:

AP =
Z 1

0
P(R)dR (29)
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where P (R) represents Precision at a given Recall level R, with

the integral evaluated from 0 to 1, indicating that AP measures

Precision across all Recall levels from 0 to 1.

We utilize Params and GFLOPs to measure the complexity of

the model. The calculation formulas for the other two evaluation

metrics are shown in Equations 30, 32:

Params =o(Kh�Kw � Cin � Cout) (30)

FlOPs =o(Kh�Kw � Cin � Cout � H � W ) (31)

GFlOPs =
FlOPs
109

(32)

where Params refers to the total number of trainable parameters

in the model, GFLOPs indicate the number of floating-point

operations. Cin and Cout represent the number of input and

output channels. Kh and Kw represent the width and height of the

convolution kernel. H and W represent the height and width of the

feature map.
4.3 Ablation experiment

In the same experimental environment, the performance of five

mainstream convolutional neural networks as backbone networks is

compared with that of SGSNet utilizing GrowthNet on the

strawberry growth period dataset. These networks include

RepViT (Wang et al., 2024a), an advanced lightweight Vision

Transformer (ViT) variant developed in 2024, known for its

excellent balance of performance and latency optimization;

FasterNet (Chen et al., 2023), released in 2023, which enhances

computational efficiency while maintaining high accuracy;

EfficientNetv2 (Tan and Le, 2021), an efficient convolutional

neural network employing compound scaling technology and a

novel training method; Inceptionv4 (Szegedy et al., 2017), which

integrates the Inception module with Residual connections,

recognized for its multi-level feature extraction and superior

accuracy; and MobileNetv4, the latest version of the lightweight

convolutional neural network featuring the Universal Inverted

Bottleneck. The parameters for each convolutional neural

network are detailed in Table 4.

The aforementioned convolutional networks serve as the

backbone of SGSNet, and the performance advantages of SGSNet

as a lightweight deep learning model are evaluated through a series

of systematic and comprehensive comparisons. Figure 8 presents

the performance of different backbone networks within the model

in terms of mAP and loss values.

As shown in Figure 1, the GrowthNet network, when used as

the backbone of SGSNet, quickly achieves a higher mAP@0.5 value

within the first 20 epochs and stabilizes thereafter. It demonstrates

faster convergence and more stable high-precision performance,

consistently maintaining a lower loss value and quicker

convergence. The superior learning efficiency and robustness of
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SGSNet with the GrowthNet backbone are emphasized in

comparison to other backbone networks configured for SGSNet.

Table 5 presents the performance of different backbone networks in

the model across various comprehensive metrics.

When GrowthNet is selected as the backbone network for

SGSNet, it demonstrates superior performance in evaluation

metrics such as precision, recall, F1 score, and mAP@0.5

compared to other backbone networks. SGSNet with GrowthNet

achieves relatively low GFLOPs while maintaining accuracy and

reliability. This capability enables the efficient deployment of

SGSNet in resource-constrained environments, effectively

balancing system performance and resource utilization efficiency.

To demonstrate the effectiveness of each module in SGSNet for

detecting strawberry growth stages, module ablation experiments

are conducted on the strawberry growth stages dataset. Specifically,

the following ablations are performed on SGSNet: First, the original

backbone structure of YOLOv9s is retained, while GrowthNet is

removed (-w/o MobileNetV4). Second, the standard upsampling

structure is maintained while DySample is removed (-w/o

DySample). Next, the innovative feature fusion module iRMB in

YOLOv9s is removed (-w/o iRMB). Finally, the improvement of the

loss function combined with Inner-IoU is eliminated (-w/o Inner-

IoU). Figure 9 illustrates the performance of these ablations in

terms of mAP@0.5 and loss values.

SGSNet achieves the highest mAP@0.5 and indicates superior

performance. Removing GrowthNet slows the growth rate of

mAP@0.5 and increases the loss value, highlighting GrowthNet’s

importance in enhancing detection accuracy and efficiency. The

removal of DySample results in a slight decrease in mAP and a

slight increase in loss, indicating DySample’s role in maintaining

high precision during the upsampling process. The absence of

iRMB causes a significant drop in mAP and an increase in loss,

demonstrating the critical contribution of iRMB to effective feature

fusion. Finally, removing Inner-IoU decreases mAP and

significantly increases loss, indicating its impact on optimizing

the loss function and improving model reliability. Table 6

presents the performance of each ablation operation across

comprehensive metrics.

The results indicate that SGSNet integrates all modules to

achieve the best performance in precision, recall, F1 score, and
TABLE 4 Convolutional neural network parameters.

Network Parameter Value

RepVit

Conv Layers 16

Conv Kernel 3×3, 5×5

Feature Dimension 192, 224, 256, 384

Depthwise
Separable Layer

Present

FasterNet

Conv Layers 16

Conv Kernel 3×3

Feature Dimension 256, 512, 1024, 2048

Depthwise
Separable Layer

Present

EfficientNetv2

Conv Layers 24 (Conv3×3)

Conv Kernel 3×3, 5×5

Feature Dimension 24, 48, 64, 128, 160, 256

Depthwise
Separable Layer

Present

Inceptionv4

Conv Layers 64

Conv Kernel 1×1, 3×3, 5×5

Feature Dimension 1536, 1792, 2048

Depthwise
Separable Layer

None Present

MobileNetv4

Conv Layers 22

Conv Kernel 3×3, 5×5

Feature Dimension 160, 320, 640, 1280

Depthwise
Separable Layer

Present

GrowthNet

Conv Layers 16

Conv Kernel 3×3, 5×5

Feature Dimension 128, 256, 512, 1024

Depthwise
Separable Layer

Present
FIGURE 8

Comparison of mAP@0.5 rate and loss value. (A) mAP@0.5 rate; (B) Loss value.
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mAP@0.5 while exhibiting the lowest loss and computational

complexity. Removing GrowthNet significantly degrades

performance, with precision dropping to 97.55% and loss

increasing to 0.3873, highlighting its crucial role in enhancing

detection accuracy and efficiency. The absence of DySample

reduces precision to 98.01% and increases loss to 0.3636,

underscoring its importance in maintaining high precision during

the upsampling process. Excluding iRMB and Inner-IoU results in

precision reductions to 98.34% and 98.19% and increases in loss to

0.3700 and 0.3965, respectively, demonstrating their critical

contributions to effective feature fusion and loss optimization.

The ablation results demonstrate that integrating GrowthNet,

DySample, iRMB, and Inner-IoU into SGSNet significantly

enhances detection accuracy, efficiency, and reliability. This
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comprehensive integration effectively balances system

performance and resource utilization, making SGSNet highly

suitable for detecting strawberry growth stages in resource-

constrained environments.
4.4 Generalization experiment

To evaluate the generalization capability of SGSNet, a

comparative analysis of accuracy and loss rates is conducted

across the training and testing sets of the strawberry growth

stages dataset. This experiment utilizes a dataset consisting of 660

images, with each period containing 110 images. The training set,

which comprises 80% of the dataset, includes 528 images sourced
FIGURE 9

Comparison of mAP@0.5 rate and loss value. (A) mAP@0.5 rate; (B) Loss value.
TABLE 6 Results of the ablation paper for each module.

Method Precision (%) Recall (%) F1 (%) mAP@0.5 (%) Loss GFLOPs (B)

-w/o GrowthNet 97.55 98.12 97.83 99.27 0.3873 28.6

-w/o DySample 98.01 97.84 97.92 99.31 0.3636 20.6

-w/o iRMB 98.34 98.08 98.21 99.29 0.3700 18.9

-w/o Inner-IoU 98.19 99.27 98.73 99.34 0.3965 14.7

SGSNet 98.83 99.45 99.14 99.50 0.3534 14.7
This table lists the best training results under different metrics.
TABLE 5 Comparison of different convolutional neural network settings for SGSNet backbone networks.

Method Precision (%) Recall (%) F1 (%) mAP@0.5 (%) Loss GFLOPs (B)

+RepVit 98.68 98.52 98.60 99.44 0.4216 18.4

+FasterNet 98.51 98.87 98.69 99.39 0.4586 17.3

+EfficientNetv2 82.48 78.52 80.45 85.03 0.5883 62.5

+Inceptionv4 98.25 98.78 98.51 99.45 0.3907 46.4

+MobileNetv4 98.53 99.07 98.80 98.96 0.4567 29.8

+GrowthNet 98.83 99.45 99.14 99.50 0.3534 14.7
The bold text represents the best values for each evaluation metric.
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from a self-constructed dataset. The remaining 20%, consisting of

132 images, serves as the testing and validation set. The mAP@0.5

values for both the training and testing sets are illustrated

in Figure 10.

The curves for the training and validation sets demonstrate that

the model swiftly converges on the strawberry growth stages dataset

with minimal fluctuations. In contrast, the curve for the dataset

constructed for this experiment exhibits more pronounced volatility

than the original dataset. Nevertheless, the mAP@0.5 of SGSNet

increases with the number of training iterations on both datasets

while the loss value decreases. The loss values for the training and

testing sets are illustrated in Figure 11.

The results of the generalization experiments indicate that

SGSNet demonstrates significant generalization capability across

different datasets. The experiments involve datasets with distinct

characteristics, including the strawberry growth stages dataset and a
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self-constructed dataset, to rigorously assess the model’s robustness.

The model achieves efficient convergence, characterized by minimal

fluctuations in mAP@0.5 and loss values, underscoring its

effectiveness in learning from diverse data. This efficiency is

particularly advantageous in scenarios with limited computational

resources, as it enables SGSNet to maintain high accuracy while

reducing computational complexity. Thus, SGSNet serves as an

ideal solution for detecting and analyzing strawberry growth stages

under various conditions.
4.5 Classification experiment

The improved Gradient-weighted Class Activation Mapping

(Grad-CAM++) technology (Chattopadhay et al., 2018) is applied

to provide better visual explanations for deep learning models.
FIGURE 10

Comparison of accuracy rate. (A) presents the line graph of the model’s performance on the strawberry growth stages dataset after 120 iterations;
(B) shows the line graph after 80 iterations on the self-constructed dataset. “Train_mAP@0.5” represents the training mAP@0.5, and “Val_mAP@0.5”
represents the validation set mAP@0.5.
FIGURE 11

Comparison of loss value. (A) depicts the model’s performance on the strawberry growth stages after 120 iterations; (B) shows the line graph after
80 iterations on the self-constructed dataset. “Train-Loss” represents the training set Loss value, and “Val-Loss” represents the validation set
Loss value.
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Based on existing Grad-CAM technology, Grad-CAM++ enhances

object localization capability by introducing a pixel-level gradient

weighting mechanism, especially in scenarios where multiple object

instances are present in a single image. Grad-CAM++ calculates the

feature map weights as shown in Equation 33:

wc
k =o

i
o
j
akc
ij � ReLU

∂Yc

∂Ak
ij

 !
(33)

where akc
ij is the weight term used to adjust the gradient

contribution, and Ak
ij represents the value of the k-th feature map

at the location in the final (i, j) convolutional feature map.
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Grad-CAM++ derives a closed-form solution for generating visual

explanations through mathematical derivation and has been validated

through extensive experiments on multiple tasks. The Grad-CAM++

heatmaps illustrate the model’s focus areas during feature extraction in

the flowering, young fruit, fruit expansion, color turning, maturation,

and multi-stage images. Figure 12 illustrates the visualization results

for the strawberry growth stages using Grad-CAM++.

The analysis of experimental results across various strawberry

growth stages indicates that SGSNet exhibits superior localization

capabilities in Grad-CAM++ heatmaps. Notably, during critical

growth phases, the activated areas closely align with the actual target

areas, reflecting a significant improvement in localization compared
to YOLOv9s. In contrast, the activation areas of YOLOv9s are more
FIGURE 12

The visualizations of the strawberry growth stages using Grad-CAM++. These stages include flowering, young fruit, expansion, color turning,
maturation, and multi-stage. Each row represents the original image, the Grad-CAM++ heatmap, and the model detection results.
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dispersed, leading to reduced detection accuracy. Furthermore,

SGSNet demonstrates higher confidence levels in detections

across multiple stages; for instance, during the flowering and

ripening phases, SGSNet achieves a confidence level of 1.0,

whereas YOLOv9s presents comparatively lower confidence,

suggesting that SGSNet is more reliable during the detection

process, with a lower false positive rate. In addressing multi-scale

targets, SGSNet effectively manages the varying scales of

strawberries at different growth stages, particularly excelling in

the detection of small and medium-sized targets within complex

environments, while YOLOv9s exhibits relatively weaker

performance in this area. In summary, SGSNet showcases

enhanced precision, confidence, and multi-scale processing

capabilities in detecting strawberry growth stages, thus offering a

considerable advantage in precision agriculture applications.

Comprehensive metrics of SGSNet performance across different

growth stages are presented in Table 7.
4.6 Comparative experiment

The comparative experiments utilized the strawberry disease

dataset to train widely recognized network models and the SGSNet.

The extensive evaluation across various metrics highlighted the

superior performance of the proposed model. The chosen versions

of the YOLO series models are aligned with the YOLOv9s without

auxiliary branches to ensure fairness in the comparative

experiments. To achieve efficient and accurate comparisons across

various growth phases of strawberries, the following models are

selected: Faster R-CNN (Ren et al., 2016), YOLOv5s (Zhao et al.,

2024a), YOLOv6s (Li et al., 2022a), YOLOv7 (Wang et al., 2023b),

YOLOv8s (Wang et al., 2024e), YOLOv9s (Wang et al., 2024d),

YOLOv10s (Wang et al., 2024b), RT-DERT-l (Zhao et al., 2024b),

and RT-DERT-x.

With its two-stage process, Faster R-CNN excels in detecting

overlapping targets in complex backgrounds but has a slower

inference speed. The YOLO series models significantly enhance

detection speed and accuracy with their single-stage design and

improved feature extraction methods. Specifically, YOLOv5s

improves feature extraction, greatly enhancing detection

performance. YOLOv6s optimize network design and quantization

techniques, increasing speed and accuracy and making it particularly

suitable for industrial applications. YOLOv7 combines advanced
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network design and improved loss functions, performing

exceptionally well in real-time detection tasks. YOLOv8s

introduces the C2f module, further improving feature extraction

and fusion capabilities. YOLOv9s uses CSP-ELAN blocks to achieve

better gradient path planning and feature extraction, which are

suitable for lightweight and large-scale models. YOLOv10s

employs an efficiency-driven design and no-NMS training,

significantly enhancing inference speed and parameter efficiency.

The RT-DERT models balance real-time performance and global

context understanding through the transformer architecture, further

improving detection accuracy. Among them, RT-DERT-l focuses on

extreme real-time performance, while RT-DERT-x balances

accuracy and real-time performance. Table 8 describes the

parameter configurations of each comparative model.

To more intuitively observe the performance of SGSNet and

the 10 comparative models in terms of mAP@0.5 and Loss values,

Figure 13 enlarges the plots of each model from 100 to

120 epochs.

Figure 13 shows that within the first 20 epochs of training,

SGSNet’s mAP@0.5 increases rapidly, surpassing most other models

and demonstrating superior detection capabilities across various

strawberry growth phases. In the early training stages, SGSNet

achieves a rapid decrease in loss value, outperforming most

comparative models and indicating strong learning ability and fast

convergence in strawberry growth phase detection tasks. The enlarged

plot from 100 to 120 epochs illustrates that SGSNet maintains

relatively low and stable loss values, demonstrating model stability

in later training stages. Compared to other models, SGSNet not only

quickly increases mAP@0.5 and reduces loss values in the early

training stages but also maintains good stability and efficiency in

later stages, highlighting its competitiveness in strawberry growth

phase detection tasks. Table 9 presents the performance of the 10

comparative models across various comprehensive metrics.

The comparative data highlight the significant advantages of

SGSNet in terms of parameter count and computational complexity.

SGSNet has only 5.86 million parameters and 14.7 GFLOPs, which,

although slightly higher than those of YOLOv5s, remain significantly

lower than those of other models. SGSNet excels in lightweight design

and surpasses all other comparative models in precision, recall, F1

score, and mAP@0.5. Additionally, it achieves an outstanding loss

value of 0.3534. This difference underscores the ability of SGSNet to

maintain high performance while achieving lower parameter counts

and enhanced computational efficiency.
TABLE 7 Classification experiment results. This table lists the best training results of the model at different growth stages under various metrics.

Stage Precision (%) Recall (%) F1 (%) mAP@0.5 (%)

Flowering 99.32 99.81 99.56 99.65

Young Fruit 98.31 94.52 96.38 99.32

Color Turning 98.94 99.67 99.30 99.49

Fruit Expansion 97.59 99.04 98.31 99.41

Maturation 99.43 99.78 99.60 99.63
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In summary, SGSNet stands out in detection tasks on datasets

of different strawberry growth phases due to its high precision, low

computational complexity, and exceptional overall performance.

The confusion matrix in Figure 14, utilizing the mAP@0.5 metric,

illustrates SGSNet’s performance in accurately identifying
Frontiers in Plant Science 19
individual phases and compares it with Faster R-CNN,

YOLOv5m, YOLOv6s, YOLOv7, YOLOv8s, YOLOv9s,

YOLOv10s, RT-DERT-l, and RT-DERT-x.

The confusion matrix summarizes the recognition results, with

rows representing predicted phases and columns representing

actual phases. The diagonal elements indicate the probability of
TABLE 8 Comparison of network parameters.

Network Parameter Value

Faster R-CNN

Conv Layers 71

Concat Layers 4

Total Number Layers 78

Feature Dimension 2048

YOLOv5s

Conv Layers 10

Concat Layers 4

Total Number Layers 24

Feature Dimension 768

YOLOv6s

Conv Layers 23

Concat Layers 4

Total Number Layers 28

Feature Dimension 256

YOLOv7

Conv Layers 77

Concat Layers 15

Total Number Layers 105

Feature Dimension 1024

YOLOv8s

Conv Layers 7

Concat Layers 4

Total Number Layers 22

Feature Dimension 512

(Continued)
TABLE 8 Continued

Network Parameter Value

YOLOv9s

Conv Layers 15

Concat Layers 4

Total Number Layers 22

Feature Dimension 256

YOLOv10s

Conv Layers 15

Concat Layers 4

Total Number Layers 23

Feature Dimension 512

RT-DERT-l

Conv Layers 14

Concat Layers 4

Total Number Layers 28

Feature Dimension 256

RT-DERT-x

Conv Layers 16

Concat Layers 4

Total Number Layers 32

Feature Dimension 384

SGSNet

Conv Layers 7

Concat Layers 4

Total Number Layers 19

Feature Dimension 256
FIGURE 13

Comparison of mAP@0.5 rate and loss value. (A) mAP@0.5 rate; (B) Loss value.
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accurately detecting each strawberry growth phase, while the off-

diagonal elements represent the likelihood of misclassification. The

confusion matrix demonstrates that SGSNet achieves a higher

mAP@0.5 in detecting various strawberry growth phases

compared to other models. This observation strongly supports the

effectiveness of SGSNet in detecting different strawberry

growth phases.
5 Discussion

SGSNet is a lightweight deep learning model specifically

designed for the accurate detection of strawberry growth stages,

supported by a comprehensive dataset that covers all growth

phases. It uses GrowthNet, an efficient lightweight convolutional

neural network, as its backbone, significantly reducing model

parameters and computational complexity. In contrast to

traditional backbone networks, GrowthNet achieves a balance

between efficiency and effectiveness, making SGSNet particularly

suitable for deployment on resource-constrained devices such as

drones or smartphones. The DySample adaptive upsampling

structure dynamically adjusts sampling point positions, enabling

optimized multi-scale detection. The RepNCSPELAN4 module is

enhanced by the iRMB lightweight attention mechanism, which

improves the accuracy of small target detection, while the loss

function is refined with Inner-IoU to accelerate model

convergence and enhance detection precision. Despite its

impressive performance, SGSNet has limitations. While the

model excels at detecting the growth stages of red-maturing

strawberries, it faces challenges in detecting varieties that

mature to white or light pink. Further validation is required to

ensure effectiveness across different strawberry cultivars. Future
Frontiers in Plant Science 20
research will focus on validating and refining the model for

broader applicability across various strawberry cultivars.
6 Conclusion

This paper presents SGSNet, a lightweight deep learning model

designed for efficient detection of strawberry growth stages. A

comprehensive dataset covering various growth stages has been

developed to provide a solid foundation for training and testing.

SGSNet employs GrowthNet, a lightweight convolutional neural

network, as its backbone, which significantly reduces the number of

parameters and computational complexity while enabling efficient

feature extraction and real-time processing. The model also

incorporates the DySample adaptive upsampling structure,

dynamically adjusting feature map resolution based on target size,

greatly enhancing detection performance across strawberries of

different sizes. The RepNCSPELAN4 module is optimized using

the iRMB lightweight attention mechanism, facilitating efficient

multi-scale feature fusion and improving precision in small target

detection, particularly for long-distance images. Additionally, the

loss function is refined with Inner-IoU, accelerating model

convergence and further enhancing detection precision.

Testing results highlight the superior performance of SGSNet,

achieving 98.83% precision, 99.45% recall, 99.14% F1 score, 99.50%

mAP@0.5, and a loss value of 0.3534. SGSNet surpasses widely used

models such as Faster R-CNN, YOLOv10, and RT-DERT-l.

Additionally, SGSNet requires only 14.7 GFLOPs and 5.86

million parameters, balancing high performance with resource

efficiency. Comprehensive experimental validation demonstrates

that SGSNet outperforms current mainstream detection methods

across various quantitative and qualitative evaluation metrics. The

model delivers high detection accuracy while significantly
TABLE 9 Comparison of different models.

Method Precision (%) Recall (%) F1 (%) mAP@0.5 (%) Loss GFLOPs (G) Params (M)

Faster R-CNN 98.77 97.95 98.36 98.42 0.4978 251.4 41.3

YOLOv5s 97.69 95.83 96.75 98.91 0.3992 16.0 7.03

YOLOv6s 97.35 98.06 97.70 99.15 0.3864 44.2 16.31

YOLOv7 96.29 96.69 96.49 98.83 0.3959 105.2 37.22

YOLOv8s 97.46 95.75 96.60 98.67 0.3876 28.7 11.14

YOLOv9s 97.75 97.76 97.75 99.25 0.3848 26.9 7.20

YOLOv10s 97.81 96.78 97.29 99.24 0.3933 24.8 8.07

RT-DERT-l 98.17 97.63 97.90 99.26 0.3828 108.0 32.82

RT-DERT-x 98.23 98.11 98.17 99.36 0.3666 232.4 67.31

SGSNet 98.83 99.45 99.14 99.50 0.3534 14.7 5.86
The table presents the optimal training outcomes of the model across different metrics.
The bold text represents the best values for each evaluation metric.
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FIGURE 14

Confusion matrix of classification effect. (A) SGSNet; (B) Faster R-CNN; (C) YOLOv5m; (D) YOLOv6s; (E) YOLOv7; (F) YOLOv8s; (G) YOLOv9s; (H)
YOLOv10s; (I) RT-DERT-l; (J) RT-DERT-x.
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optimizing inference speed and reducing parameter count, making

it ideal for deployment in resource-constrained environments. In

the future, applying SGSNet to other crops or agricultural products

could pave the way for broader development of intelligent

agricultural management systems. These systems could address

challenges such as pest detection, growth monitoring, and yield

estimation, contributing to advancements in precision agriculture.
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