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Accurate, reliable and transparent crop yield prediction is crucial for informed

decision-making by governments, farmers, and businesses regarding food security

as well as agricultural business and management. Deep learning (DL) methods,

particularly Long Short-Term Memory networks, have emerged as one of the most

widely used architectures in yield prediction studies, providing promising results.

Although other sequential DL methods like 1D Convolutional Neural Networks (1D-

CNN) and Bidirectional long short-term memory (Bi-LSTM) have shown high

accuracy for various tasks, including crop yield prediction, their application in

regional scale crop yield prediction remains largely unexplored. Interpretability is

another pressing and challenging issue in DL-based crop yield prediction, a factor

that ensures the reliability of the model. Thus, this study aims to develop and

implement an explainable DL model capable of accurately predicting crop yield and

providing explanations for the predictions. To achieve this, we developed three

state-of-the-art sequential DL models: LSTM, 1D CNN, and Bi-LSTM. We then

employed three popular interpretability techniques: Local interpretable model-

agnostic explanations (LIME), Integrated Gradient (IG) and Shapley Additive

Explanation (SHAP) to understand the decision-making process of the models.

The Bi-LSTM model outperformed other models in terms of predictive

performance (R2 up to 0.88) and generalizability across locations and ranges of

yield data. Explainability analysis reveals that enhanced vegetation index (EVI),

temperature and precipitation at later stages of crop growth are most important in

determining Winter wheat yield. Further, we demonstrated that XAI methods can

also be used to understand the decision-making process of the models, to

understand instances such as high- and low-yield samples, to find possible

explanations for erroneous predictions, and to identify regions impacted by

particular stress. By employing advanced DL techniques along with an innovative

approach to explainability, this study achieves highly accurate yield prediction while

providing intuitive insights into the model’s decision-making process.
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1 Introduction

Wheat is one of the three most widely consumed staple foods

worldwide (FAO, 2022). Timely and reliable prediction of Wheat

yield at a regional scale is a critical component of food security.

Governments rely on crop yield predictions to ensure a stable food

supply and to decide on import-export policies. Similarly, farmers,

insurers and agribusinesses use this information for business and

management decisions, including crop and insurance pricing, as

well as supply chain management (Hoffman et al., 2015;

Isengildina-Massa et al., 2008; Sherrick et al., 2014). As the global

population grows and climate change becomes more severe,

accurate and reliable crop yield prediction at a regional scale has

become even more imperative. Advanced predictive models that

combine high performance with interpretability can play a vital role

in addressing these challenges.

There are mainly two approaches for crop yield prediction:

process-based models (Corbeels et al., 2016; Keating et al., 2003),

which simulate the physical processes of crop growth, and empirical

data-driven models (Guerif et al., 1985; Kuwata and Shibasaki,

2016; Ma et al., 2021), which rely on historical data. Although

processed-based models are transparent and can provide scientific

explanations for their predictions, their calibration requires

extensive local data and expertise. Environmental variability and

the limited availability of spatially referenced input data can

significantly affect the predictive accuracy of process-based

models when used for larger areas (Folberth et al., 2016; Huang

et al., 2015; Lobell et al., 2015).

An alternative approach to predicting crop yield is to use data-

driven models (Guerif et al., 1985; Kushal and Khanal, 2023). These

data-driven algorithms learn the relationship between input

variables and crop yield without relying on explicit knowledge of

crop science. Traditional statistical models are interpretable to a

certain degree by assessing their coefficients but they are limited by

their inability to model complex nonlinear relations between input

features and the target variables. Due to the ability to account for the

nonlinear relation, data availability, and better hardware, the use of

advanced data-driven models like DL for large-scale crop yield has

increased rapidly over the last few years (Jiang et al., 2020; Joshi

et al., 2023b).

Long Short-Term Memory (LSTM) networks have emerged as

one of the most widely used DL architectures in yield prediction

studies providing promising results (Jiang et al., 2020; Joshi et al.,

2023b; Muruganantham et al., 2022; Schwalbert et al., 2020; Wang

et al., 2018). LSTM is a type of Recurrent Neural Network (RNN)

that is designed to learn features from sequential data while

addressing the vanishing gradient issue of traditional RNNs

(Hochreiter and Schmidhuber, 1997). Besides LSTM, other

networks designed to process sequential data include Bi-LSTM

and 1D-CNN. 1D-CNN has demonstrated superior predictive

performance compared to ridge regression and RF for wheat yield

prediction in the Indian Wheat Belt (Wolanin et al., 2020), and has

outperformed RF(rf), Support Vector Machine(SVM) and other

traditional regression methods for winter wheat yield prediction in

Germany (Srivastava et al., 2022). Meanwhile, a comparative
Frontiers in Plant Science 02
analysis of LSTM, Bi-LSTM, and traditional models for rice crop

detection revealed the superior performance of the Bi-LSTM

architecture (Filho et al., 2020). Chen et al. (2022) showed that a

Bi-LSTM model could effectively combine missing data imputation

and crop classification, leading to improved classification

performance. Recently, Saini et al. (2023) used BI-LSTM and

CNN-based hybrid model to forecast sugarcane yield using

historical yield and area data (without using remote sensing or

environmental data) in India, outperforming LSTM, ARIMA,

HoltWinter time-series, and Gaussian process regression

methods. Although 1D-CNN and Bi-LSTM showed promising

results for sequential data processing, including crop yield

prediction, their application in regional-scale crop yield

prediction is still limited compared to LSTM, and their

performance against LSTMs remains largely unexplored.

Another crucial area of investigation lies in the interpretability

of DL models used for crop yield prediction. Transparent models

are generally considered more reliable, leading to higher confidence

in decisions made based on their output. Without a clear

understanding of how these models arrive at a certain yield value,

there is often a lack of trust in their prediction. Explainability can

also help identify the potential biases or errors in the model’s

decision-making (Lapuschkin et al., 2019), and be used to refine the

model architecture and feature selection (Matin and Pradhan,

2021). As previously mentioned, process-based and simpler

statistical models are generally interpretable. Even some

traditional machine learning models include built-in methods for

assessing the relative importance of predictors on a global scale.

However, DL models inherently lack transparency and are often

described as “black box” models. These models contain thousands,

if not millions, of weights across multiple interconnected nonlinear

functions, making it challenging to interpret their decision-making

processes. This poses a significant hurdle to their wider adoption in

yield prediction.

The rapidly developing Explainable Artificial Intelligence (XAI)

paradigm seeks to address this critical need for transparency and

understanding within these black box models. In crop yield

prediction, few studies have focused on explaining DL models.

Wolanin et al. (2020) used regression activation maps in a 1D CNN

architecture to visualize and analyze the model’s learned features

and yield drivers. Srivastava et al. (2022) used SHAP to interpret

their 1D-CNN model’s predictions and showcase explainability for

feature selection. The study focused on meteorological and soil data

and missed remote sensing data which is known to significantly

influence yield. Recently (Mateo-Sanchis et al., 2023) used IG and

SHAP to interpret the LSTM-based yield prediction model on a

global scope. While the study leveraged two attribution methods

with different theoretical foundations, its interpretability analysis

primarily focused on identifying important features within the

overall model potentially missing other insights. Thus, application

of XAI in crop yield prediction is in its early stages.

In this context, the main aim to investigate the performance of

different DL architecture while exploring interpretability for crop

yield prediction at a regional scale. The main contributions of this

work are described as follows:
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• The study developed three deep learning designed to

process sequential data (LSTM, 1D-CNN, and Bi-LSTM)

along with a random forest (RF) model, a widely used

traditional machine learning method, to predict crop yield

using multitemporal remote sensing and weather data. To

the best of our knowledge, this is the first study to employ a

Bi-LSTM model for crop yield prediction using Earth

observation data and to benchmark its performance

against other state-of-the-art machine learning models.

• The study then employed three popular model-agnostic

interpretability techniques, namely LIME, Integrated

Gradients (IG), and SHAP, to understand the decision-

making process of each DL model. The study demonstrated

a novel way of using XAI to identify global feature

importance in yield prediction, understand specific

instances like high- and low-yield samples, provide

potential explanations for incorrect predictions and

identify regions impacted by specific stresses. This

provided intuitive insights into the model’s decision-

making process.
The rest of this paper is organized as follows: Section 2 depicts

the proposed methodology, including the data used, the

development, and the implementation of machine learning and

interpretability methods. Section 3 presents the results achieved by

our models. Section 4 discusses and provides comments on their

significance. Finally, section 5 presents the conclusions of the paper.
2 Materials and methods

2.1 Study area

The study area comprised 606 winter wheat-growing counties

in ten neighboring states in the U.S.: Kansas, Washington,

Oklahoma, Colorado, Montana, Texas, Idaho, Nebraska, Oregon,

and South Dakota. These ten states are among the top 11 producers

of winter wheat in the USA and collectively contributed to

approximately 70% of winter wheat production in the country

over the last decade (USDA, 2023). Notably, the USA is the

world’s fourth-largest producer and second-largest exporter of

Wheat (FAO, 2021; USDA, 2021), and around 70-80% of the

country’s wheat production comes from winter wheat varieties

(USDA-NASS, 2021). The study area comprises a diverse range of

climates, including arid, temperate, and cold conditions (Beck

et al., 2018).
2.2 Dataset and pre-processing

The study used various publicly available data spanning the

entire winter wheat growing season, from September to July, across

the USA (2008-2021). Google Earth Engine (Gorelick et al., 2017)

and ArcGIS were used for various data pre-processing, including

data selection, filtering, aggregating data to the county level, and
tiers in Plant Science 03
converting data to the desired format. The preprocessing steps were

performed to obtain noise-free county-level data suitable for use as

input to the model. First, only cloud-free remote sensing data were

selected, and fortnightly remote sensing observations were

aggregated to monthly intervals to match the monthly frequency

of weather data, as described in Section 2.2.2. Then, all input

variable values at the pixel level were averaged at the county level.

Instances with missing values of one or more variable were then

removed from the dataset. Lastly, prior to model training, all

predicting variables were normalized to have a mean of 0 and a

standard deviation of 1. The normalization process improves model

convergence and prevents variables with larger magnitudes from

dominating the learning process.

2.2.1 Crop yield and crop mask data
County-level winter wheat yield records were obtained from the

National Agricultural Statistics Service (NASS) database of the

United States Department of Agriculture (USDA) (USDA, 2023).

Data from 2008 to 2021 were used to train, validate, and test our

model. Figure 1 illustrates the spatial distribution of average winter

wheat yield for each county from 2008 to 2021, and Figure 2 shows

the temporal distribution over the study period. To identify the

winter wheat area within each county, we utilized the USDA-NASS

cropland data layers (CDLs) (NASS, 2022). These annual, crop-

specific maps are generated using moderate-resolution satellite

imagery and ground-truth data.

2.2.2 Satellite data
Satellite-derived vegetation indices such as the normalized

difference vegetation index (NDVI) and the enhanced vegetation

index (EVI) are commonly used for crop yield prediction. These

vegetation indices are related to the photosynthetic activity of the

plant and provide an important measure for monitoring plant

growth, health, and productivity. This study employed the EVI

derived from the MODIS Terra MOD13Q1 V6.1 product. EVI

provides a quantitative measure of vegetation greenness while

accounting for factors like soil reflectance and atmospheric haze,

leading to a more reliable indicator of vegetation growth. While

both EVI and NDVI are highly correlated, EVI was found to be

more effective than NDVI in predicting wheat yield in the U.S (Joshi

et al., 2023a). The MOD13Q1 V6.1 product is a 16-day

spatiotemporal dataset providing high-resolution (250 m)

vegetation indices and surface reflectance measurements. The

data collected over 16-day intervals were transformed into

monthly data through a weighted average method, with the

weights determined by the extent of temporal overlap. Only pixels

with high-quality data were considered for acquiring the time-series

data. Pixels affected by snow or ice coverage, or obscured by clouds,

were masked. EVI is calculated as shown in Equation 1.

EVI = 2:5  �  
(NIR  −  Red)

NIR   +  C1  �  Red  −  C2  �  Blue   +   L
(1)

where, Red and NIR are the atmospherically corrected surface

reflectance in the red and near-infrared channels, the variables L

correspond to the soil and canopy background adjustment factor,
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and C1 and C2 represent coefficients for correcting atmospheric

influences. The specified value used in the MODIS product are L =

1, C1 = 6, and C2 = 7.5.

2.2.3 Meteorological data
Meteorological data provides insight into essential environmental

factors that affect crop growth and yield. Meteorological data is also

commonly employed in various yield estimation methods, including

process-based, statistical, and machine-learning approaches at
Frontiers in Plant Science 04
regional or field scale. The meteorological data were extracted from

the TerraClimate dataset (Abatzoglou et al., 2018), which provides

global climate data at the monthly level at ~4-km (1/24th degree)

spatial resolution. The specific meteorological variables used in this

study are maximum temperature (tmmx), precipitation accumulation

(pr), reference evapotranspiration (pet), and wind speed (vs). These

variables were selected to represent key climate-related factors

including temperature-related dynamics, water supply, water

demand, and atmospheric conditions.
FIGURE 1

Study area showing the spatial distribution of average winter wheat yield across the counties from 2008 to 2021.
FIGURE 2

Boxplot of the county-level winter wheat yields from the study area for the year 2008 -2021.
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2.3 ML models

This study employed one widely used robust traditional ML

method, RF, and three state-of-the-art DL-based models: 1D

Convolutional Neural Network (1D CNN), Long Short-Term

Memory (LSTM), and Bidirectional LSTM (Bi-LSTM) to predict

winter wheat yields. These DL models have proven effective at

capturing complex temporal dependencies within data. Mean

squared error was used as the loss function in all the models. To

find the best hyperparameter for each model, we used the grid

search technique and the three-fold cross-validation approach

(Bengio and Grandvalet, 2003; Kohavi, 1995). Data from the

years 2008 to 2018 were used for hyperparameter tuning and

training the models. The models were then used to predict the

winter wheat yield for the year 2019, 2020, and 2021 to test the

model. The models were implemented in the Python 3.10.6

environment. Scikit-learn 1.1.2 (Pedregosa et al., 2011) was used

for the RF model, while TensorFlow 2.10 (Abadi et al., 2016) was

used to build and train the LSTM, 1D CNN, and Bi-LSTM models.

The models were trained on a high-performance computing (HPC)

server equipped with Intel Xeon Gold 6238R processor running at

2.2GHz with 28 cores, 180GB RAM (Six Channel) and a NVIDIA

Quadro RTX 6000 Passive GPU, with 4608 cores, 576 Tensor Cores,

and 24GB of memory.

The hyperparameter tuning process for the Bi-LSTM model

took 9235 seconds, LSTM took 5402 seconds, and 1D CNN took

3672 seconds. A total of 405 models were trained during this phase.

The RF model required significantly less time, training 324 models

only in 284 seconds. Once the optimal hyperparameters were

determined, training the DL models took between 26 and 59

seconds, while the RF model required 16 seconds on the above-

mentioned server.

2.3.1 RF
RF is an ensemble learning method that uses multiple decision

trees to reach a decision in a classification or a regression task

(Breiman, 2001). Different decision trees are built and trained using

a random subset of the training data and a random subset of features

for each split, and averaging is used to improve the predictive

performance. RF is widely used for predicting crop yield and has

demonstrated superior performance compared to linear regression,

decision trees, and even Scalable Vector Machine (SVM) (Khanal

et al., 2018; Ramos et al., 2020). RF has also been found to be better at

handling high-dimensional data (Ma et al., 2020). We used RF as a

representative of the traditional ML approach. The specific values of

hyperparameters used for RF are as follows: the number of trees was

set to 100, the maximum depth of the tree was set to 20, the minimum

number of samples required to be at a leaf node was set to 4, the

minimum number of samples required to split an internal node was

10, and the number of features to consider when looking for the best

split is the square root of the number of features.

2.3.2 1D-CNN model
Convolutional neural networks (CNNs) are specialized artificial

neural networks designed to process data with grid-like structures
Frontiers in Plant Science 05
(Goodfellow et al., 2016). While 2D CNNs are more common for

handling 2D data like images, 1D CNNs are particularly well-suited

for sequential data, such as time-series. The unique feature of 1D

CNNs is their significantly lower computational complexity. We

constructed a model with three 1D convolutional layers, two 1D

max-pooling layers, and two fully connected layers. Although

dropout layers are more commonly used after dense layers, our

experiment showed that incorporating dropout in our 1D CNN led

to improved generalization, so we included the dropout layer after

the convolutional layer as well. We utilized the Stochastic Gradient

Descent (SGD) optimizer with a learning rate of 0.01 a batch size of

50, and trained the model for 50 epochs as determined

through tuning.

2.3.3 Long short-term memory
LSTM is an improved type of recurrent neural network (RNN),

which addresses the vanishing and exploding gradient problem of

vanilla RNNs and was originally proposed in 1997 (Hochreiter and

Schmidhuber, 1997). LSTM cells can capture and remember

information in very long sequences, controlled by three

component input gates, forget gates, and output gates. The

proposed architecture consists of two LSTM layers for capturing

temporal patterns, a dropout layer for regularization, and a dense

layer for yield prediction. The specific hyperparameters adopted are

as follows: learning rate set to 0.0001, optimizer set to Adam,

number of epochs set to 200, and batch size set to 50.

2.3.4 Bidirectional long short-term memory
A Bi-LSTM model consists of two LSTM components that

process the data in both forward and backward directions

simultaneously (Graves and Schmidhuber, 2005; Schuster and

Paliwal, 1997). By processing the input data in both forward and

backward directions, this method enables more comprehensive and

robust learning of sequential features. The architecture of the Bi-

LSTM unit consists of two LSTM components, one processing the

input sequence as-is and the other in reverse, the output of which is

the combined output of both components (Figure 3). Our model

(Figure 4) consists of two bidirectional LSTM layers followed by a

dropout for regularization after the second bidirectional LSTM

layer, and a dense layer for predicting yield. The optimal

hyperparameters chosen for this model via grid search are

Stochastic Gradient Descent optimizer, a learning rate of 0.01 for

200 epochs, and a batch size of 50.
2.4 Predictive performance

To assess the accuracy and goodness-of-fit of our predictive

model, we compared its predictions with actual data using two

established metrics: mean-absolute-error (MAE) and coefficient of

determination (R²). MAE quantifies the magnitude of prediction

discrepancies (lower is better) and is in the same unit as the yield

data. R² measures the proportion of variance in the actual data that

is explained by the model. It reveals the strength of the model’s fit to

the data where higher (closer to 1) signifies a stronger fit. The
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formula is as follows:

R2 = 1 −o
n
i=1(Yi − cYi )

2

on
i=1(Yi − �Y)2

(2)

MAE =
1
no

n
i=1 Yi − cYi

��� ��� (3)

where,Yi represents the actual yield values, Ŷi represents the

predicted yield values, and �Y represents the mean of the actual

yield values.
2.5 Explainability module

Explainable Artificial Intelligence (XAI) provides insight into

the decision-making processes of ML models. XAI methods could

be model-agnostic or model-specific. Model agnostic methods are

designed to interpret any ML model irrespective of the model’s

internal working. On the other hand, model-specific methods are

tied to specific models and use the model’s intrinsic characteristics.

Based on the scope of interpretability, XAI methods could provide

local or global interpretability. This study employed three model-

agnostic post-hoc XAI tools -SHAP, LIME, and Integrated
Frontiers in Plant Science 06
Gradients- to explain model prediction on the local and

global scope.

Local interpretable model-agnostic explanations (LIME) is a

popular model agnostic method explainability approach developed

in 2016 (Ribeiro et al., 2016). LIME tackles the challenge of black

box models by constructing a simpler, interpretable model that

approximates the prediction of the original model. The key lies in

training this surrogate model on different interpretable features

extracted from the original model’s inputs. LIME aims to provide

locally faithful and interpretable approximation g of black box

model f at a specific point z by solving the following optimization

problem.

g(z 0) = arg min
g
L(f , g , p z) +W(g) (4)

where, z0 set of perturbed data points, pz is a proximity measure

that gives higher weights to instances closer to the original instance,

W(g) is a regularization term encouraging simplicity in the

interpretable model), L(f , g, pz) is a loss function measuring the

discrepancy between the predictions of g and f on the perturbed

data points.

Gradient-based methods (Baehrens et al., 2010) are another

family of popular techniques for interpreting ML models by

attributing the contribution of each input feature to a given
FIGURE 3

Example of Bi-LSTM Architecture.
FIGURE 4

Bi-LSTM model implemented in the study.
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prediction. They work by calculating the gradient of the model

output with respect to each input. The different methods include

Saliency maps (Simonyan et al., 2013), DeconvNet, Guided

Backpropagation. These methods rely on the assumption that

predictions change linearly with respect to input features, leading

to inaccurate interpretations when the model is highly nonlinear.

(Sundararajan et al., 2017). To address this, (Sundararajan et al.,

2017) designed a new attribution method called Integrated

Gradients. Instead of simply looking at the gradient at the input,

IG integrates the gradient’s influence along a path from a baseline to

the actual input. This integration captures the cumulative

contribution of each feature to the final prediction. The

Integrated Gradients (IG) for a specific input feature xi can be

mathematically defined as follows:

IGi(x) = (xi − x0i)�
Z 1

a=0

∂F(ax + (1 − a)x0)
∂xi

 d (5)

xi is the value of the i
th feature in the actual input x

0
i is the value

of the ith feature in the baseline input. F (x) is the output of the

model for input x and ∂ F
∂ xi

is the partial derivative of the model’s

output with respect to the ith input feature.

The third framework used for explaining the DL models was

SHAP, which is an implementation of Shapely values. SHAP

(SHapley Additive exPlanation) is a recently developed post-hoc

model agnostic approach framework that uses Shapley values to

explain the output of MLmodels (Lundberg and Lee, 2017). Shapley

originated from coalitional game theory and was originally designed

to allocate credit among players in a multiplayer game (Shapley,

1953). It is calculated by averaging a player’s marginal contribution

to all possible permutations of remaining players. For a specific

instance x, the SHAP value Si(x) for feature i is defined as follows:

Si(x) = f i(x) =oS⊆N ∖ if g
Sj j ! �( Nj j − Sj j − 1) !

Nj j ! ½f (xS∪  if g)

− f (xS)� (6)

where, N is set of all features, S is subset of features excluding

feature i, Sj j represents number of features in subset S, f (xS)  is the

model’s prediction when considering only the features in Subset S

and f (xS∪  if g) is the model’s prediction when considering both

features in subset S and feature i.

Shapley values are obtained by evaluating all possible

combinations of features for each instance. This can be

computationally complex, especially when there is a large number

of features. So, SHAP turns the Shapley values method into an

optimization problem and uses different SHAP explainers to

approximate these values efficiently (Lundberg and Lee, 2017). In

this study, we used Deep Explainer, an approach developed for a

neural network-based architecture to approximate SHAP values for

DL models. Deepexplainer is an improved version of DeepLIFT

(Deep SHAP) that leverages background samples to approximate

SHAP values. For the RF model, we employed Tree SHAP to

compute the values.

SHAP python library was used to compute the SHAP value, and

XPlique (Fel et al., 2022) tool was used to compute LIME and IG

attribution values.
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3 Result

3.1 Performance of different ML models

The study evaluated the performance of RF, 1D-CNN, LSTM,

and Bi-LSTM models for winter wheat yield prediction across ten

US states. Models were trained on data from 2008 to 2018 and used

to predict yields for 2019, 2020, and 2021, testing their

generalizability. Ten independent training runs were conducted

for each model to account for training stochasticity, and the results

were averaged. Table 1 presents the evaluation metrics R² and MAE

(t/ha) for each model across these three years.

Overall, all DL models demonstrated good predictive

capabilities for winter wheat yield at the county level, with R²

values ranging from 0.73 to 0.88. The Bi-LSTM model consistently

displayed the highest R² and the least MAE among all the models,

suggesting a slight advantage in explaining data variability. The

LSTM followed the ranking, achieving an average R² of 0.81 from

2019 to 2021. The 1D- CNN’s R² ranged from 0.73 to 0.83 with an

average of 0.77 for the three years. While RF also showed strong

performance for 2019 and 2020, with R² values of 0.82 for both

years, it showed a notable reduction in the R² value to 0.65 for 2021.

This change in performance indicates that our RF model was unable

to capture changes in the underlying patterns of the data well in

2021. Notably, the performance of all other models also declined in

2021, but the RF model generalized the least. MAE values follow a

similar pattern to R² and range from 0.41 (for Bi-LSTM) to 0.68

(for RF).

The scatter plot (Figure 5) reconfirmed the strong agreement

between the estimated and reported winter wheat yields at the

county level in all models. Further, the graph shows a consistent

pattern of under prediction for counties with higher yield values

across all models. This is more evident in the 1D-CNN and RF

model. It is important to note that the Bi-LSTM model was least

affected by this phenomenon. One of the reasons for under

prediction could be a smaller number of training samples with

higher yield values.

To further illustrate the performances of different models and

assess the spatial generalizability of different models across various

counties, we presented the maps of absolute error averaged for the

years 2019, 2020 and 2021 (Figure 6). Absolute errors are generally

higher for all models in the counties of Idaho, Washington, and

Oregon. Notably, these regions also exhibit higher yield magnitudes

(Figure 1). Comparing the models, the Bi-LSTM model

demonstrated consistently smaller errors across most counties,

and RF and 1D-CNN showed relatively higher errors. This

indicates superior overall generalizability of the Bi-LSTM model.

The mean absolute error (MAE) of all counties, averaged across the

three years, is also the lowest for the BI-LSTM model.
3.2 Explaining the model

To investigate the decision-making process of the models, we

employed various explainability techniques. First, we computed

feature attributions using LIME, IG, and SHAP. We then derived
frontiersin.org

https://doi.org/10.3389/fpls.2024.1491493
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Joshi et al. 10.3389/fpls.2024.1491493
the absolute mean of these values across all samples, which act as

the global importance score provided by each attribution method.

We visualized these feature importance scores as heatmaps,

illustrating the mean impact of all data on the model output

(Figure 7). Each row along the y-axis corresponds to a specific

input feature, and each column along the x-axis corresponds to a

different month. As we are interested in the relative contributions of

different features rather than their specific attribution values, we

excluded individual color bars and mapped the values to varying

shades of green. Darker shades in the heatmap represent a higher

contribution of the corresponding feature (as shown by the y-axis)

for that month (as shown by the x-axis). We also ranked features

based on their score. The top 9 features with the highest mean

impact are identified by numbers superimposed on the heatmap.

Global explanations generated by averaging absolute feature

attribution scores show a high degree of agreement, although not

completely identical, in feature ranking across all three XAI

methods: LIME, IG and SHAP. Furthermore, different DL models

gave importance to similar features during decision-making, as

shown by the similar heatmaps of different models. The explanation

provided by the three attribution methods was consistent for

individual predictions as well (not presented here). The heatmaps

show that EVIs from March to pre-harvest are the most crucial

factor determining yield across all models and explainability

methods. Particularly, EVI in June, which is the time of

physiological maturity, shows the highest predictive power and is

ranked as either the most important or second most important

feature in all plots. Precipitation accumulation between May and

harvest follows EVI in terms of importance. Maximum

temperatures during the same period also contribute, as

evidenced by their relatively darker shades in most of the

heatmap. Interestingly, wind speed in September also emerges as

an important feature across various heatmaps.

IG and SHAP Deep Explainer are designed for neural network

models and cannot be applied to RF. To gain insights into the

decision-making process of the RF model and compare it with the

DL model, we employed TreeSHAP, a SHAP-based method

specifically tailored for tree-based structures. Additionally, we

examined the Gini importance of the RF model, a feature

importance score generated by the RF model itself in scikitlearn.

The Gini importance (Breiman, 2001) quantifies the average

influence of each variable on reducing the impurity in the

decision tree nodes. Our analysis revealed that EVI in June ranks

as a highly important feature in both important measures

(Figure 8). It is important to note that the model prioritizes a few
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key variables and assigns lower importance to others. The other

features that stand out include EVI in May, June and September and

windspeed in October.

3.2.1 SHAP explanation of Bi-LSTM model
As the explanation provided by the three attribution methods

were consistent, in the rest of the result section, we used only the

SHAP method to explain the predictions made by our best-

performing model: Bi-LSTM.

The SHAP summary plot (Figure 9A) provides a dense

summary of information from the SHAP analysis. The plot

displayed the top 20 most influential features in order of

importance from top to bottom, based on their overall impact on

the model’s output. Each dot on the plot represents a single data

point, with the dot’s color indicating the value of the feature—green

for higher values and blue for lower values. The horizontal position

of the dot represents the SHAP value of the corresponding feature

for that data point. From the figure, it is evident that, besides EVI

and precipitation accumulation during months before harvest,

maximum temperature from March to July is also among the top

20 influencing features. This plot also visualizes how different

feature values contribute to yield. For EVIs, data points with

higher (green) values before harvest months had higher SHAP

values, suggesting a positive correlation between SHAP and EVI

values. On the other hand, lower precipitation and maximum

temperatures (blue points in corresponding rows) during that

period are generally associated with positive SHAP values, and

higher precipitation and temperatures have negative SHAP values,

indicating their negative co-relation.

The relation between features and yield value at a global scale

can be further understood by a dependence plot, which is a scatter

plot of the feature values and SHAP values for that feature. For

instance, there is a positive linear relationship between EVI in June

and the corresponding SHAP value (Figure 9B). This means the

model tends to make higher predictions when EVI in June is higher,

and the relation is consistent. Dependence plots can reveal

nonlinear relationships between features and their impact on

model outputs as well. For example, the dependence plot of

maximum temperature in April (Figure 9C) indicates that

maximum temperatures up to 21°C in April have a negligible

impact on the model’s output. However, as temperatures rise

beyond 21°C, the SHAP value for that feature decreases,

suggesting that it pushes predictions towards lower values. While

these relations were not evident from the summary plot, they are

clear from the dependence.
TABLE 1 The R2 and MAE for the models in the year 2019, 2020 and 2021.

Year R2 MAE

RF 1D-CNN LSTM Bi-LSTM RF 1D-CNN LSTM Bi-LSTM

2019 0.82 0.76 0.80 0.84 0.49 0.58 0.54 0.48

2020 0.82 0.83 0.86 0.88 0.47 0.48 0.46 0.41

2021 0.65 0.73 0.78 0.78 0.68 0.63 0.56 0.56

Mean 0.76 0.77 0.81 0.83 0.55 0.56 0.51 0.48
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We draw a stacked bar plot of absolute mean SHAP values to

reveal how different features contribute to the model’s predictions

over the months (Figure 10). Clearly, the overall impact of features

is higher in months closer to harvest. Additionally, the plot also

reveals which features were the most important in each month. For

example, wind speed appears important in the initial months, but its

impact diminishes as we approach harvest.

The map of feature values and corresponding SHAP values can

be used to understand various key insights, including the spatial
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distribution of features and their impact on model output, as well as

the relationship between them. Visual inspection also aids in

identifying areas with distinct patterns, such as high positive or

negative impacts by the feature. For instance, low SHAP values for

maximum temperature in May in the area inside the blue box

indicate a stronger negative impact on the model output within this

region due to temperature (Figure 11B). Similarly, low SHAP values

for rainfall in June in the area inside the red box suggest a greater

negative impact on the model output in this area due to
FIGURE 5

Plots depict reported vs. predicted yields for four models (A–D) in three testing years (1-3). (A: RF, B: 1D-CNN, C: LSTM, D: Bi-LSTM, 1: 2019,
2: 2020, 3: 2021).
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precipitation (Figure 11D). If we examine the corresponding feature

values of that area, we can observe that the region inside the blue

box (Figure 11A) has a relatively higher temperature, while the area

inside the red box (Figure 11C) has relatively higher precipitation

levels. The relation between these features and corresponding SHAP

values aligns with the inverse relation depicted by the summary and

dependence plot.

To explain individual predictions, we used waterfall plots, a

built-in plot of the SHAP library. The base of each waterfall plot

displays the expected value, which is the mean of all yield

predictions. Subsequent rows illustrate the positive or negative

contributions of the features, demonstrating how they shift the

value from the mean model output to arrive at the specific

prediction for that instance. We employed waterfall plots to

examine three notable instances: the highest and lowest

predictions for 2020, where the Bi-LSTM model exhibited its

strongest performance, and a prediction characterized by a

relatively higher absolute error (Figure 12).

The waterfall plot for the county with the highest yield

prediction for 2020 (Twin Falls in Idaho) reveals positive SHAP

values for all major features: EVI in May, June, and July,
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precipitation in April, May, and June, and windspeed in

September. This suggests that all major determining climatic

conditions were favorable for yield at that location and year.

Additionally, the high EVI value also underscores the favorable

conditions for a high yield. The waterfall plot for the lowest yield

value in 2020 (Cottle in Texas) demonstrates that maximum

temperatures in July and September were the primary

environmental drivers responsible for the reduced yield. Notably,

temperatures throughout the year at this location were higher than

average, and dependence plots suggest a correlation between higher

temperatures and lower yield predictions. The EVI values also

captured unfavorable factors contributing to the decline in yield,

as evidenced by negative SHAP values for EVI from May to July.

Finally, the waterfall plot for the county with a relatively high error

(Dawson in Texas) reveals that EVI values from March to July are

the primary factors contributing to the lower-than-expected yield.

This suggests that the EVI values for those months may not

accurately reflect the actual yield at that location. The possible

reasons could be the noise in the EVI data for that specific location

or there is not sufficient training data to capture the specific

variance in yield associated with those EVI values.
FIGURE 6

The absolute error maps of (A) RF, (B) 1D-CNN, (C) LSTM, and (D) Bi-LSTM model, averaged over the years 2019, 2020, and 2021. The mean
absolute error of each model is also printed on the maps.
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4 Discussion

The aim of the study was to develop and implement an

explainable DL model capable of predicting crop yield with high

accuracy and providing explanations for the predictions. To achieve

this, we developed three state-of-the-art sequential DL models -

LSTM, 1D CNN, and Bi-LSTM. We then employed three

explainability techniques to gain insights into the model’s

decision-making processes.

All the models employed in this study are powerful data-driven

techniques and demonstrated strong performance in the winter

wheat yield prediction (Table 1). RF is a traditional ensemble

machine learning method, which generally requires feature
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engineering and cannot inherently learn sequential relationships.

In contrast, the deep learning models—1D-CNN, LSTM, and Bi-

LSTM—automatically learn features from raw data and effectively

capture sequential dependencies between input features as well. The

result showed that the Bi-LSTM model outperformed all other DL

models and the RF model in terms of predictive performance and

generalizability. The Bi-LSTM model achieved the highest R2 and

the lowest MAE in all three test years (2019, 2020, and 2021)

compared to the other models (Table 1). Visual analysis of scatter

plots revealed underprediction in high-yield counties for all models

and years. The underprediction of yields in high-yield counties has

also been observed in other studies across crops, including corn (Ma

et al., 2021), soybean (Maimaitijiang et al., 2020) and winter wheat
FIGURE 7

Heatmap showing global feature importance scores for three models ((A) 1D-CNN, (B) LSTM, and (C) Bi-LSTM) based on three interpretation
methods ((1) LIME, (2) IG, and (3) SHAP). The number in the heatmap represents the importance ranking of the feature. The importance was derived
by computing absolute mean of attribution values across all instances.
FIGURE 8

Attribution scores for RF model using: (A) Gini Importance, and (B) SHAP.
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(Wang et al., 2020)), and using various ML and DL methods. The

reason for the underprediction could be attributed to an imbalanced

training dataset with fewer high-yield samples. Notably, the Bi-

LSTM model experienced the least underprediction in high-yield

counties compared to other models. Further, the performance of all

models declined for the year 2021. This is likely due to differences in

data distribution for 2021 compared to the training years. For
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instance, the states of Idaho, Oregon, andMontana, which exhibited

comparatively larger errors, experienced higher maximum

temperatures during these three years than in other study years.

Among the models, the Bi-LSTM demonstrated the smallest decline

in performance, while the RF model struggled most to generalize

effectively for the test year 2021. Additionally, for the Bi-LSTM

model, the absolute error map shows the lowest error across the
FIGURE 10

SHAP attribution over the winter wheat growing months.
FIGURE 9

SHAP summary and dependence plots. (A) Summary plot showing the 20 most influential features in order of importance in the Bi-LSTM model.
Dependence plot showing the relation between (B) EVI in June and the corresponding SHAP value and (C) maximum temperature in April and its
SHAP value.
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study area (Figure 6). This suggests that our Bi-LSTM model

generalized well across a wide range of testing data and locations.

The Bi-LSTM gain a deeper understanding of context by processing

sequences from both ends and then combining them into a single

enhanced representation (Dikshit et al., 2021; Graves and

Schmidhuber, 2005). The promising performance and

generalizability of the Bi-LSTM model in our study demands

investigating into its potential for other crop types and study areas.

The explainability analysis revealed a range of significant

findings, including insights into which features are given

importance across various models employing the feature

attribution method, the time when they are important, the nature

of the relation between features and their impact (linear, nonlinear,

positive, negative), and possible explanation of different instances

such as high/low yield, high error in prediction. Comparison of

LIME, SHAP, and IG-based attribution yielded consistent results.

This agrees with the results of (Mateo-Sanchis et al., 2023), who

similarly observed consistency between attribution provided by IG

and SHAP for LSTM models in crop yield prediction. While LIME

is model-agnostic, meaning it can be applied to various models,

Integrated Gradients (IG) and DeepSHAP are specifically designed

for neural networks. In terms of computational efficiency, IG was

found to be the fastest, followed by LIME. SHAP was significantly

more computationally intensive. Interestingly, the overall patterns
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of feature importance across DL models were also consistent. This

contrasts with some earlier findings (Stenwig et al., 2022), who

reported that different ML models considered different features to

be the most important predictors of mortality in ICU. Al-Najjar

et al. (2023) also reported the relationships between some features

and their corresponding SHAP values were different for RF and

SVM (positive correlation in one model and negative in another).

The consistent attribution observed across our DL models is likely

due to their shared ability to capture sequential patterns within the

data and the fact that they were all trained on the same dataset. In

contrast, the RF model exhibits different attribution patterns,

prioritizing a few key variables while assigning lower importance

to others. This difference in attribution patterns also supports the

possibility that models designed to learn sequential relationships

tend to assign similar levels of importance to features.

Regarding the importance of different features, across all three DL

models, EVI measured between greenup and harvest (March to July)

were the most influential factors for predicting yield. The RF model

also indicated that EVI values from flowering to maturity (May and

June) were among the top two most important features. The

summary plot and dependence plot (Figure 8) were used to

investigate the nature of the relation. There is a positive correlation

between EVI and SHAP values, indicating that higher EVI values

generally contribute to increased model predictions and vice versa.
FIGURE 11

Spatial distribution of feature values (A, C) and corresponding SHAP values (B, D) for year 2021 for two selected features: maximum temperature in
May and precipitation accumulation in June.
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Particularly, EVI at June, which is the time of physiological maturity

and has the highest contribution in the model, and this relationship is

nearly linear. This aligns with previous findings, which show

vegetation indices at the later stages of growth to be a crucial factor

in determining yield and demonstrate a positive association (Joshi

et al., 2023a, 2023c; Li et al., 2022). However, most of those studies

relied on correlation analysis to identify the magnitude and the nature

of the relationship. In contrast, our approach confirmed the relation

from the trained ML models using an explainability approach.

Precipitation accumulation and maximum temperature during

that period were the next most important features. Both features

have a negative relationship with the model’s output. In fact, a

primary environmental factor constraining wheat yield is the stress

induced by high temperatures (Narayanan et al., 2016). Gibson and

Paulsen (1999) reported a decrease in wheat yield of more than 10%

per 1°C in mean temperature from 22.5 to 27.5°C. Interestingly, the

dependence plot of maximum temperature in April (Figure 8)

shows a nonlinear relationship with a negative slope with

corresponding SHAP value. The plot shows that as temperatures

rise beyond around 21°C, the SHAP value for that feature decreases,

suggesting that as temperature increases beyond that point, the

model predicts lower yield due to negative contribution from the

temperature variable. The relation between precipitation and

temperature and their impact on yield in our study area was

further illustrated in Figure 11.

Our study demonstrates that XAI goes beyond merely

providing global feature importance in crop yield prediction. We

identified the contribution of features like EVI, temperature, and
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precipitation in predicting winter wheat yield and also explored the

nature of the interaction. Further, the investigation of attribution

values provided insight into how each model was making decisions

and provided an explanation of different behaviors. For example,

the RF model experienced a significant drop in accuracy in 2021

(Table 1). Examining the heatmap of feature importance revealed

that the model focused on only a few features, neglecting valuable

information in others (Figure 8). This could lead to the model being

unable to capture diverse conditions and thus compromising its

generalizability. XAI could potentially be used to improve the

model as well. For example, our explainability analysis revealed

that EVI from May to harvest strongly influences yield prediction,

while EVI from November to January exhibits the least impact. This

coincides with increased noise in vegetation index data during those

winter months due to cloud cover and snow. A common approach

to dealing with such a situation is to omit erroneous data, resulting

in a decrease in data points for training and prediction. The findings

suggest that we might use noisy data for those months or simply

impute those values based on calculations from neighboring

months, which would provide us with more data points for

training and prediction without compromising the performance

of the model. This requires further investigation. Furthermore, we

used XAI to provide possible explanations for high-yield, low-yield,

and erroneous yield prediction instances (Figure 12).

This study provides an approach to understanding the decision-

making process of a DL yield prediction model. By offering

transparency into the model’s predictions, it builds trust in the

results. The approach also explored the complex interactions
FIGURE 12

Waterfall plot is used to understand how the model made the prediction in three instances: (A) lowest yield prediction for 2020, (B) highest yield
prediction for 2020, and (C) Relatively higher absolute error.
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between different environmental and remote sensing variables

determining yield. The outputs of explainability can be assessed

against established domain knowledge to verify if the model is

functioning as expected. If the insights contradict known

knowledge, it may be necessary to re-evaluate the input features

or the model architecture and training steps. This would lead more

reliable yield predictions.

The strengths of this study include the use of different ML

models and XAI techniques with in-depth analysis and visualization

of attribution values to achieve high accuracy and understand how

the model works as a whole and for individual predictions. The

input features used in this study are globally available. This makes

the approach adaptable to other crop types and regions, provided

historical yield data is available for that region. To enhance the

model’s performance and generalizability, incorporating additional

features such as soil properties, management practices, and cultivar

information can be beneficial. However, when integrating non-

temporal data, directly applying sequential models may not be ideal.

In such cases, alternative strategies, like employing hybrid models

capable of learning from both sequential and non-sequential data,

should be considered. The findings of the study must be interpreted

considering a few limitations. The features used in this study were

correlated, and the time-series data exhibited autocorrelation.

Although the prediction models used are capable of handling

such complex datasets, the attribution value of explainability

methods might have been influenced by this condition. A further

limitation of the explainability methods is that they do not

inherently capture the internal workings of a model, and the

identified relationships between features and predictions are not

necessarily causal. Features excluded from the model that influence

both included features and the outcome can lead to

misinterpretations of these relationships. Moreover, attribution

values show how features contribute to model predictions, but if

the model does not have satisfactory accuracy for some instances,

the explanation provided by them might not accurately reflect the

contributions of input features to the target variable.
5 Conclusion

Accurate and transparent crop yield prediction is important to

address global food security concerns. In this study, we employed

the XAI approach to achieve accurate and explainable winter wheat

yield prediction. Our Bi-LSTM model outperformed LSTM, 1D-

CNN, and RF models in terms of predictive performance as

measured by R2 and MAE, and demonstrated superior

generalizability across various locations and yield ranges.

Explainability analysis revealed that all sequential DL models

learn similar features, as indicated by different attribution

methods. The study identified the importance of EVI,

temperature, and precipitation during the later stages of crop

growth in determining winter wheat yield. EVI during this period

exhibited a strong positive correlation with wheat yield, while

temperature and precipitation during the same period showed a

negative correlation. These findings align with those of previous
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studies and expert opinions. Furthermore, we demonstrated that

XAI methods can be used to understand instances such as high- and

low-yield samples, provide possible explanations for erroneous

predictions, and identify regions impacted by specific stresses.

The main contribution of this study is the development and

implementation of an explainable Bi-LSTM model for crop yield

prediction at a regional scale, providing both high accuracy and

intuitive explanations of the predictions. This combination of high

accuracy and interpretability builds trust in the yield prediction

made by the models and providing valuable information for

farmers, businesses and policymakers. The explainability

approach presented in this study can be applied to any yield

prediction DL models to improve their transparency and

reliability. Future study should investigate the application of the

Bi-LSTM model across different regions and crop types and expand

XAI to focus on causal relationships, limiting the effects of

collinear features.
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