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A variety of diseased leaves and background noise types are present in images of

diseased tomatoes captured in real-world environments. However, existing

tomato leaf disease recognition models are limited to recognizing only a single

leaf, rendering them unsuitable for practical applications in real-world scenarios.

Additionally, thesemodels consume significant hardware resources, making their

implementation challenging for agricultural production and promotion. To

address these issues, this study proposes a framework that integrates tomato

leaf detection with leaf disease recognition. This framework includes a leaf

detection model designed for diverse and complex environments, along with

an ultra-lightweight model for recognizing tomato leaf diseases. To minimize

hardware resource consumption, we developed five inverted residual modules

coupled with an efficient attention mechanism, resulting in an ultra-lightweight

recognition model that effectively balances model complexity and accuracy. The

proposed network was trained on a dataset collected from real environments,

and 14 contrasting experiments were conducted under varying noise conditions.

The results indicate that the accuracy of the ultra-lightweight tomato disease

recognition model, which utilizes the efficient attention mechanism, is 97.84%,

with only 0.418 million parameters. Compared to traditional image recognition

models, the model presented in this study not only achieves enhanced

recognition accuracy across 14 noisy environments but also significantly

reduces the number of required model parameters, thereby overcoming the

limitation of existing models that can only recognize single disease images.
KEYWORDS

plant disease identification, image classification, attention mechanism, deep separable
convolution, deep learning
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1 Introduction

Tomatoes, as a widely cultivated and significant crop, possess

considerable edible and medicinal value. The diagnosis of early

diseases typically relies on the assessment of leaf damage by experts.

However, the inability of these experts to provide real-time

diagnoses often results in missed opportunities for timely

prevention, which can lead to substantial economic losses.

Consequently, the development of an automatic and efficient crop

disease diagnosis system has become an urgent area of research.

In early research, scholars aimed to leverage computer vision

technology for the automatic identification of diseases. Gulhane and

Gurjar (2011) employed a Back Propagation Neural Network

(BPNN) to identify cotton diseases by extracting relevant disease

characteristics. Sannakki et al. (2010) utilized a fuzzy algorithm in

conjunction with K-means clustering (Bashish et al., 2011) to

facilitate the grading of leaf diseases. Xie et al. (2016) developed a

diagnostic system for wheat leaf diseases based on an Android

smartphone, which effectively reduced the computational

complexity associated with automated algorithms. Additionally,

Siricharoen et al. (2016) diagnosed plant diseases by analyzing

leaf textures, colors, and shapes. Qin et al. (2016) employed K-

means clustering, the Naive Bayes algorithm, regression trees, and

various other supervised classification methods to identify alfalfa

diseases, ultimately seeking the optimal method for disease

identification in alfalfa. However, the reliance on manually

designed features necessitates expert knowledge, which not only

limits the degree of automation but also renders the system less

adaptable to accommodate variations in growth conditions such as

light intensity and complex backgrounds when only a few related

features are utilized. Consequently, both recognition accuracy and

the level of automation in complex environments require

further enhancement.

With the development of computer vision technology and

internet technology (Keswani et al., 2019, 2020), the application

of deep learning algorithms (Krizhevsky et al., 2017; Simonyan and

Zisserman, 2014; He et al., 2016) to crop disease recognition has

shown great potential (Dyrmann et al., 2016; Mohanty et al., 2016).

Jiang et al. (2020) used deep learning methods to extract the disease

characteristics of tomato leaves, such as spot blight, late blight, and

yellow leaf curl. Their method predicted the category of each disease

after continuous iterative learning, and the accuracy achieved on the

training dataset and testing dataset were increased by 0.6% and

2.3%, respectively. Lv et al. (2020) proposed a framework to identify

corn leaf diseases based on an improved AlexNet network and

feature enhancement, thus improving the extraction performance of

corn disease features in complex environments and increasing the

accuracy of disease recognition. Liu et al. (2020) used DenseNet to

train a generative adversarial network to generate images of 4

different leaf diseases and proposed a leaf disease recognition

model based this network. It was further verified that data

enhancement could not only effectively overcome the overfitting

problem in disease recognition but also effectively improve the

recognition accuracy. Liang and Zhang (2020) integrated three

classifiers for plant disease image recognition, and the accuracy of
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the proposed method on a segmentation testing dataset was close to

99.92%. Huang et al. (2019) proposed an end-to-end plant disease

diagnosis model based on deep neural networks that could reliably

identify plant types and diseases. Sanida and Dasygenis (2024)

proposed a lightweight convolutional neural network for tomato

leaf disease identification, achieving an accuracy of 97.63% and an

AUC score of 98.51%. Ni et al. (2023) introduced a tomato leaf

disease recognition model based on ResNet18, enhanced by the

addition of a squeeze-and-excitation module, which attained an

average recognition accuracy of 99.63% on the publicly available

PlantVillage dataset. Li et al. (2023) developed a tomato leaf disease

identification model utilizing a self-attention mechanism, achieving

an accuracy of 99.97% with a parameter size of 27 MB on the

PlantVillage dataset. Additionally, Yang et al. (2024) proposed a

lightweight CNN model, which demonstrated a recognition

accuracy of 95.54%.These studies have proven that data

enhancement can improve the robustness of models in different

environments, but such recognition methods still have some

shortcomings. (1) These methods all improve the recognition

accuracy of the developed models by sacrificing complexity,

lacking focus on the model’s complexity. (2) The input images of

these end-to-end models can contain only one leaf. If the leaf size is

small, the background is large, or multiple diseased leaves appear in

one image, the models cannot recognize it. (3) Robustness studies

regarding the data variability caused by image acquisition devices

are scarce.

Therefore, to overcome these problems, this paper presents a

framework that combines tomato leaf detection and leaf disease

identification and is mainly divided into three parts. First, a tomato

leaf detection model is designed to detect and crop tomato leaves in

captured images to solve the problem of non-singular disease image

recognition. Then, an effective data enhancement method is

designed to improve the robustness of the model in complex

environments. Finally, an ultra-lightweight tomato disease

recognition model is designed to reduce required the number of

model parameters while ensuring that the recognition accuracy

remains unchanged and to balance the contradictory relationship

between the complexity and recognition accuracy of the model.
2 Related work

To build a tomato leaf detection model in a complex

environment, it is necessary to select a suitable object detection

network. Mainstream object detection algorithms based on deep

learning are mainly divided into two categories, and different types

of object detection algorithms have different performances. The first

category contains single-step detection networks that do not

generate proposal regions but can directly convert an object

frame positioning problem into a regression processing problem

to achieve rapid object detection; such methods include You Only

Look Once (YOLO) (Redmon et al., 2016), YOLOv3 (Redmon &

Farhadi, 2018), YOLOv4 (Bochkovskiy et al., 2020), YOLOv6 (Li

et al., 2022), YOLOv7 (Wang et al., 2022), YOLOv9 (Wang et al.,

2024b), YOLOv10 (Wang et al., 2024a) and other networks, but
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their disadvantage is that they are prone to missing and falsely

detected objects. The second type includes two-step detection

networks based on proposal regions, which have high detection

accuracy and positioning accuracy, and the probabilities of missed

detections and false detections are relatively small; such methods

include the fast region-convolutional neural network (Fast R-CNN)

(Girshick, 2015) (Fast Region-Convolutional Neural Network) and

Faster R-CNN (Ren et al., 2017). The tomato leaf detection results

directly affect the accuracy of the utilized disease recognition model,

so how to accurately detect tomato leaves in a complex background

environment is particularly important. In this paper, we choose

Faster RCNN as the basis for constructing a tomato leaf detection

network due to its higher accuracy.

The recognition accuracy of image classification algorithms

based on deep learning is superior to that traditional algorithms.

VGG (Simonyan and Zisserman, 2014), ResNet (He et al., 2016),

and GoogLeNet (Szegedy et al., 2015) realize deep convolutional

neural networks (DCNNs) by increasing the number of utilized

convolutional layers and widening their network structures,

resulting in stronger feature extraction capabilities but requiring

many hardware resources. To reduce the number of model

parameters, MobileNetV1 (Howard et al., 2017) uses deep

separable convolution to significantly improve computational

efficiency, while MobileNetV2 (Sandler et al., 2018) employs a

resource-efficient block with an inverse residual and a linear

bottleneck to extend it. MobileNetV3 (Howard et al., 2019)

introduces an attention mechanism and modifies the number of

extended layer filters. These MobileNet series networks have

become mainstream lightweight models, as they greatly reduce

the number of required model parameters under the premise of

ensuring recognition accuracy. Although MobileNetV3

incorporates an attention mechanism into the lightweight

network and achieves better recognition performance, the

introduced attention mechanism uses two fully connected layers

to perform dimensionality reduction and then upgrade operations

on channel features, resulting in an increased number of parameters

and greater feature losses. Therefore, this paper designs an ultra-

lightweight tomato disease recognition model based on the

MobileNet series of models.

Because the image features of early diseased leaves are not obvious

and a large number of network parameters can be used to extract the

texture features of leaves, few studies have been conducted on the use

of lightweight models for crop disease identification. If a lightweight

network is used for disease image recognition, it is necessary to

improve the feature extraction ability of the model and the

utilization of model parameters to extract the features of diseased

leaves at different scales. An attentionmechanism enables a network to

pay more attention to the most effective information in the image and

ignore the irrelevant information, so it is considered an effective

module for the aggregation of enhanced features. The squeeze-and-

excitation network (SE-Net) (Jie et al., 2017) first proposed network

that included an effective mechanism for learning channel attention,

and it has achieved good performance. A convolutional block

attention module (CBAM) (Woo et al., 2018) uses both average

pooling and maximum pooling to aggregate features. Most of the
Frontiers in Plant Science 03
attention modules proposed later, such as the Gram-Schmidt

orthogonalization procedure (GSoP) (Gao et al., 2018) and Gather-

excite (GE) (Hu et al., 2018), have high model complexity and can

only be used in a single block or several convolutional blocks. Notable,

all the abovemethods focus on developing complex attention modules

to achieve better performance. An efficient attention mechanism aims

to learn effective channel attention with low model complexity. The

introduction of a high-efficiency attention mechanism into a tomato

disease recognition model can reduce the impact of model weight on

the resulting recognition accuracy.

Therefore, this paper defines a framework that combines

tomato leaf detection and tomato disease recognition, divides

tomato the disease recognition into three parts, and optimizes the

method used for each part according to tomato disease

characteristics to make it suitable for tomato disease recognition

in real scenes. The main contributions of this article are as follows:
1. By using MobileNetV2 to improve the feature extraction

module of Faster RCNN, a fast detection method for

tomato leaves in a complex environment is proposed to

cut out the complete leaves in the camera’s field of view

from the background.

2. The existing tomato disease dataset was formed by picking

diseased leaves and taking their pictures in an ideal

experimental environment, so it lacks disease images in

real growth environments and complex environments.

Therefore, this paper collects tomato leaf images in an

unconstrained tomato planting environment and designs a

set of data enhancement methods to enhance the robustness

of the recognition model in complex environments.

3. An ultra-lightweight tomato disease recognition model

based on an efficient attention mechanism is proposed; it

balances the contradictory relationship between model

complexity and accuracy.
3 Materials and methods

Data collection is an important part of crop disease

identification. In this paper, tomato leaf images were collected at

the tomato planting base of the Beijing Agricultural Information

Technology Research Center. Under natural light, a Sony camera

was used to capture tomato images with resolutions of 3024×4023

and 3024×3024. The disease image collection times were 6:00-8:00

am, 10:00-12:00 am and 2:00-6:00 pm. The collected disease

category database includes powdery mildew, leaf mould and late

blight, with a total of 2437 images. The images collected in an

unconstrained environment are stored according to their disease

categories. It is worth noting that to increase the diversity of the

dataset, the photographed tomato disease images not only include

tomato leaves, stems and fruits but also images collected at different

angles, at different scales and with different background

information for the same leaf. These complex environments, with

characteristics such as light, dirt, healthy stems and leaves, the
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ground, human hands, and other objects, affect the results of tomato

disease recognition. Therefore, this paper designs a framework that

integrates tomato leaf detection and leaf disease recognition and

proposes a rapid leaf detection model and an ultra-lightweight

tomato disease recognition model that is suitable for complex

environments. As shown in Figure 1, the framework is mainly

divided into two parts. The first part mainly uses an object detection

model to obtain a dataset of tomato leaf diseases, and then enhances

the data of tomato leaves. A lightweight leaf recognition model is

constructed using the enhanced tomato leaf disease data, and the

trained recognition model is used to recognize leaf diseases.
3.1 Tomato leaf detection in a
complex environment

3.1.1 Data preparation
Pascal VOC2007 (Ren et al., 2017) is a public dataset in the field

of object detection. To train the tomato leaf detection model, 800

images are extracted from among the collected images as the tomato

leaf detection dataset and annotated according to the Pascal

VOC2007 format. According to the standard that the target area

accounts for more than 3/4 of the entire leaf area, it is considered a

complete leaves. ImgLabel software is used to manually select

complete healthy leaves and diseased leaves with clear pixels as

the target areas, and fuzzy, incomplete leaves and other background

information are uniformly defined as the image background and

label labelled. The annotated images generate labels in Extensible

Markup Language (XML) format as the tomato leaf detection

dataset. (Xu et al., 2024), the dataset are randomly divided in an

8:1:1 ratio, resulting in 648 training images, 80 testing images, and

72 validation images.
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3.1.2 Tomato leaf detection model
The accuracy of tomato leaf detection is directly related to the

accuracy of the disease identification model. Currently, mainstream

target detection models are mainly divided into two categories:

single-stage and two-stage. Two-stage target detection algorithms

consist of two steps: first, generating candidate regions, and then

applying a classifier to these regions. This method is more accurate

than single-stage detection but slower. Considering that the

detection effect of leaves significantly impacts subsequent results,

this paper constructs a tomato leaf detection model based on the

Faster RCNN, which has high accuracy in two-stage target detection

networks, as shown in Figure 2.

The tomato leaf detection model includes a feature extraction

network, region proposal network (RPN) and leaf classification and

regression network. MobileNetV2 is used as the feature extraction

network in Faster RCNN to extract tomato leaf features, reduce the

number of model parameters, and then input the generated feature

map into the RPN to search for a predefined number of suggested

regions. The feature map output by MobileNetV2 and the region

proposal output by the RPN are input into the region of interest

(RoI) pooling layer, and after being adjusted to a fixed size, each leaf

area is input into the leaf classification and regression network to

detect and identify tomato leaves. The reasoning process of the

tomato leaf detection model is shown in Figure 3.

Each image is scaled to a size of 600×1000 pixels and input into

the tomato leaf detection model to detect all clear and complete

tomato leaf coordinates in the image, and the output detection

results are rescaled to fit the original image. When there are no

leaves in the given image, the number of detected leaves is 0, and the

image is not saved. The tomato leaf detection model accurately

extracts all clear and complete leaf images in the camera’s field of

view, thereby overcoming the limitation of current disease
FIGURE 1

A framework for the fusion of tomato leaf detection and leaf disease recognition.
FIGURE 2

Structure of the tomato leaf detection model.
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recognition research that the input image can only contain one leaf.

This paper automatically detects images containing multiple tomato

leaves and inputs the detected single leaves into the disease

recognition network, which not only improves the accuracy and

adaptability of tomato disease detection but also greatly reduces the

workloads of researchers.

3.1.3 Tomato disease image enhancement
After the complete tomato leaves are cut out from the images

taken by the camera, they are divided into four categories: powdery

mildew, leaf mould, late blight and healthy leaves. These four kinds

of disease data form the original tomato disease recognition dataset,

which is divided into a training set and a test set at a ratio of 8:2. To

enhance the robustness of the tomato disease recognition model in

an unconstrained environment, this paper uses 13 data

enhancement methods to expand the number of training images

and test images. The enhancement results are shown in Figure 4.

Image enhancement methods include flipping an image

horizontally or vertically and increasing or decreasing the

brightness, chroma, contrast, or sharpness of the image. These

methods can simulate special lighting noise in a real environment,
Frontiers in Plant Science 05
not only increasing the diversity of the training set but also enabling

the design of comparative experiments to test the robustness of the

developed model in a complex and changeable environment. In the

image field, the Laplacian algorithm can highlight the edge

information of an image, the gamma transform can perform

different contrast enhancements according to different grey

values, and contrast-limited adaptive histogram equalization

(CLAHE) can enhance the local contrast of an image and

increase the number of detailed features. The tomato disease

dataset expanded using these methods is called the enhanced

tomato disease recognition dataset, in which the brightness,

chroma, contrast, etc. are increased to 50% of the original image

or reduced to 50% of those of the original image.
3.2 Ultra-lightweight tomato leaf disease
recognition model

At present, the mainstream recognition model has a relatively

high number of parameters and consumes a relatively large amount

of hardware resources. To balance the contradictory relationship
FIGURE 3

Schematic diagram of the inference process of the tomato leaf detection model.
FIGURE 4

The results of tomato disease image enhancement.
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between accuracy and complexity and to facilitate the deployment

and application of the model, this paper uses deep separable

convolution, an inverted residual structure and efficient channel

attention (ECA) to design an ultra-lightweight tomato leaf disease

recognition model. The specific architecture is shown in Figure 5.

To preserve more detailed diseased leaf features, five improved

inverted residual structures are designed in the model, based on

MobileNet v3 small, and the input image size of the model is set to

448×448 size. After a tomato leaf image feature is extracted by the

case-based reasoning (CBR) module, the obtained feature map is

input into the feature extraction network, which contains 5

improved inverted residual modules. Finally, the designed last-

stage module uses a 1×1 convolution instead of a fully connected

layer and uses a global pooling layer to transform 7×7 feature maps

into 1×1 objects, which greatly reduces the number of required

parameters. A dropout layer is added between the last two 1×1

convolutional layers of the model to prevent the model from

overfitting. The parameters of each module are shown in Table 1.

The model uses rectified linear unit 6 (Relu6) as the non-linear

activation function and limits the maximum value of the output to

6. The calculation method is shown in equation (1):

Relu6x = minðmax (0, x), 6Þ (1)

The deep network easily causes gradient degradation when

extracting tomato disease characteristics. The traditional residual

structure performs compression first and then conducts expansion,

thus losing much of the effective information contained in the

feature map. Therefore, this paper designs five inverted residual

structures to perform feature extraction after upgrading the channel

information, and the structures are shown in Figure 6.

To reduce the number of parameters required by the tomato

disease recognition model, depth-wise separable convolution

(DSC), which is composed of depth-wise (DW) convolution and

point-wise (PW) convolution, is introduced. The use of DSC to

replace the traditional standard convolution can reduce the

numbers of model parameters and calculations. The inverted

residual (IR) module uses PW convolution to upscale the

channels and then uses DW convolution to extract features so
Frontiers in Plant Science 06
that the model can extract rich feature information. Finally, PW

convolution is used to keep the dimensionality of the input channel

consistent with that of the output channel, thus achieving cross-

layer connections and lightweight models. Since tomato leaf disease

is mainly manifested in the texture information of tomatoes, to

enhance the ability of the model to extract detailed leaf image

features, an ECA mechanism is incorporated into the inverted

residual structure. The module in Figure 6A does not perform

dimensional upscaling and directly inputs the given feature map

into the DW convolution mechanism. The IR modules in Figure 6B

and Figure 6C both use PW convolution, DW convolution, and

more PW convolution operations to increase the dimensionality of

the input features and then extract the features. When the DW

convolution step length is 1, a cross-layer connection is adopted,

and when the step length is 2, a cross-layer connection is not

adopted. In the last PW convolution, only a batch normalization

(BN) structure is used, and the non-linear activation function is

not used.

The standard convolution input is a feature map Liof size hi �
wi � di, an output feature map Ljof size hi � wi � dj is generated by

the convolution kernel K ∈ Rk�k�di�dj , and the calculation cost is

hi · wi · di · dj · k · k. The DSC mechanism uses two layers instead of

the standard convolution operation. The first layer is a DW

convolution layer, which performs lightweight filtering on each

input channel, and the second layer is a 1×1 point-by-point

convolution layer, which constructs new features by calculating

linear combinations of the input channels. However, the effect of

DSC is similar to that of standard convolution, but the

computational cost, which is the sum of a DW convolution and a

1×1 PW convolution, is lower:

hi · wi · di(k
2 + dj) (2)

where the DW convolution in the lightweight model designed

in this paper uses 3×3 and 5×5 convolution operations, and the

computational cost is reduced by 9-25 times compared with that of

traditional convolution.

Reducing the number of model parameters can easily reduce the

resulting recognition accuracy. To improve the accuracy of tomato
FIGURE 5

Structure of an ultra-lightweight Plant leaf recognition model based on ECA.
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disease recognition, this paper introduces an ECA mechanism to

improve the inverted residual modules, as shown in Figures 6A, C.

The specific structure of the ECA mechanism is shown in Figure 7.

A feature map X is output after a convolution-based

transformation as uc(i, j) ∈ RW�H�C , where W, H and C are the

width, height and channel dimensions, respectively. The attention

module uses a compression operation to compress a feature map U

into a 1×1×C format. This operation aggregates features across the

spatial dimensions (H×W), generates channel descriptors, and

obtains aggregate features F(uc) ∈ RC without dimensionality

reduction. The channel attention can be learned by formula (3).

The channel attention can be learned by formula (3).

w = s(MF(uc)) (3)

where s is a sigmoid function, which is the activation function

of the attention module, M is the convolution calculation:

sigmoid(z) =
1

1 + e−z
(4)

The ECA module uses global average pooling (GAP) to obtain

an aggregate feature FA(uc):

FA(uc) =
1

H �WoH
i=1oW

j=1uc(i, j) (5)
Frontiers in Plant Science 07
When the convolution operation extracts features, the variance

of the estimated value is easily increased due to the limited size of

the neighborhood. GAP can reduce this error and retain more

image background information.

To capture local cross-channel interactions and ensure the

effectiveness of channel features, we can use a 1D convolution

operation to make all channels share the same learning weight. The

calculation of wi is dependent on Fi(uc) and its k neighbors, i.e.,

w i = s (ok
j=1w

jFj
i(uc)),   F

j
i(uc) ∈ jk

i

w = s (Conv1Dk(Fi(uc)))                                        

(
(6)

where jk
i indicates the set of k adjacent channels of Fj

i(uc). Co

nv1Dk is a 1D convolution with a convolution kernel of k, and

formula (6) involves only k parameters. Under the premise of low

complexity, the efficiency and effectiveness of the model are ensured

by appropriately capturing local cross-channel interactions.

Therefore, theM operation in formula (3) is a one-dimensional

convolution operation, and the aggregate feature FA(uc) is input

into the 1D convolution layer to filter the effective channel

information and obtain wC :

w c =  s (Conv1Dk(FA(uc))) (7)

The convolution kernel size k is set as an adaptive parameter.

For a given number of channels C, k is calculated as follows:
TABLE 1 Specific parameters of each module.

Input Module
Expansion
channel

Output channel ECA Step Output size

448×448×3 Conv2d, 3×3 — 16 2 224×224×16

224×224×16 DW_IR, 3×3 16 16 √ 2 112×112×16

112×112×16 DSC_IR, 3×3 72 24 2 56×56×24

56×56×24 DSC_IR, 3×3 88 24 1 56×56×24

56×56×24 DSC_ECA_IR, 3×3 88 24 √ 1 56×56×24

56×56×24 DSC_ECA_IR, 5×5 96 40 √ 2 28×28×40

28×28×40 DSC_ECA_IR, 5×5 240 40 √ 1 28×28×40

28×28×40 DSC_ECA_IR, 5×5 240 40 √ 1 28×28×40

28×28×40 DSC_ECA_IR, 5×5 120 48 √ 2 14×14×48

14×14×48 DSC_ECA_IR, 5×5 144 48 √ 1 14×14×48

14×14×48 DSC_ECA_IR, 5×5 288 48 √ 1 14×14×48

14×14×48 DSC_ECA_IR, 5×5 288 48 √ 2 7×7×48

7×7×48 DSC_ECA_IR, 5×5 288 48 √ 1 7×7×48

7×7×48 DSC_ECA_IR, 5×5 288 48 √ 1 7×7×48

7×7×48 Conv2d, 1×1 – 288 – 1 7×7×288

7×7×288 Avgpool, 7×7 – – – 1 1×1×288

1×1×288 Conv2d, 1×1 – 512 – 1 1×1×512

1×1×512 Dropout – – – – 1×1×512

1×1×512 Conv2d 1×1 – 4 – 1 1×1×4
The pointwise convolution channel in each module is called the expansion channel of the module.
The '√' indicates whether the ECA module is used.
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k = t(C) = j log2 (C)
g

+
b
g
jodd (8)

where g = 2,     b = 1, ∣a ∣odd represents the nearest odd number

of a and t(C) is a nonlinear mapping.

xc = Fscale(uc,wC) = wC · uc (9)

where X = ½x1, x2,…, xc� and Fscale(uc,wC) represent the channel

multiplication relationship between the scalar wC   and the feature

map. The ECA module does not reduce the dimensionality of the

original channel features. High-dimensional channels have longer-

range interactions, which are not limited to the local acceptance

domain of the convolution response, and realize the enhancement

and recalibration of important features in the former and latter layers.
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4 Experimental results and analysis

4.1 Experimental configuration and data

The models are trained on one NVIDIA Tesla P100 GPU with

16 GB of RAM based on a 64-bit Ubuntu 16.04 operating system

and the PyTorch framework, with Python version 3.7.6, PyTorch

version 1.3.0, CUDA API version 10.0, and cuDNN version 7.5.1.

According to the data preprocessing procedure in Figure 1, the

original tomato disease recognition dataset and the enhanced

tomato disease recognition dataset are produced, as shown in

Table 2. The original collected tomato disease dataset contains 3

kinds of diseases, and a total of 2,437 tomato images with two sizes,
FIGURE 7

The specific structure of the ECA mechanism.
FIGURE 6

The improved inverted residual module. (A) DW_IR is an inverted residual module based on depth-wise convolution and an efficient attention
mechanism. (B) is an inverted residual module based on depth-wise separable convolution (DSC_IR). (C) is an inverted residual module based on
depth-wise separable convolution and an efficient attention mechanism (DSC_ECA_IR).
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3024×4023 and 3024×3024. To train the tomato leaf detection

model, 800 images are extracted from the collected images and

manually labelled as the tomato leaf detection dataset. Finally, the

overall dataset is divided into 80 testing images, 648 training images

and 72 validation images. The trained tomato leaf detection model

is used to crop the tomato leaves with powdery mildew, late blight,

leaf mould and healthy tissues from the original image, and 6,001

leaf images are obtained; these form the original tomato disease

recognition dataset and are divided into a training set and testing set

at a ratio of 8:2. Thirteen kinds of image enhancement methods are

used to expand the training set and testing set of the original tomato

disease recognition, and 84,014 enhanced leaf images are obtained,

forming the enhanced tomato disease recognition dataset.
4.2 Testing results of the tomato leaf
detection model

The training process and detection results of the tomato leaf

detection model are shown in Figure 8 and Figure 9, respectively.

During the training process, the total loss function exhibits a

downward trend, and the oscillation interval is stable between

0.15-0.20. After the training process is completed, the model can

effectively detect the clear leaves in the original collected tomato

images while ignoring the blurred leaves and incomplete leaves in

the background. The calculated accuracy of the model is 93.7%, the

recall is 85%, the weight of the model is 88MB, and which proves

that the model has a good detection effect for tomato leaves.

At the same time, to verify the effectiveness of the proposed

model, we conducted comparative experiments with YOLO v8x,

YOLO v8l, and Faster R-CNN. The accuracy, recall rates, and model

sizes are as follows: for the YOLO v8x model, the accuracy is 95%,

the recall rate is 85.5%, and the model size is 130 MB; for the YOLO

v8l model, the accuracy is 92.5%, the recall rate is 83.2%, and the

model size is 84 MB; for the Faster R-CNN model, the accuracy is

94.5%, the recall rate is 85.9%, and the model size is 467 MB.

Compared to the original Faster R-CNN, the detection performance

of our proposed model is slightly lower, but the model size is only

about one-fourth of that. In comparison with YOLO v8x, the model

size is approximately two-thirds of that, and there is little difference

in detection performance. However, when compared to YOLO v8l,
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the detection performance is improved by about 2 percentage

points, while the model size only increases by 4 MB.
4.3 Recognition results for tomato
leaf diseases

To verify the effectiveness of the tomato leaf disease recognition

model, the original tomato disease recognition training set and the

enhanced tomato disease recognition training set are used to train the

ultra-lightweight tomato disease recognition model based on the ECA

mechanism proposed in this paper. The robustness of the model is

tested on the testing set derived from 14 kinds of different

environments. To further analyze the impact of the improved

module on the recognition results, an ablation experiment is

carried out on the ultra-lightweight tomato disease recognition

model. Finally, the same parameter configuration and methods are

used to train mainstream recognition networks, including the

MobileNet series, VGG16, ResNet50 and AlexNet, for a

comparison with the model proposed in this article in terms of

recognition performance.
TABLE 2 Number of images in the tomato disease dataset.

Category
Captured
image

Tomato leaf
image crop

Original tomato
disease recogni-

tion dataset Image
enhancement

Enhanced tomato
disease recogni-

tion dataset

Training
set

Testing
set

Training
set

Testing
set

Powdery
mildew

460 968 775 193 13552 10850 2702

Late blight 1231 2335 1868 467 32690 26152 6538

Leaf mould 746 1441 1153 288 20174 16142 4032

Healthy 0 1257 1006 251 17598 14084 3514

Total 2437 6001 4802 1199 84014 67228 16786
FIGURE 8

The training process of the tomato leaf detection model.
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4.3.1 Training results of the ultra-lightweight
tomato disease recognition model

The original tomato disease recognition training set and the

enhanced tomato disease recognition training set are separately

used to train the disease recognition model, and then the trained

model is verified on the same enhanced testing set. The image size

used for the two training sets is scaled to 448*448 pixels. Figure 10

shows the change curve of the loss function and the accuracy

achieved on the testing set during the training process. As the

number of training epochs increases, the loss functions of the model

for the two datasets first decrease and then stabilize, and the

accuracy on the testing set also increases and then stabilizes.

However, the loss function of the model trained on the enhanced

tomato disease recognition dataset is lower, and the accuracy on the

testing set reaches 97.84%. The accuracy of the model trained on the

original tomato disease recognition dataset is only 77.09% on the

same testing set, which is far lower than the recognition accuracy of

the model trained on the enhanced tomato disease recognition

dataset. It is proven that the 13 kinds of image enhancement
Frontiers in Plant Science 10
methods used in this paper can greatly improve the accuracy of

the model with respect to the task of tomato disease recognition.

4.3.2 Comparison of the recognition results of
each model

To further verify the influence of the model and enhancement

method proposed in this paper on the recognition results, the

current mainstream models are trained on the original tomato

disease recognition training set and the enhanced tomato disease

recognition training set and then uniformly tested on the enhanced

testing set. The results are shown in Figure 11.

After conducting training on the enhanced tomato disease

recognition training set, the recognition accuracies of the tomato

disease recognition models in different environments are much

higher than those of the models trained on the original tomato

disease training set. This is because the enhanced testing set

contains images of diseased leaves in a complex environment.

Data enhancement can simulate diseased tomato leaves in a

complex unconstrained environment, so training models with the
FIGURE 9

Test results of the tomato leaf detection models in different environments.
FIGURE 10

The training results of the ultra-lightweight tomato disease recognition model obtained with different datasets.
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enhanced tomato disease dataset can make them more robust. In

addition, although the proposed model trained on the original

tomato disease dataset has a recognition accuracy of 77.09% on

the testing set, which is lower than that of AlexNet, this value is

much higher than the test results of other networks. However, the

recognition accuracy of the proposed model on the testing set after

training on the enhanced tomato disease recognition dataset is

97.84%, which is higher than the recognition accuracies of all other

network models. The experimental results prove that the image

enhancement method selected in this paper can effectively improve

tomato recognition accuracy. When the number of datasets is

expanded to 84,014, the shallow network AlexNet exhibits certain

limitations and is unable to obtain higher accuracy, and the model

proposed in this paper has the highest accuracy among all

tested models.

To further study the influence of the utilized complex

environment on the models, each type of network is trained on

two datasets and then uniformly tested on 14 enhanced tomato

disease recognition testing sets. The weight of the version of each

model with the highest average accuracy on the testing set is saved,

and then the influences of different environments on the accuracy of

model recognition are analyzed. The test results obtained after

training on the original tomato disease recognition dataset are

shown in Table 3, and the test results obtained after training on

the enhanced tomato disease recognition dataset are shown

in Table 4.

Upon analyzing the recognition results of the models trained on

the different sub-datasets of the enhanced tomato disease

recognition testing set, it is found that the accuracy of each model

on the original images of the testing set is very high. The image flip,

sharpness transformation and Laplace transformation have the least

influence on the recognition result, because sharpness

transformation and Laplace transformation can enhance the

details and edge information of the image, while flipping changes
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the angle of the image and has little effect on its texture and shape.

However, changes in the brightness, chroma, and contrast of an

image or a gamma or CLAHE transformation reduce the

recognition accuracy of the model to varying degrees, mainly

because these transformations have a significant impact on the

color, texture, and other aspects of the image, and these types of

data are missing from the original data. The lack of these types of

data in the original data results in the model lacking robustness to

this type of noise. Meanwhile, based on the experimental results in

Tables 3, 4, we can conclude that the number of model parameters

does not necessarily represent the recognition performance of the

model. Excessive model parameters may lead to the extraction of

redundant features, thereby affecting the performance of the model.

On the contrary, a small number of parameters may also reduce the

feature extraction capability of the model. It can be seen from

Table 3 that without image enhancement, the recognition accuracy

of the model proposed in this paper is higher than that of most

models in different environments. Through image enhancement,

the model can be adapted to the changes in these tomato images,

and the recognition accuracy of the model in different

environments can be significantly improved. In Table 4, the

accuracies of the model proposed in this paper is maintained at

approximately 97% in different environments. The recognition

accuracy in most environments is higher than that of other

models, and the average accuracy is 97.84%, which is higher than

that of other models. The experimental results verify that the model

proposed in this paper not only has the highest recognition

accuracy for tomato disease images in an unconstrained

environment but also has better robustness to images with

multiple types of noise interference.

The tomato disease recognition model designed in this paper

not only has high accuracy and strong robustness in a variety of

complex environments but is also ultra-lightweight. Table 5

compares the number of parameters utilized by each model. The
FIGURE 11

Comparison of the accuracies of different models on the enhanced testing set.
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weight of the model proposed in this paper is only 1.6 MB, and the

number of parameters is 0.418 M, which is only one-tenth of that

required by MobileNetV3. Although the tomato disease recognition

accuracy listed in Table 3 is slightly lower than that of AlexNet, the
Frontiers in Plant Science 12
number of model parameters is reduced by 200 times. After training

on the enhanced tomato disease recognition dataset in Table 4, the

accuracy of the model in this paper ranks first, and the number of

parameters is much smaller than that of VGG16 and ResNet50.
TABLE 4 Test results obtained after training on the enhanced tomato disease recognition dataset.

AlexNet ShuffleNet VGG16 ResNet50
MobileNet

Ours
V2 V3 large V3 small

Original image 97.41% 97.08% 97.58% 97.58% 97.00% 98.25% 97.83% 98.58%

Vertical flip 97.00% 97.12% 97.50% 97.08% 97.25% 97.91% 97.83% 98.33%

Horizontal flip 96.25% 95.63% 96.83% 95.91% 95.75% 97.08% 96.25% 97.58%

Brightness increase 94.66% 94.36% 95.16% 93.49% 92.66% 94.75% 94.16% 96.33%

Brightness reduction 97.08% 96.15% 97.16% 95.91% 95.58% 97.08% 96.41% 97.75%

Chroma increase 96.66% 96.02% 97.33% 97.25% 96.00% 97.50% 97.33% 97.50%

Chroma reduction 96.25% 95.94% 97.16% 96.25% 96.16% 96.83% 96.91% 98.17%

Contrast increase 96.58% 96.28% 97.16% 96.91% 96.00% 97.08% 97.08% 97.66%

Contrast reduction 96.91% 96.59% 97.08% 96.66% 96.25% 96.33% 96.33% 97.75%

Sharpness increase 97.41% 97.12% 97.58% 97.66% 96.91% 98.25% 97.75% 98.58%

Sharpness reduction 97.41% 97.16% 97.58% 97.58% 97.00% 98.25% 97.75% 98.58%

Laplace transform 97.25% 96.98% 97.50% 97.66% 97.00% 98.17% 97.66% 98.42%

Gamma transform 96.08% 96.63% 97.58% 96.41% 95.58% 96.66% 96.83% 97.08%

CLAHE 95.16% 95.86% 96.08% 96.16% 95.25% 96.33% 97.08% 97.41%

Average accuracy 96.58% 96.35% 97.09% 96.61% 96.03% 97.18% 96.94% 97.84%
TABLE 3 Test results obtained after training on the original tomato disease recognition dataset.

AlexNet ShuffleNet VGG16 ResNet50

MobileNet

Ours
V2

V3
large

V3
small

Original image 94.58% 90.32% 91.24% 93.83% 85.24% 93.08% 92.16% 95.25%

Vertical flip 94.91% 90.53% 91.49% 93.08% 84.99% 93.66% 92.74% 96.08%

Horizontal flip 88.66% 82.35% 83.32% 87.24% 81.90% 90.16% 89.07% 91.16%

Brightness increase 68.56% 28.73% 50.21% 33.36% 31.61% 29.27% 48.96% 50.71%

Brightness reduction 35.70% 20.56% 50.29% 20.52% 21.52% 21.68% 40.95% 57.38%

Chroma increase 92.91% 73.13% 83.24% 83.32% 75.56% 81.73% 82.74% 87.57%

Chroma reduction 74.65% 40.12% 43.79% 72.39% 43.79% 39.12% 53.88% 58.97%

Contrast increase 91.58% 68.83% 81.32% 69.89% 72.98% 78.73% 79.32% 84.99%

Contrast reduction 79.32% 38.71% 42.95% 31.94% 46.62% 26.77% 29.86% 51.54%

Sharpness increase 94.50% 84.19% 91.08% 93.83% 85.49% 92.91% 92.08% 94.91%

Sharpness reduction 94.50% 84.36% 91.24% 93.91% 85.24% 93.08% 92.16% 95.08%

Laplace transform 94.33% 83.53% 90.16% 93.83% 85.32% 92.91% 91.91% 95.25%

Gamma transform 78.07% 47.39% 78.73% 62.05% 46.54% 54.88% 65.72% 67.31%

CLAHE 52.54% 19.02% 35.53% 55.55% 21.18% 30.61% 43.95% 53.13%

Average accuracy 81.06% 60.84% 71.76% 70.34% 62.00% 65.61% 71.11% 77.09%
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Compared with the lightweight MobileNet series models proposed

in recent years, the model proposed in this paper not only has a

higher recognition accuracy but also has a lower model weight. For

example, the weight of the model developed in this paper is one-

fifth of that of MobileNetV2, but the test results in Table 3 and

Table 4 show that the recognition accuracies of the model in this

paper are 15.09% and 1.44% higher than those of MobileNetV2.

Experiments show that the ultra-lightweight tomato disease

recognition model based on the ECA module proposed in this

paper balances the contradiction between tomato disease

recognition accuracy and model complexity and uses the ultra-

lightweight network to obtain disease recognition accuracy.

4.3.3 Results of an ablation experiment
In this paper, an ablation experiment is designed to further

explore the effect of the high-efficiency channel attention

mechanism and dropout layer on the obtained tomato disease

recognition accuracy. After the ECA mechanisms in all modules

are removed, the formed tomato disease recognition model is called

No_ECA. After the last dropout layer in the model proposed in this

paper is removed, the resulting tomato disease recognition model is

called No_Dropout. These two models are trained on the enhanced

tomato disease recognition dataset, and the models are tested

according to the test method described in section 4.3.2. The test

results are shown in Table 6.

According to the results of the ablation experiment, when using

the same dataset and training configuration to train No_ECA and

No_Dropout, their recognition accuracies are lower than that of the

model proposed in this paper. Although a large number of ECA
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modules are used in the model proposed in this paper to improve

the accuracy of tomato disease recognition, the number of model

parameters increases by 33, which is only a slight increase. This

proves that our model not only improves the accuracy of tomato

disease recognition but also realizes ultralightweight characteristics.

It balances the contradiction between model accuracy and

complexity and has strong robustness to complex and

unconstrained environments.
5 Discussion and conclusion

This paper addresses the limitations of existing tomato disease

recognition models, which are typically capable of identifying only a

single diseased leaf and struggle to reconcile the conflicting

demands of accuracy and complexity. To overcome these

challenges, we propose a comprehensive framework that

integrates tomato leaf detection with leaf disease recognition.

Initially, we develop a tomato leaf detection model designed to

extract individual diseased leaves from tomato disease images

captured in real-world, unconstrained environments .

Subsequently, we introduce an effective data enhancement

method that simulates image noise across various settings,

thereby augmenting the model’s robustness in complex

environments. Finally, we present an ultra-lightweight tomato leaf

disease recognition model tailored for operation in such challenging

conditions. This model leverages a high-efficiency channel attention

mechanism and incorporates five inverted residual modules to

enhance accuracy while minimizing the number of parameters,
TABLE 6 Comparison of the ablation experiment results for the model proposed in this paper.

Original
image

Vertical
flip

Horizontal
flip

Brightness
increase

Brightness
reduction

Chroma
increase

Chroma
reduction

Contrast
increase

No_ECA 97.50% 97.66% 96.16% 94.91% 96.75% 97.33% 97.16% 97.41%

No_Dropout 97.83% 97.50% 97.25% 95.50% 97.16% 97.91% 97.83% 97.00%

Ours 98.58% 98.33% 97.58% 96.33% 97.75% 97.50% 98.17% 97.66%

Contrast
reduction

Sharpness
increase

Sharpness
reduction

Laplace
Transform

Gamma
transform

CLAHE
Average
accuracy

Parameter

No_ECA 97.00% 97.58% 97.50% 97.66% 96.75% 96.41% 96.99% 418148

No Dropout 97.58% 97.91% 97.83% 97.91% 97.25% 97.16% 97.40% 418181

Ours 97.75% 98.58% 98.58% 98.42% 97.08% 97.41% 97.84% 418181
TABLE 5 Model size comparison and evaluation.

AlexNet ShuffleNet VGG16 ResNet50
MobileNet

Ours
V2 V3 large V3 small

Model weight 217MB 7.6MB 268MB 89.9MB 8.69MB 16.2MB 2.32MB 1.68MB

Parameter 57M 1.98M 70M 23M 2.23M 4.2M 0.588M 0.418M

Test results in Table 3 81.06% 60.84% 71.76% 70.34% 62.00% 65.61% 71.11% 77.09%

Test results in Table 4 96.58% 96.35% 97.09% 96.61% 96.03% 97.18% 96.94% 97.84%
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effectively balancing model complexity with recognition accuracy

and reducing hardware resource consumption. We utilize both the

original tomato disease dataset and an enhanced version to train the

model, subsequently evaluating its recognition accuracy across 14

distinct noise environments. Experimental results reveal that our

ultra-lightweight tomato disease recognition model, based on high-

efficiency channel attention, achieves an accuracy of 97.84% while

maintaining only 0.418 million parameters. In comparison to

traditional image recognition models such as AlexNet, VGG16,

ResNet50, and the MobileNet series, the proposed model not only

demonstrates superior accuracy across the 14 noisy environments

but also significantly reduces the parameter count. Additionally, our

model addresses the limitation of existing systems that can only

recognize a single disease image, making it suitable for deployment

on mobile devices for practical demonstration applications. At the

same time, based on the framework proposed in this study, using

disease images of other crops for model fine-tuning can also be

applied to other crops. Although the existing models have achieved

good results, there is still room for improvement in future research.

Firstly, the existing image data mainly simulates complex

environments through different data processing methods. In the

future, more image acquisition devices can be used to obtain image

data under different performance devices, so that the images are

closer to the natural environment. At the same time, more complex

leaf disease images can be collected to establish a more balanced leaf

disease dataset. Secondly, based on this model, techniques such as

compression pruning, knowledge distillation, and quantification

can be used to further improve the lightweight process of the model.
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