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Nitrogen, as one of the important elements affecting the growth and

development of fruit trees, leads to slowed protein synthesis and reduced

photosynthesis, resulting in yellowing of the leaves, poor tree growth, and

decreased yield under nitrogen-deficient conditions. In order to minimize

losses and maximize fruit yield, there is often an occurrence of excessive

fertilization, soil structure degradation, and water pollution. Therefore,

accurate and real-time monitoring of nitrogen content in fruit trees has

become the fundamental prerequisite for precision management of orchards.

Furthermore, precision orchard management is crucial for enhancing fruit quality

by maintaining the optimal growth conditions necessary for trees. Moreover, it

plays a vital role in safeguarding the ecological environment by mitigating the

overuse of fertilizers and pesticides. With the continuous development and

application of spectral remote sensing technology in agricultural monitoring

and land management, this technology can provide an effective method for

monitoring nitrogen content. Based on a review of relevant literature, this paper

summarizes a research framework for monitoring and inversion of nitrogen

content in fruit trees, which provides help for further research. Firstly, based on

different remote sensing platforms, the application was discussed, on spectral

remote sensing technology in the acquisition of nitrogen content in fruit trees.

Secondly, the index parameters that can reflect the nitrogen content of fruit trees

are summarized, which provides practical guidance for remote sensing

monitoring. Additionally, the regression algorithms and application situations

based on spectral data for nitrogen content were introduced. In conclusion, in

response to the current issues and technological limitations, future research

should focus on studying the nitrogen content characteristics of fruit trees during

different phenological periods, integrating multi-type data information, and

thereby improving the universality of the nitrogen content inversion model for

fruit trees.
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1 Introduction

Nitrogen is one of the essential nutrient elements required for

the growth of fruit trees, playing a vital role in their development

stages (Jin et al., 2022). As a component of biomass such as nucleic

acid, protein and chlorophyll, nitrogen can affect the photosynthesis

and chlorophyll synthesis of leaves, and then affect the growth and

development of fruits, which can be directly reflected in fruit size,

appearance and yield (Colpaert et al., 2021). Therefore, in pursuit of

higher yields, the excessive use of nitrogen fertilizer often occurs in

the process of fruit tree cultivation. Excessive nitrogen fertilizer will

lead to soil acidification, destroy the stability of soil structure,

stimulate the overgrowth of fruit trees and increase the risk of

pests and diseases, which will reduce the yield and quality of fruit

(Cui et al., 2020). At the same time, a significant portion of the

applied nitrogen fertilizers leaches into water bodies rather than

being absorbed by plants, leading to eutrophication. This triggers a

series of environmental problems, including the disruption of the

ecological balance in aquatic systems, harm to aquatic organisms,

and an increase in greenhouse gas emissions (Shukla et al., 2023; Ng

et al., 2024). Conversely, nitrogen deficiency can also have serious

consequences for the growth of fruit trees. Nitrogen deficiency

can hinder leaf photosynthesis, which is visually reflected in

leaf yellowing, lightening, or shedding, ultimately leading to

slowed growth or even death of the fruit tree (Gentile et al.,

2022). Therefore, in the process of fruit tree cultivation, the

judicious use of nitrogen fertilizer to maintain the trees in an

appropriate nitrogen environment is of significant importance

for increasing fruit yield, quality, and the level of refinement

orchard management.

The traditional nitrogen content acquisition methods are

mainly divided into organizational analysis method and soil

detection method, which usually involve destructive collection of

plant tissue or soil samples, and then chemical reagents for analysis

and extraction are used (Cenci et al., 2021; Mohd Asaari et al.,

2022). With the development of sensor technology, related portable

measuring instruments have been developed and applied. These

instruments are characterized by portability and operability,

allowing for rapid results under non-destructive conditions.

However, these instruments can only collect a single data sample

at a time, failing to meet the demands of large-scale nitrogen

content monitoring. Furthermore, the collection process is

influenced by factors such as human operation errors and

equipment sensitivity (Afonso et al., 2018). In recent years,

spectral remote sensing technology, with its non-destructive, non-

contact, and large area data acquisition characteristics, has been

widely used in monitoring vegetation growth, diagnosing pests and

diseases, and monitoring water quality and soil nutrients (Noda

et al., 2021; Fu et al., 2023, 2024; Zhang et al., 2024). However, each

spectral remote sensing technology has its own advantages and

characteristics, leading to certain differences in agricultural

applications. Therefore, selecting the most suitable practical

method for orchard nitrogen content monitoring among various

spectral remote sensing technologies is crucial.
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The modeling methods for the inversion of nitrogen in fruit

trees can be divided into statistical analysis methods, physical

analysis methods, and hybrid methods (Berger et al., 2020).

Statistical analysis is the most basic regression analysis method,

relying on mathematical statistical theory to infer the mathematical

relationship between the measured nitrogen values and spectral

information, thereby obtaining the inversion results of the nitrogen

status of fruit trees. It can be further divided into traditional

regression methods and machine learning regression methods (Lu

and He, 2019). The physical analysis methods usually involve

radiation transfer theory, absorption-scattering principles, and the

biochemical characteristics of leaves to capture changes between

light and leaf structure, pigments, and nitrogen-containing

compounds. It outputs the process of radiation absorption and

scattering in the form of reflectance spectra, establishing a

correlation model between nitrogen and reflectance spectra (Croft

et al., 2020). However, the measurement of data such as leaf

pigment, light reflectance, and compound content requires strict

equipment requirements, and the availability and quality of

measurement data also become limiting factors for validating

physical models (Fu et al., 2020a). This model is less utilized in

fruit tree nitrogen content monitoring. The hybrid methods are

obtained by combining statistical analysis methods and physical

analysis methods. The hybrid methods enhances the accuracy and

interpretability of statistical methods, and reduces the level of

expertise required for physical analysis methods (Verrelst et al.,

2019). The hybrid methods can be considered as a direction for in-

depth research on the construction of future inversion models for

nitrogen content in fruit trees.

In this paper, a full review of the nitrogen monitoring

framework for fruit trees suitable for spectral remote sensing

technology is performed. The monitoring framework is as shown

in Figure 1. In section 2, the application of spectral remote sensing

technology in nitrogen monitoring of fruit trees is introduced.

Section 3 summarizes the indicators related to nitrogen content

in fruit trees and provides some recommendations. In section 4, an

introduction and analysis of regression algorithms in the nitrogen

inversion modeling process are provided, offering references for

selecting suitable algorithms and models. Section 5 summarizes and

discusses the key technologies of nitrogen monitoring and inversion

in fruit trees. Section 6 draws conclusions based on the

preceding sections.
2 Remote sensing monitoring
technology of nitrogen in fruit trees

Theoretically, the spectral reflectance of plant leaves is

influenced by the structural composition and physiological state

of leaves (Hou et al., 2024). The multispectral band generally covers

the spectral range of 400-1000nm, which meets the needs of most

vegetation monitoring and quantitative analysis. It can reflect the

approximate spectral response characteristics of vegetation, such as

the reflection peak under green wave, high reflection red edge,
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chlorophyll absorption peak, etc (Inoue, 2003). Hyperspectral,

compared to multispectral, offers a more detailed resolution,

providing continuous spectral band curves that are more sensitive

to the spectral response characteristics of vegetation, reflecting a

greater amount of nitrogen-related spectral information. Therefore,

hyperspectral remote sensing technology can meet the more refined

requirements for nitrogen monitoring (Arogoundade et al., 2023).

Furthermore, with the development of remote sensing technology,

various options such as satellites, aircraft, and unmanned aerial

vehicles (UAV) have provided diversified modes for nitrogen

monitoring in fruit trees (Feng et al., 2020).

There are differences between different remote sensing

platforms in terms of space and spectral resolution, as well as

cost, efficiency, and coverage, as shown in Figure 2. At the same

time, this section presents a schematic framework of the spectral

remote sensing technology part in the nitrogen monitoring process

of fruit trees, as shown in Figure 3.
2.1 Satellite-based remote sensing

The satellite remote sensing platform is widely used in the field

of agricultural monitoring due to its non-invasive, wide coverage,

and quantifiable characteristics (Zhang et al., 2021; Zou et al., 2022).

Common multispectral remote sensing satellites include the

Landsat series, WorldView series, GeoEye-1 series, SPOT-7 series,

Sentinel series and so on (Murugan et al., 2017; Nininahazwe et al.,

2023). Beeri et al. (2005) aimed to establish a model for assessing
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plant nitrogen using remote sensing at a certain scale. Firstly, the

leaf canopy reflectance data was obtained by ground acquisition,

and the spectral characteristics and biomass model were established.

Then, the multispectral satellite band information such as Landsat 5

and SPOT 5 was used to establish the model combined with the

stepwise linear regression algorithm. The results provide a new

approach for establishing nitrogen monitoring models (Beeri

et al., 2005).

Since the year 2000, more than a dozen hyperspectral satellites

have been launched globally by various countries (Verrelst et al.,

2021), such as the PRISMA hyperspectral satellite from the Italy

(Pepe et al., 2023), the SBG hyperspectral satellite from the United

States (Lee et al., 2022), and the CHIME hyperspectral satellite from

the European Space Agency (Valentini et al., 2023). It is worth

noting that satellite remote sensing allows for the rapid acquisition

of large-scale spectral images, making it more suitable for

monitoring the biomass and soil nutrients of crops such as wheat,

corn, and soybeans (Croft et al., 2019; Flynn et al., 2023). Rama Rao

et al. (2008) conducted a study to investigate the utilization of

hyperspectral satellite imagery for estimating total chlorophyll and

nitrogen concentrations in crop leaves. They employed EO-1

Hyperion hyperspectral imagery data, supplemented by

laboratory measurements from field samples of cotton and rice.

Through linear regression analysis, they examined the relationship

between leaf biochemical parameters and spectral reflectance,

subsequently developing predictive models (Rama Rao et al.,

2008). However, it has certain limitations in monitoring nitrogen

content in fruit trees (Feng et al., 2019). Generally speaking, fruit
FIGURE 1

Framework for Nitrogen monitoring in fruit trees based on remote sensing technology.
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trees have more complex canopy structure and higher coverage of

branches and leaves. Spectral remote sensing at the satellite level

may not provide sufficient spatial resolution, and image blurring

may occur. Furthermore, using spectral satellites for detection may

lead to data intermittency (Xia et al., 2022). Due to the phenological

period characteristics of fruit trees, nitrogen or other biomass in

leaves undergoes periodic changes. This can consequently impact

the analysis of the overall nitrogen dynamics in fruit trees

(Dannenberg et al., 2020).
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2.2 UAV-based remote sensing

With the increasing portability of spectral cameras, they are

widely used for monitoring the physiological parameters of fruit

trees by being mounted on UAV (de Castro et al., 2021). Compared

with satellite remote sensing platform, UAV remote sensing

platform can provide higher resolution images, and its flexibility,

customization and portability are easier to adapt to the

environment of orchard planting (Adao et al., 2017). This
FIGURE 3

The schematic framework of the spectral remote sensing technology part.
FIGURE 2

Different remote sensing platform diagrams.
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approach offers greater flexibility and portability, allowing for

targeted detection based on the growth cycles of fruit trees. It

enables a better understanding of the dynamic changes in

nitrogen levels in fruit trees and provides more precise decision

support for orchard cultivation and fertilization (Ferro et al., 2023).

Osco et al. (2019) conducted research on citrus trees using an

UAV equipped with a Parrot Sequoia camera (Parrot Drones SAS

Inc., Paris, France). Based on the spectral information covered by

the multispectral camera, 32 spectral indices were calculated. They

combined these indices with the random forest (RF) regression

algorithm to establish a canopy nitrogen inversion model, reducing

the dependency on chemical analysis of leaf tissues. Additionally,

the study utilized a variety of spectral indices as data sources for

nitrogen regression analysis, providing valuable insights for

nitrogen monitoring in fruit trees from an index selection

perspective (Osco et al., 2019). Sun et al. (2023) used the

Phantom4 Multispectral UAV (SZ DJI Technology Inc.,

Shenzhen, Guangdong, China) to obtain the whole multispectral

image data of the orchard. Based on the noise processing of the

canopy image, the spectral indices and leaf nitrogen content were

further processed by regression analysis and modeling. They

selected the most accurate inversion model and integrated it with

a diagnosis and recommendation integrated system to provide a

new technical approach for leaf nitrogen content monitoring.

Notably, the study introduced fruit tree phenological period

characteristics as one of the reference indices, collecting data,

conducting regression analysis, and modeling the nitrogen

content of apple trees during different phenological periods. The

results further improve the pertinence of nitrogen monitoring of

fruit trees (Sun et al., 2023). Li et al. (2022b) conducted a study on

apple trees using the M600 PRO UAV (SZ DJI Technology Inc.,

Shenzhen, Guangdong, China) equipped with the UHD 185-Firefly

(Cubert GmbH Inc, Ulm, Baden-Württemberg, Germany) to

capture hyperspectral images of the tree canopies. In the process

of canopy image processing, the normalized difference canopy

shadow index (NDCSI) was combined on the basis of the

normalized difference vegetation index (NDVI), and the shadow

inside the canopy was better removed by adjusting the threshold,

and the vegetation and soil were further separated in detail.

Therefore, the study provides a method for further improving the

accuracy of nitrogen monitoring in fruit trees by reducing shadow

noise and separating soil from tree canopies (Li et al., 2022b).

Similarly, Li et al. (2022a) also used apple trees as the research

subject, acquiring canopy hyperspectral imagery using the M600

Pro UAV (SZ DJI Technology Inc., Shenzhen, Guangdong, China)

equipped with the UHD185 (Cubert GmbH Inc, Ulm, Baden-

Württemberg, Germany). In addition, based on the removal of

shadow noise by NDCSI, a modified correlation coefficient method

was proposed to screen the sensitive wavelengths of nitrogen

content. This method can screen the characteristic bands related

to nitrogen more comprehensively and accurately in the continuous

spectral bands of hyperspectral, which is different from the

common correlation coefficient method. In turn, the efficiency of

the subsequent data analysis modeling process is improved, and the

influence of redundant bands is reduced (Li et al., 2022a). Kang

et al. (2023) also used apple trees as the research object, using the
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M300 RTK UAV (SZ DJI Technology Inc., Shenzhen, Guangdong,

China) equipped with the MicroHSI 410 Shark hyperspectral

camera (Corning Inc., Corning, NY, US). They used the NDVI

index to separate the tree canopy from the soil and obtained spectral

reflectance curves of the canopy. The canopy image obtained in this

study covered the whole growth cycle of fruit trees. It provides

research methods and ideas for analyzing nitrogen in fruit trees

from the perspective of phenological periods, and provides

technical support for refined orchard management (Kang

et al., 2023).
2.3 Ground-based instrument methods

It is worth noting that obtaining spectral information of fruit

tree canopies through remote sensing imaging methods has certain

advantages and application prospects compared to traditional

manual detection methods (Ju et al., 2023). However, to ensure

the scientific validity and accuracy of the spectral data regression

analysis process, it is still necessary to collect ground-based spectral

information of fruit trees. The portable spectrometer can collect

spectral information in the visible-near infrared range. The data

results can be divided into imaging and non-imaging types. The

imaging spectral data have spatial characteristics and can provide

continuous and detailed spectral bands, so the amount of data

generated is large. Non-imaging spectral data do not have spatial

characteristics, only for the spectral characteristics of specific

regions or data points, the amount of data generated is relatively

small (Aranguren et al., 2020).

Dedeoglu (2020) used an ASD FieldSpec high-resolution

spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO,

US) to measure the reflectance of peach leaves under three nitrogen

conditions (Deficient, Sufficient, and Excess). Combined with Gaussian

Mixture Discriminant Analysis, a critical nitrogen (N) content

estimation model was established to monitor and distinguish the

nitrogen nutrition status of peach trees (Dedeoglu, 2020). In

addition, common handheld spectrometers include RapidSCAN CS-

45 sensor (Holland Scientific Inc., Lincoln, Nebraska, US) (Lu et al.,

2020), USB4000 (Ocean Optics Inc., Dunedin, FL, US) (Yang et al.,

2019). RS-3500 (Spectral Evolution Inc., Haverhill, MA, US) (Duckena

et al., 2023), MicroNIR 1700 spectrometer (Viavi Solution Inc.,

Milpitas, CA, US) (Castrignano et al., 2019).

In summary, for large-scale fruit tree planting areas, it is

essential to combine remote sensing technology with ground-

based portable measurement devices to improve the quality of

spectral data. This lays the foundation for subsequent spectral

index calculation and regression modeling.
3 Nitrogen status characteristic index
of fruit trees

The detection of nitrogen status has always been one of the

important aspects of biomass monitoring in fruit trees (Berger et al.,

2020). Nitrogen status can be directly reflected in the quality and

yield of fruit, leaf color, plant height, plant diameter and other
frontiersin.org

https://doi.org/10.3389/fpls.2024.1489151
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xi et al. 10.3389/fpls.2024.1489151
aspects of fruit trees (Song and Wang, 2023). It is worth noting that

when differences in fruit trees are observed through these aspects,

their nitrogen status has had a serious negative impact on fruit trees,

even leading to the death of fruit trees and causing economic losses

(Pena-Novas and Archetti, 2021). Therefore, according to the

participation characteristics of nitrogen in the physiological and

biochemical processes of fruit trees, the nitrogen status of fruit trees

can be monitored from leaves, canopy, water content and soil

parameters. This section provides a schematic framework for the

characteristic indicators of nitrogen in the process of fruit tree

nitrogen monitoring. The framework is as shown in Figure 4.
3.1 Leaf nitrogen index of fruit trees

First of all, from the perspective of plant biomolecules, protein

is a biopolymer composed of amino acids as the main unit, and its

composition is inseparable from nitrogen (Feret et al., 2021).

Therefore, Johan Kjeldah proposed an auxiliary method for

tracking protein content in 1883. The entire experimental process

can be roughly divided into several parts: digestion, neutralization,

distillation, and titration. Leaf nitrogen content (LNC), has an

important impact on plant growth and development,

photosynthesis, stress resistance and so on. It is a key parameter

for evaluating and managing plant nitrogen nutrition (Zhang et al.,

2022a). The formula calculated by Kjeldahl method is as shown in

Equation 1.

LNC(g · kg−1) =
c � (v − v0)� 0:014� ts

m� 10−3
(1)

where c is the concentration of the dilute sulfuric acid solution

(mol=L); v and v0 are the volumes of dilute sulfuric acid used in

titrating sample solution and the volume of dilute sulfur used in

titrating blank, respectively (ml); 0.014 is the molar mass of

nitrogen (kg ·mol−1); ts is the separation multiple, the ratio of
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constant volume to separated volume; and m is the mass of the

weighted sample (g). Acosta et al. (2023) used persimmon leaves as

experimental samples. After the analysis of Kjeldahl method, the

nitrogen content of leaves was obtained, which was further used to

verify the accuracy of partial least squares model based on near-

infrared spectral data.

In spite of this, the use of Kjeldahl method still has certain

limitations. In the course of the experiment, dangerous operations

such as strong acid and high temperature are involved, and the

requirements for instruments and equipment are strict. More

importantly, this method is a destructive detection method, which

is not conducive to the promotion and application of large areas

(Acosta et al., 2023).

Furthermore, nitrogen is an important component of

chlorophyll molecules, the synthesis of the porphyrin ring in

chlorophyll is hindered under nitrogen stress, leading to a

reduction in chlorophyll content due to a decrease in the activity

of certain auxiliary enzymes. Conversely, an excess of nitrogen

results in a decrease in chlorophyll content, due to the accumulation

of carbohydrates in the leaves, increasing the activity of chlorophyll-

degrading enzymes (Kaur et al., 2015; Wen et al., 2022). Therefore,

leaf chlorophyll content is often used to reflect nitrogen status. In

the process of obtaining chlorophyll content, to avoid destructive

chemical analysis, chlorophyll meters have become a commonly

used method in research (Abouelenien et al., 2021). Although

chlorophyll meters do not directly measure the chlorophyll

content of leaves, the SPAD values they provide are closely

correlated with actual chlorophyll levels. By employing

standardized methods for chlorophyll content measurement and

mathematical analysis, a curve function model can be developed to

convert SPAD values into estimated chlorophyll content (Cassol

et al., 2008). SPAD-502 (Konica Minolta, Inc., Osaka, Japan) is a

commonly used portable SPAD measuring instrument, and its

displayed SPAD value can be expressed by Equation 2 (Naus

et al., 2010).
FIGURE 4

The schematic framework for acquisition and calculation of spectral indices.
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SPAD = k log
I 0940
I940

� �
− log

I 0650
I650

� �� �
+ c

= k½log (T940) − log (T650) + c� (2)

Where c is the compensation value adjustable in the instrument

software, the quantity k (a confidential proportionality coefficient)

defines the relative SPAD units, I0940 and I 0650 are transmitted

light intensities at respective wavelengths, I940 and I650 are light

intensities of the light sources, and T940 and T650 are light

transmittances through the leaf. The measurement process of the

SPAD value, as a non-destructive and rapid monitoring method,

exhibits good adaptability and convenience in field experimental

environments (Donnelly et al., 2020). In addition, in the studies by

Yue et al. (2020) and Singh and Singh (2022), the correlation

between SPAD and nitrogen was also verified. Therefore, directly

using SPAD value to estimate nitrogen provides a feasible method

for the detection of nitrogen status of fruit trees (Yue et al., 2020;

Singh and Singh, 2022). However, the measurement process of the

portable chlorophyll measuring instrument can only collect a single

point, and the data quality is greatly affected by the leaf chlorophyll

distribution and the measurement position (Tan et al., 2021).
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The chlorophyll fluorescence measurement method also serves

as a non-destructive means of detecting chlorophyll content (Padhi

et al., 2021). Table 1 summarizes the research situation of portable

chlorophyll fluorescence measuring instrument in chlorophyll

content detection. It is worth noting that chlorophyll fluorescence

parameters are susceptible to environmental factors such as light

intensity, leaf moisture, and temperature. Additionally, with

changes in the phenological periods of fruit trees, both

chlorophyll content and fluorescence parameters undergo

dynamic changes. Relying solely on chlorophyll parameters

cannot comprehensively capture the nitrogen variation trend

throughout the entire phenological periods of fruit trees

(Kasampalis et al., 2021; Lin et al., 2023).

In summary, as one of the primary sites for plant metabolism and

development, leaves play a crucial role. The nutritional status of fruit

trees can be evaluated by measuring the nitrogen content in leaves,

but the nitrogen in leaves is easily affected by growth stage and

canopy structure (Feng et al., 2023). Canopy is the main interface

between plants and the external environment, which can more

comprehensively reflect the nitrogen operation status of the whole

fruit tree. At the same time, spectral remote sensing technology can
TABLE 1 Summary of research based on portable chlorophyll fluorescence measuring instruments.

Device Model Measurement
Parameters

Results Ref.

OS30P+
(Opti-Sciences Inc.,
Hudson, NH, US)

FV=Fm (the potential
maximum photochemical
efficiency of PSII)

1. There is a positive, saturated relationship between leaf %N and chlorophyll
fluorescence measurement indices.
2. Deciduous shrub species significantly increased leaf %N under high nutrient
addition levels.

(Prager et al., 2020)

PAM-2100
(Heinz Walz GMBH Inc.,
Nuremberg,
Bavaria Germany)

FV=F0 (the maximum light
energy conversion potential
of PSII)
FV=Fm (the potential
maximum photochemical
efficiency of PSII)

F
0
V=F

0
m (the maximum

photochemical efficiency
of PSII)

1. The chlorophyll fluorescence parameters FV=F0 and FV=Fm increase with
increasing nitrogen fertilizer application levels.
2. The vertical distribution characteristics of leaves have certain effects on
chlorophyll fluorescence parameters.

(Ding et al., 2022)

MultispeQ
(PhotosynQ Inc., East
Lansing USA)

qP (photochemical
quenching coefficient)
FV=F0 (the maximum light
energy conversion potential
of PSII)
FV=Fm (the potential
maximum photochemical
efficiency of PSII)

F
0
V=F

0
m (the maximum

photochemical efficiency of
PSII)
NPQ (non-photochemical
quenching coefficient)

1. The chlorophyll fluorescence parameters: F
0
V=F

0
m , FV=Fm , and NPQ show

significant positive correlations with leaf nitrogen content at various growth
stages.
2. During the growth stages, the optimal response of chlorophyll fluorescence

parameters to nitrogen content retrieval occurs during the bud stage (R2

=0.745) and flowering stage (R2 =0.709).

(Lin et al., 2023)

Handy-PEA
(Hansatech Inc., Norfolk,
Kings Lynn UK)

FV=Fm (the potential
maximum photochemical
efficiency of PSII)
PI (the performance index
on absorption basis)

1. The decrease in FV=Fm and PI indices with the progression of drought stress
reflects the impact of drought on photosynthesis and chlorophyll content.

(Boussadia et al., 2023)
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provide a fast and non-destructive nitrogen monitoring ability for

canopy nitrogen monitoring (Wu et al., 2021).
3.2 Nitrogen index of fruit tree canopy

Compared to chlorophyll content, canopy spectral features can

provide richer information, with stronger resistance to interference.

At the same time, some sensitive bands have strong correlation with

nitrogen, and the calculated canopy spectral characteristic index has

certain universality (Chen et al., 2022).

The vegetation indices (VIs) primarily involve obtaining

electromagnetic wave reflection information from the vegetation

canopy through passive sensors. According to the spectral

characteristics of vegetation differences, the spectral vegetation

index is obtained by mathematical operation of the reflectivity of

different bands, and then used to monitor or evaluate the

physiological and biochemical conditions of vegetation (Radocaj

et al., 2023).

The NDVI is calculated through a normalization process using

the reflectance of red and near infrared bands. The calculation

formula is as shown in Equation 3. It is widely applied in measuring

vegetation coverage, calculating tree diameters, and monitoring the

growth status of fruit trees, among other uses (Fernandez-Figueroa

et al., 2022).

NDVI =
NIR − R
NIR + R

(3)

The NDVI values range from 0 to 1, where values closer to 1

indicate higher vegetation coverage in the region, and values closer

to 0 indicate lower vegetation coverage, even for areas with

relatively low vegetation cover. Furthermore, by replacing the red

band with the red-edge band in the NDVI, the normalized

difference red-edge (NDRE) index is obtained. The calculation

formula is as shown in Equation 4.This is because the correlation

between nitrogen content and red-edge reflectance is more

pronounced (Bonfil, 2017).

NDRE =
NIR − RE
NIR + RE

(4)

Perry et al. (2018) used UAV to monitor nitrogen levels by

obtaining the reflectance of the red pear canopy and leaves. The

results of their regression model validate that the NDRE index is

more effective than the NDVI index in monitoring nitrogen content

(Perry et al., 2018). Additionally, the paper introduced another

vegetation index that is more sensitive to nitrogen: canopy

chlorophyll content index (CCCI). The calculation formula is as

shown in Equation 5.

CCCI =
(NDRE − NDREmin)

(NDREmax − NDREmin)
(5)

Where NDREmin and NDREmax depend on the NDVI value of

the response. This index is calculated based on the NDRE index and

is more sensitive to canopy nitrogen. However, due to the

limitations of fruit tree canopy structure, it exhibits some

instability in denser canopy structures. It is more commonly
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applied in the retrieval of canopy nitrogen for cereal crops (Darra

et al., 2021; Chen et al., 2023).

In 1995, Roujean and Breon proposed the renormalized

difference vegetation index (RDVI), which further optimized the

NDVI (Roujean and Breon, 1995). The calculation formula is as

shown in Equation 6.

RDVI =
NIR − Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NIR + R

p (6)

The square root term is introduced into the denominator of the

formula to improve the linear correlation of vegetation biomass and

reduce the influence of mixed background such as soil (Xue and Su,

2017). Based on the M600 Pro UAV (SZ DJI Technology Inc.,

Shenzhen, Guangdong, China), equipped with a Parrot Sequoia

multispectral camera (Parrot Drones SAS Inc., Paris, France),

Zhang et al. (2023) obtained multispectral images of apple tree

canopy, aiming to retrieve apple tree canopy nitrogen content

(CNC) by the vegetation index VIs calculated by spectral

reflectance. The results show that the calculated RDVI value has a

good correlation with CNC (Zhang et al., 2023).

Under the shortwave infrared bands, nitrogen also exhibits

regular spectral response characteristics. According to the

research by Serrano et al., 1510 nm was identified as the optimal

wavelength for nitrogen prediction, and 1680 nm was used as the

reference wavelength. They introduced the normalized difference

nitrogen index (NDNI) to invert canopy nitrogen (Serrano et al.,

2002). The calculation formula is as shown in Equation 7.

NDNI =
log(1=R1510) − log(1=R1680)
log(1=R1510) + log(1=R1680)

(7)

Where R1510 and R1680 represent the reflectivity at 1510 nm and

1680 nm, respectively. Wang et al. (2016) calculated the NDNI

value based on the acquired hyperspectral satellite remote sensing

data to invert the nitrogen content of the forest canopy. The

research results demonstrate that NDNI values can accurately

predict leaf nitrogen content. Additionally, the research results

also indicate that the estimation accuracy of NDNI is influenced

by phenological periods and soil background factors (Wang

et al., 2016).
3.3 The nitrogen index in terms of water
and soil

There is a certain correlation between leaf moisture content

(LMC) and nitrogen content. In the internal structure of plants,

water content will affect the absorption and transport efficiency of

nitrogen (Mwinuka et al., 2022). In terms of spectral response, the

water content on the leaf surface can affect the amount of light

reflected from the leaf surface. The color and light absorption

differences measured by the reflectance sensors can indirectly

reflect the nitrogen content. Normalized difference water index

(NDWI) is the most commonly used index to measure LMC, which

can indirectly reflect the nitrogen content of leaves (Marcone et al.,

2024). The calculation formula is as shown in Equation 8.
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NDWI =
NIR − SWIR
NIR + SWIR

(8)

Huete (1988) proved that the NDVI index has limitations in the

spectral response of the soil background. Therefore, the soil-

adjusted vegetation index (SAVI) was proposed (Huete, 1988).

Compared with the NDVI index, a simple model was

established to fully describe the soil-vegetation system (Bannari

et al., 1995; Noori and Panda, 2016). The calculation formula is as

shown in Equation 9.

SAVI =
(NIR − R)

(NIR + R + l)

� �
� (1 + L) (9)

Where L is the soil adjustment factor, and the value of L = 0.5

can achieve the best adjustment, that is, to minimize the secondary

scattering effect of the soil background reflected radiation

transmitted by the canopy. If the value of L is zero (L = 0), SAVI

is equal to NDVI. Wang and Wei (2016) used the characteristics of

SAVI to optimize the NDNI index. Firstly, the red band in SAVI

was replaced by 1510 nm band. Secondly, the original NDNI is

divided by the revised SAVI (Wang andWei, 2016). The calculation

formula is as shown in Equation 10.

NDNI
SAVI1510

=
(log(1=R1510) − log(1=R1680))=(log(1=R1510) + log(1=R1680))

(1 + L)(R800 − R1510)=(R800 + R1510 + L)

(10)

Where L is a self-adjusting variable related to background

adjustment effect. In the article, it is pointed out that the

optimized NDNI index can reduce the interference of soil

background noise and improvthe accuracy of canopy nitrogen

monitoring when the spectral image background may be water,

too wet soil or relatively dry land.
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As researchers further investigate the soil background sensitivity

of VIs, Rondeaux et al. (1996) conducted a comparative analysis of

the SAVI, the transformed soil-adjusted vegetation index (TSAVI),

and the modified soil-adjusted vegetation index (MSAVI), among

which MSAVI exhibits good stability and sensitivity. MSAVI

considers the adjustment factor L in the SAVI index as a function

that varies inversely with vegetation amount, minimizing the impact

of bare soil on SAVI (Rondeaux et al., 1996). The calculation formula

is as shown in Equation 11.

MSAVI =
2NIR + 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2NIR + 1)2 − 8(NIR − R)

p
2

(11)

Roma et al. (2023), in their study on the inversion of nitrogen in

oil canopies, discovered that the MSAVI was capable of

representing more nitrogen information compared to the NDVI

and NDRE (Roma et al., 2023). It is worth noting that while leaf

moisture content and soil regulation indices can monitor and invert

the nitrogen content of fruit tree canopies, in most research

processes, the NDWI is used to monitor the degree of water

stress, while indices such as SAVI, TSAVI, and MSAVI are used

to assess the nutrient status of orchard soils (Arevalo-Ramirez et al.,

2020; Zhen et al., 2021; Zongfan et al., 2022).

In summary, VIs have become one of the important methods in

precision agriculture and agricultural monitoring. They offer a non-

destructive and efficient approach to monitoring various aspects of

plants, such as chlorophyll and nitrogen content, leaf area, and

moisture status, based on different index calculation methods. On

the other hand, with the continuous advancement of spectral

remote sensing technology, the selection and combination of

multiple spectral bands have also opened new possibilities for the

study of vegetation indices. Table 2 summarizes the information on

the vegetation indices mentioned in the text above.
TABLE 2 Summary of Vegetation Indices.

Index Formula Wavelengths Application

NDVI NIR − R
NIR + R

(600-1000) nm
One of the most commonly used indices, it is widely applied to measure fractional vegetation
cover, distinguish between vegetation types, and assess land use conditions.

NDRE NIR − RE
NIR + RE

(700-1000) nm
Compared to NDVI, this index is more sensitive to nitrogen monitoring and is widely used
for assessing and monitoring plant health under varying levels of stress.

CCCI (NDRE − NDREmin)
(NDREmax − NDREmin)

(700-1000) nm
The sensitivity to nitrogen has been enhanced based on NDRE; however, due to limitations
imposed by the canopy structure, it is primarily utilized for the health monitoring and
assessment of field crops.

RDVI NIR − Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NIR + R

p (600-1000) nm
This index, which optimizes the NDVI, is widely used for monitoring plant growth conditions
under various soil types.

NDNI log(1=R1510) − log(1=R1680)
log(1=R1510) + log(1=R1680)

1510nm&1680nm
The index, calculated in the Short Wave Infrared (SWIR) band, is commonly used to monitor
and evaluate plant growth conditions in regions with notably complex canopy structures.

NDWI NIR − SWIR
NIR + SWRI

(700-2500)nm
By assessing nitrogen levels based on leaf water content, this index is more frequently applied
to monitor and evaluate plant growth under different water stress scenarios.

SAVI (NIR − R)
(NIR + R + l)

� �
� (1 + L) (600-1000) nm

This index, which enhances NDVI with an added soil adjustment factor (L), is widely utilized
for monitoring nitrogen levels in regions where vegetation cover is sparse.

MSAVI 2NIR + 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2NIR + 1)2 − 8(NIR − R)

p
2

(600-1000) nm
Compared to SAVI, this index is more commonly used for nitrogen monitoring in areas with
higher vegetation cover.
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4 Nitrogen inversion method of fruit
trees based on spectral data

In the process of establishing a model for nitrogen content

inversion in fruit trees, it is necessary to derive the relationship

between nitrogen and relevant indicator parameters through a

regression inversion process, aiming to reconstruct the actual

nitrogen content of the fruit trees as accurately as possible.

Therefore, it is necessary to select the appropriate modeling

method according to the characteristics of the data set and the

research needs to maximize the accuracy of the model prediction.

This section gives a schematic framework for the nitrogen inversion

algorithm and modeling part of the nitrogen monitoring process of

fruit trees. The framework is as shown in Figure 5.
4.1 Conventional regression methods

The traditional regression methods are based on simple

mathematical and statistical principles, focusing on establishing a

linear correspondence between one or more independent variables

(explanatory variables) and a dependent variable (response

variable). The least square regression (LSR), as a classic linear

regression algorithm, primarily aims to construct the optimal

function expression by minimizing the sum of squared errors in

the data (Darvishzadeh et al., 2008). Its objective is to establish a

linear mathematical model as Equation 12.

Y = bX + e (12)

WhereY is the mean centered vector of the dependent variable,X

is the mean centered matrix of the independent variable, b is the

coefficient matrix, and e is the residual matrix. The partial least

squares regression (PLSR) is similar to it. PLSR performs better in

handling multicollinearity among independent variables, even

though both algorithms calculate model parameters by minimizing

error values. It involves screening and eliminating a large number of
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collinear independent variables and retaining some unrelated latent

variable factors to establish the model by maximizing the covariance

between the variable data (Helland et al., 2018).

For single-variable regression models, as phenological period

characteristics and multiple spectral indices are introduced, a single

variable is unable to fully describe the complex relationship between

spectral information and nitrogen (Brinkhoff et al., 2019).

Therefore, multiple linear regression (MLR) is a suitable choice.

MLR can establish a linear relationship model between the

dependent variable (response variable) and multiple independent

variables (explanatory variables) (Shao et al., 2021). The model is

represented as shown in Equation 13.

y = b0 + b1x1 + b2x2 +⋯ bixi + e (13)

Where bi is the regression coefficient of variable i, and e is the

deviation constant. The key to influencing the multiple linear

regression model is whether the parameters in the training sets

are related to nitrogen. Therefore, the stepwise multiple regression

(SMR) is further improved, and the highest correlation group is

gradually selected from the potential independent variables to

construct the regression model, so as to simplify the model

without changing the prediction accuracy (Jin et al., 2020a).

Another key factor that influences the MLR model is the

phenomenon of overfitting. The introduction of regularization

algorithms can effectively solve this problem and reduce the

potential collinearity between variables (Tak and Inan, 2022).

There are two common regularization algorithms: lasso regression

and ridge regression. Lasso regression, also known as L1

regularization, adds a penalty term of the sum of the absolute

values of the model parameters to the loss function (Ng and

Newton, 2022), as shown in Equation 14.

lon
i=1 bij j (14)

Where l is the regularization parameter, and bi is the regression
coefficient. Ridge regression, also known as L2 regularization, adds a

penalty term to the sum of squares of model parameters in the loss
FIGURE 5

The schematic framework for nitrogen content retrieval and regression modeling.
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function (Zhou et al., 2021), as shown in Equation 15.

lon
i=1b

  2
i (15)

Where l is the regularization parameter and bi is the regression
coefficient. Ridge regression, compared to lasso regression, is more

effective in addressing collinearity issues (Kerckhoffs et al., 2019). In

a study by Osco et al. (2020), based on the collected spectral

parameters of citrus leaves, lasso regression, ridge regression, and

machine learning methods were used to estimate the correlation

between spectral features and nitrogen. The results indicate that

both lasso regression and ridge regression algorithms have some

predictive capability, but their effectiveness is far more inferior to

that of machine learning methods (Osco et al., 2020).

In conclusion, linear models still have many advantages, such as

simplicity, high computational efficiency, and wide applicability.

However, it is equally important to consider the characteristics of

the dataset and the requirements of the research application. The

simplistic assumption of a linear relationship between variables can

lead to an oversimplification of the model, failing to accurately fit

the actual trends in the data (Ma et al., 2024). Therefore, machine

learning methods can achieve better results when dealing with non-

linear relationships between variables (Ma et al., 2022a).
4.2 Machine learning regression method

Spectral remote sensing technology provides non-linear and

complex spectral information. However, machine learning methods

can screen and extract valuable eigenvalues from a large amount of

data, and are used in complex data regression analysis tasks (Sabzi

et al., 2022). At the same time, its precise predictive ability for data

becomes particularly important in the environmental conditions of

fruit tree growth. With the increase in the variety and quantity of

training data, the performance of machine learning regression

models also improves, and their versatility and scalability will

further meet the requirements of agricultural remote sensing

information analysis (Virnodkar et al., 2020).

4.2.1 Machine learning regression method based
on kernel function

The kernel function significantly impacts the performance of

regression, as it determines the shape of the regression function and
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provides a method for high-dimensional space mapping: it maps

the original input space to a high-dimensional feature space, where

the linear relationships in the data are more easily fitted

(Pourbahrami et al., 2023). Common kernel functions can be

classified into local and global kernel functions, including linear

kernel, polynomial kernel, and radial basis function (RBF) (Wang

et al., 2020). The following function expressions as shown in

the Table 3.

In the process of using spectral remote sensing data for fruit tree

biomass monitoring, support vector machine (SVM) serves as a

non-parametric supervised statistical learning algorithm applied to

pattern recognition, classification, and regression tasks. Unlike the

fixed functional relationships assumed in traditional regression

techniques, SVM does not make assumptions about the

underlying data distribution. Therefore, training with a small

number of samples does not affect the accuracy of the model

(Termin et al., 2023; Tian et al., 2023). When applied to

regression analysis, this algorithm can also be represented as

support vector regression (SVR), iteratively mapping the dataset

to different categories in a multi-dimensional space until finding the

maximum margin hyperplane (Wang et al., 2021). The model is

represented as shown in Equation 16.

f (x) =on
i=1(ai − a�i )K(x, xi) + b =on

i=1wiK(x, xi) + b (16)

Where  K(x, xi) is the kernel function, ai and a�i are Lagrange
multipliers, b is an adjustable parameter, and n is the number of

sample sets. The choice of kernel function depends on the data

characteristics and the specific needs of the problem.

The linear kernel performs well when the data is approximately

linear. The polynomial kernel provides polynomial mappings of

different degrees, which can handle more complex non-linear

relationships. The RBF is very popular in many practical

applications due to its flexibility (Torres et al., 2019). Li et al.

(2022a) based on hyperspectral images of apple tree canopies, after

selecting nitrogen-sensitive wavelengths and constructing spectral

feature parameters, built a canopy nitrogen inversion model based

on SVM (Li et al., 2022a).

Gaussian process regression (GPR) is a non-parametric

Bayesian regression algorithm (Van Wittenberghe et al., 2014).

Similar to the SVM algorithm, GPR does not assume the

distribution of the data set either, but adjusts the parameters by

observing the mean and covariance (Zhen-qi et al., 2023).
TABLE 3 Summary of kernel function expressions.

Kernel
Function

Expression Notes

Linear
Kernel

K(x, xi) = x Ti xj
1. xi and xj   are date points.

2. The linear kernel does not change nonlinearly, and directly calculates the dot product of the vector.

Polynomial
Kernel

K(x, xi) = (x Ti xj)
d

1. xi and xj   are date points, and d is coefficient of polynomial.

2. The feature can be mapped to a high-dimensional space, and the dimension is proportional to the value of d,
which is prone to overfitting when it is too high.

Radial Basis
Function
(RBF)

K(x, xi) = exp −
xi − xj
�� ��2

2s 2

 ! 1. xi and xj   are date points, and s is width of the RBF kernel.

2. The mapping dimension is higher, and the generalization ability of the model is affected by the s value.
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Therefore, under the condition of weak prior knowledge, GPR can

be used as one of the effective methods for monitoring nitrogen

content (Fu et al., 2020b). Both GPR and SVR belong to the

regression algorithms based on kernel function. Therefore, the

performance of GPR also depends on the selected kernel function

(Peng and Li, 2014). Gao et al. (2023) constructed a leaf nitrogen

content inversion model based on hyperspectral information from

citrus leaves and utilized various spectral denoising algorithms. The

regression algorithms employed include PLSR, SVR, and GPR. The

results indicate that under different data-denoising algorithm

conditions, the best nitrogen response model is the GPR model

based on the RBF kernel. The introduction of the RBF kernel

reduces the risk of overfitting, adds smoothness, and increases

sensitivity to the non-linear relationships between variables (Gao

et al., 2023).

4.2.2 Machine learning regression method based
on ensemble learning methods

Ensemble learning is a method of constructing models by

combining multiple base learners or algorithms. Its main idea is

to use an ensemble to improve the model’s generalization ability

across various data aspects, reducing the bias and variance of a

single model through voting or averaging, thereby obtaining more

accurate prediction results. Common ensemble learning methods

include bagging, boosting, and stacking (Rooney et al., 2006).

Bagging is an algorithm that divides the original data set into

multiple subsets and combines them by bootstrap sampling

method, and finally integrates the prediction results by voting or

averaging (Dong et al., 2020).

The RF is an ensemble learning method based on decision tree,

which introduces randomness on the basis of bagging algorithm

(Ganaie et al., 2022).The algorithm based on decision tree is a

common form of tree-based algorithm. Different from the kernel-

based algorithm, the tree-based regression algorithm uses a tree

structure when segmenting data regions, and uses leaf nodes to

represent predicted values (Uddin and Lu, 2024). Therefore, it has

better results in dealing with large-scale and non-linear data.

However, overfitting is a common issue in the regression process

of random forest, making it crucial to adjust parameters such as the

number of regression trees, depth, and input variables in the model

(Jin et al., 2020b). The complexity of a RF model is jointly

determined by the number of trees and their depth. Increasing

these parameters enhances the model’s complexity and can improve

its ability to address intricate problems. Setting a higher minimum

sample size for leaf nodes promotes a more conservative model,

thereby reducing the risk of overfitting. However, it is important to

note that the interpretability of RF regression models is generally

limited, and their performance is heavily dependent on the

parameter choices made during model construction. Shah et al.

(2019) found that when the vegetation index is used as the input

feature of random forest, the accuracy of the model is improved,

which is consistent with the research results of Osco et al. (2019)

(Osco et al., 2019; Shah et al., 2019). Zhao et al. (2024) utilized apple

canopy hyperspectral images to extract 14 VIs related to nitrogen.

They employed three algorithms, namely PLSR, ridge regression,
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and RF, to establish a predictive model for the LNC of the tree. The

results indicate that the inversion model based on RF demonstrated

the highest accuracy. In addition, the concept of phenological

periods was introduced in this paper, and the LNC under

different phenological periods conditions of fruit trees was

predicted and analyzed (the accuracy of the model was the

highest in the fruit expansion period), which further provided

technical support for precise nitrogen application management in

orchards and provided certain scientific basis for fruit tree growth

(Zhao et al., 2024).

Boosting minimizes the residual of the previous model by

gradually training the model, and then gradually improves the

performance of the overall model. In the training process, each

basic model will adjust the weight of the sample according to the

prediction error of the previous model. Adaptive boosting

(Adaboost), gradient boosting machine (GBM), extreme gradient

boosting (XGBoost) and light gradient boosting machine

(LightGBM) are common forms of boosting algorithm (Kleinberg,

2000). Jafarzadeh et al. (2021) conducted a study based on three

actual datasets including multispectral, hyperspectral, and

polarimetric synthetic aperture radar (PolSAR) data, to investigate

the classification performance of different ensemble learning

algorithms such as RF, bagging, and boosting. Their research

findings indicated that XGBoost outperformed other algorithms

in terms of effectiveness (Jafarzadeh et al., 2021).

XGBoost was proposed by Chen and Guestrin in 2016 (Chen

and Guestrin, 2016). The XGBoost algorithm improved upon the

gradient boosting decision tree (GBDT) algorithm. It determined

the form of the loss function through second-order Taylor

expansion and introduced a regularization term into the loss

function. As the regularization weight increases, the model

becomes more conservative, which helps to mitigate overfitting.

Additionally, it adopted a tree growth strategy, allowing for

adjustments in the tree’s depth and the minimum weight of leaf

nodes. Higher values for both parameters result in a more complex

model, improving its performance on regression tasks. As a result,

the XGBoost algorithm is more accurate than the GBDT algorithm

and is less prone to overfitting (Ye et al., 2021). Canting Zhang et al.

(2023) constructed a model for the inversion of CNC in apple

orchards using the XGBoost algorithm based on the fusion of

multispectral and hyperspectral data. The model, incorporating

canopy abundance parameters, demonstrated good accuracy and

stability (Zhang et al., 2023).

Stacking model was proposed by Wolpert in 1992 and has been

widely used in the field of machine learning (Wolpert, 1992). As an

ensemble learning method, it achieves the prediction results of

integrated multiple basic learners or models as new eigenvalues,

and then merges the feature matrix to obtain a meta-model to process

the new eigenvalues and obtain the final prediction results. This

method leverages the strengths of individual base models or learners

to enhance the overall predictive accuracy and generalization

capability of the model (Sesmero et al., 2015). Shaomin Chen et al.

(2022) established a stacked ensemble extreme learning machine

model based on the hyperspectral reflectance of apple tree canopy to

invert the nitrogen content in leaves (Chen et al., 2022).
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4.2.3 Machine learning regression method based
on neural network

Neural network is a computational model inspired by the

biological nervous system. It is designed to recognize, classify, and

predict based on the complex relationships between data. It takes

reference from the information transmission and processing

processes between neurons in the human brain (Sridhar et al.,

1996). In the regression task, the purpose of this method is to

capture the mapping relationship between input features and

output variables, and to predict the continuous output of a given

input data. Artificial neural network (ANN) is a mathematical

model that resembles the structure and function of biological

neural networks, consisting of a large number of interconnected

neurons for information processing and transmission (Sun et al.,

2022). It has a multi-layer structure, with input and output layers

for receiving and outputting information, while data feature

extraction and processing occur in the hidden layers (Tracey

et al., 2011). By adjusting the weights of each neuron to reduce

errors, ANN enhances its data processing capabilities, by enabling it

to adapt to the complex nonlinear relationships between canopy

spectral features and biophysical parameters (Yan et al., 2023).

Generally speaking, the number of hidden layers in the network is

uncertain, which needs to be determined according to the

characteristics of the data set (Wang et al., 2009). Noguera et al.

(2021) used multispectral information from five bands, including

blue, green, red, red edge, and near-infrared, extracted from canopy

images of olive orchards captured by drones as the basis for building

a relatively simple network structure. This structure includes one

hidden layer with one neuron, five spectral information input

nodes, and one LNC output layer. The levenberg-marquardt

algorithm was chosen as the training algorithm based on the

number of data set divisions and computational complexity. The

results indicate that the ANN model shows a good predictive

response to LNC (Noguera et al., 2021). Back propagation neural

network (BPNN), as a special type of ANN, is improved on the basis

of multilayer Perceptron (MLP). It continues the multi-level

network structure and adds the back propagation algorithm

(Sarkar et al., 2023). By calculating the gradient of the loss

function, the connection weight in the network is adjusted to

minimize the error between the predicted output and the actual

output. Its characteristic is that the error propagates from the

output layer to the first hidden layer during the training process,

and gradually optimizes the network (Li et al., 2021). The back

propagation algorithm is added to further improve the fitting ability

of the BPNN network for nonlinear data (Ma et al., 2022b). Li et al.

(2022b) constructed a BPNN model for monitoring apple CNC

based on the hyperspectral information of apple canopies. The

model includes a hidden layer with four neurons and utilizes the

levenberg-marquardt as the training algorithm. In comparison to

ANN, BPNN demonstrates an improved precision in nitrogen

response modeling (Li et al., 2022b).

Quantitative assessment of plant biomass is not limited to

extracting spectral data from leaves. Collecting leaf images,

including direct acquisition of color, shape, and texture

information, can also serve as indicators for biometric
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measurements (Schreiber et al., 2022). As an important technical

branch of machine learning, deep learning has been continuously

promoted and applied in agriculture. It can autonomously learn

features from raw data, and the characteristics of unsupervised

learning are also different from traditional machine learning

methods (Nan et al., 2020).

Based on the neural network architecture, convolutional neural

network (CNN) introduces a specific hierarchical structure of

convolution layer, pooling layer and fully connected layer. In the

convolutional layers, the convolution kernels extract feature maps

from the original images, which are then compressed through the

pooling layers. This process of convolution and pooling is repeated

multiple times, and upon reaching the fully connected layer, the

network learns the feature mappings and produces the target results

based on the nature of the task (prediction or classification) (Okyere

et al., 2023). Baesso et al. (2023) captured digital RGB images of

bean canopies using a camera, and classified the images based on

nitrogen content. By training a CNN model, they developed four

nitrogen content classifiers, demonstrating the significant potential

of using RGB images and deep learning techniques for nitrogen

status monitoring (Baesso et al., 2023). It is worth noting that in the

monitoring of canopy nitrogen status of fruit trees, there are

relatively few studies using CNN and RGB methods. This paper

believes that it may be limited by factors such as complex canopy

structure and difficulty in image calibration and training.

The machine learning method can effectively invert the

physiological and biochemical structural characteristics of plants

and reveal the dynamic changes of biomass caused by the

environment (Chlingaryan et al., 2018). With the continuous

deepening of research on machine learning methods, various

aspects of the data set quality, model parameters, and the

structure of the regression function of machine learning models

have been optimized and improved (Yang et al., 2020). The data

type processed has been expanded from a single spectral

information to a combination of spectral data, spectral index and

texture information, and the prediction accuracy and flexibility of

the model have been further improved (Popescu et al., 2023).
5 Discussion

This paper reviewed the development and application of

spectral remote sensing technology in the monitoring and

inversion of nitrogen in fruit trees. It summarized and analyzed a

large number of research results on the monitoring and inversion of

nitrogen content in fruit trees. The importance of nitrogen for the

development and growth of fruit trees has been fully confirmed. The

feasibility of using spectral remote sensing technology to monitor

and invert nitrogen in fruit trees has also been confirmed, providing

valuable theoretical basis and technical support for further research

and application.

It is very important to select the appropriate data acquisition

method before the nitrogen monitoring and inversion process.

With its excellent spatial analysis ability, remote sensing

technology provides a large-area and continuous real-time non-
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destructive monitoring method for orchard nitrogen. Among them,

the satellite remote sensing platform is limited by factors such as

resolution, acquisition cycle and atmospheric environment, and is

less used in orchards. On the contrary, it is widely used in the

monitoring of field crops biomass. Firstly, the planting area of field

crops is generally larger than that of orchards. The resolution of

satellite spectral images can meet the research requirements of field

crops non-details, and the long monitoring period is also in line

with the growth trend of field crops. Airborne remote sensing

platform, compared to satellite ones, offer higher image resolution

and greater flexibility. They enable adjustments to flight altitude

and select spectral cameras based on the characteristics of the

research area. However, its promotion and application are

constrained by economic factors; specifically, the costs associated

with operating, maintaining, and managing aircraft are higher than

those of UAV platforms. In contrast, UAV remote sensing

platforms offer distinct advantages in terms of resolution,

portability, and cost-effectiveness. So it has become one of the

common methods for nitrogen monitoring in orchards and field

crops. However, most UAV operations currently have relatively

simple trajectories (straight lines or continuous fixed points) and

require more sophisticated hardware to meet complex task

requirements and working environments (Wang et al., 2023). It is

worth noting that remote sensing methods mostly acquire image

data at an angle perpendicular to the canopy, which means that the

vertical distribution within the canopy has not been fully explored.

During the process of obtaining spectral data, both the

parameter settings of the remote sensing platform and the

spectral datasets influence the model inversion results. Taking the
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widely used UAV remote sensing platforms as an example, Table 4

summarizes the parameter settings and dataset conditions. When

setting flight parameters, altitude, speed, and image overlap rate are

closely related to the study area, with each parameter influencing

the others. If the flight altitude is too high, the resolution is lower.

Flying too fast can lead to image blurring, while a high overlap rate

results in excessive image repetition. Additionally, a low overlap

rate can cause images to be inadequately stitched together. For the

dataset of measured blades, an increase in data volume positively

impacts the model’s accuracy. Furthermore, when using a single

regression algorithm, models built with nonlinear algorithms tend

to achieve higher accuracy than those using linear models. This

difference is attributed to the existence of certain nonlinear

relationships among various vegetation indices. On the other

hand, multi-method ensembles are generally considered to yield

more reliable results than the application of a single method alone

(Feilhauer et al., 2015). It is worth exploring different ensemble

methods and integrating various data types. Zhang et al. (2023)

proposed an effective method based on ground and space remote

sensing data fusion for the inversion of apple orchard CNC. This

method utilizes a convolutional computation spectral response

function to integrate ground-based high-spectral and drone-

acquired multispectral data (Zhang et al., 2023). Gutierrez et al.

(2023) used deep learning technology combined with multi-sensor

spectral fusion technology to simulate grape components. The

statistical analysis results confirmed that the fusion architecture

performed better than the single spectral range model,

demonstrating the potential of fusion technology in agricultural

spectroscopy (Gutierrez et al., 2023).
TABLE 4 Summary of parameter settings and spectral dataset situation for the UAV remote sensing platform.

UAV
Flight

parameters.
Spectral
type.

Dataset. Conclusion References

DJI M600 PRO
with Cubert
UHD 185-
Firefly camera.

Flight
altitude:50m
Image
overlap:80%

Spectral range:
(450 –950) nm,
125 bands spaced
at 4 nm

Hyperspectral and RGB images of the canopy,
a total of 1200 leaf samples, training set: verification
set ratio = 2:1

Among the nitrogen
content retrieval
models, the best model
was the SVM model

(R2 =0.73)

(Li et al., 2022a)

DJI M600 PRO
with Cubert
UHD 185-
Firefly camera.

Flight
altitude:50m
Image
overlap:80%

Spectral range:
(450 –950) nm,
125 bands spaced
at 4 nm

Hyperspectral and RGB images of the canopy,
a total of 1104 leaf samples, training set: verification
set ratio = 2:1

Among the canopy
nitrogen content
retrieval models, the
best model was the
BPNN model

(R2 =0.77)

(Li et al., 2022b)

DJI
Phantom 4

Flight
altitude:70m
Image
overlap:70%

Blue: 450 nm,
Green:560 nm,
Red: 650 nm,
Red-Edge:
730nm Near-
infrared: 840 nm

Multispectral and RGB images of the canopy, a total
of 4000 leaf samples, the training points consisted of
90% (80% train and 10% validation) of the entire
data-set, while the testing points were represented
by the remaining 10%

Among the canopy
nitrogen content
retrieval models, the
best model was the
BPNN model

(R2 =0.77)

(Osco et al., 2019)

eBee enseFly
with MicaSense
RedEdge-

M™ camera

Flight
altitude:100m
Image
overlap:85%

Blue: 475 nm,
Green:560 nm,
Red: 668 nm,
Red-Edge:
717nm Near-
infrared: 840 nm

Multispectral and RGB images of the canopy, a total
of 70 leaf samples, leaf samples were divided into a
calibration dataset (n = 53) and a validation dataset
(n = 17).

Among the nitrogen
content retrieval
models, the best model
was the ANN model

(R2 =0.63)

(Noguera et al., 2021)
 R2 is the coefficient of determination.
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In terms of nitrogen inversion algorithms, with the deepening of

research, the form of machine learning methods has also been

expanded. In the process of constructing regression models,

traditional algorithms such as PLSR, MLR, and SMR are

introduced. The combined prediction model can further improve

the estimation accuracy of nitrogen content (Fu et al., 2020a;

Shahhosseini et al., 2020). Mahajan et al. (2021) utilized spectral

remote sensing data and a combined approach of PLSR andmachine

learning models to monitor mango leaf biomass (Mahajan et al.,

2021). In addition, the process of regression modeling requires a

certain amount of measured data to improve the robustness of the

model. However, in some cases, the quantity and quality of measured

data may not meet the expected targets. In contrast, physical

methods based on physical principles have made great

contributions to nitrogen remote sensing monitoring. Through the

canopy radiative transfer mode (RTM), the correlation between

biomass characteristics and canopy reflectance is clarified. In

theory, the model has good interpretability and mobility

(Abdelbaki and Udelhoven, 2022). However, in practical

applications, the setting of model parameters and the mastery of

physical principles limit its wide application. Therefore, the study of

hybrid models can better leverage the strengths of statistical analysis

and physical analysis methods. From a methodological perspective,

the main feature is the combination of RTM-simulated data with

actual measured data, incorporating biomass information into the

spectral data to construct a hybrid dataset for feature selection. From

a modeling perspective, hybrid models enhance the dataset by

incorporating RTM-simulated data into the subsequent data

training process for modeling. Li et al. (2024) introduced a method

that combines UAV hyperspectral data and RTM simulations for the

quantitative estimation of nitrogen content in corn leaves and

canopies. By integrating field measurement data with RTM model

simulation data, they conducted a comparative analysis of the

performance of the hybrid method and the GRS method under

different dataset conditions. The results showed that the hybrid

method performed best in predicting nitrogen content in leaves. This

paper believes that the hybrid method has broader application

prospects and research significance in the monitoring and

inversion of nitrogen content in fruit trees, and it can be

considered as a direction for further research.

To enhance the accuracy of nitrogen monitoring in fruit trees,

this paper suggests that investigating the influence of phenological

periods on nitrogen monitoring in fruit trees could be a direction for

future research. Generally, LNC will show a phased change trend at

different phenological periods of fruit trees (Hueso et al., 2021).

During the new shoot growth stage, trees have a longer growing

season and more time to accumulate nitrogen, resulting in higher

leaf nitrogen content, which in turn lays the foundation for the

growth and development of fruit trees and their fruits. During the

flowering stage, as the fruit trees grow and the leaves continue to

expand, it is necessary to maintain sufficient nitrogen levels for

chlorophyll synthesis. However, the nitrogen balance must be

maintained at this stage. Excessive nitrogen content will lead to

uneven distribution of nitrogen between flowers and leaves. The

nitrogen required for flowering and fruiting is continuously used for
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photosynthesis to promote the growth of new leaves. The nitrogen

content of leaves at this stage is relatively low. During the fruit

enlargement period, the nitrogen content in the leaves is further

reduced to maintain the nutrients required for fruit development and

quality. At fruit maturity stage, nitrogen absorption rate slows down,

leaf nitrogen content is mainly used to promote fruit maturity and

storage time, and nitrogen is gradually transported to other plant

parts through senescent leaves (Iqbal et al., 2022; Zhang et al., 2022b;

Zhao et al., 2022). Peng et al. (2022) utilized a six-rotor M600 UAV

(SZ DJI Technology Inc., Shenzhen, Guangdong, China) equipped

with a six-channel multispectral Micro-MCA camera (Tetracam

Inc., Chatsworth, CA, US) to collect images. The correlation

between VIs and LNC was analyzed at the new shoot growth

stage, flowering stage, fruit expansion stage and fruit Maturity

Stage of grapes. The results show that the correlation of various

VIs in different periods was different (Peng et al., 2022). In addition,

the difference of vegetation index at different growth stages is also

related to fruit yield (Ferro et al., 2023). Therefore, incorporating the

phenological period characteristics of fruit trees into the research and

analysis of nitrogen monitoring holds certain significance.
6 Conclusions

The real-time and accurate monitoring of nitrogen content in

fruit trees is crucial for improving fruit yield and quality, as well as

for influencing the formulation of fertilization plans, and promoting

soil, water resources, and environmental protection. Spectral

remote sensing technology, with its non-destructive, high-

resolution, and real-time characteristics, provides an effective and

reliable method for monitoring nitrogen content in fruit trees.

Based on relevant literature, this paper introduced a framework

for monitoring and inversion of nitrogen content in fruit trees,

which primarily comprised three components: (1) The utilization of

spectral remote sensing technology in monitoring nitrogen in fruit

trees. (2) Criteria for assessing nitrogen status in fruit trees. (3)

Formulation of algorithms for nitrogen regression inversion.

Firstly, the application of different remote sensing platforms in

nitrogen monitoring of fruit trees was illustrated. Among them, the

UAV remote sensing platform has been widely used due to its

excellent flexibility and operability. At the same time, the portable

measuring instrument also provides a new idea for the acquisition of

the original data set, which enriches the types of data sets. Secondly,

the indexes used to reflect the nitrogen status were summarized from

the perspectives of leaves, fruit tree canopy, water and soil, so as to

promote the further research of multi-index fusion. Finally, the

regression algorithm were classified and discussed. Based on the

complexity and linear relationship of the data, the characteristics and

applicability of the algorithm were analyzed from the perspectives of

traditional regression method and machine learning method, which

provides a reference for selecting the appropriate modeling method.

In summary, there is still room for further development of the current

orchard fine management level. In the future, further research should

be carried out on the integration of multiple data types and the

phenological period characteristics of fruit trees.
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