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Chromosome-level assembly of
the Clinopodium gracile genome
Yubang Gao*

School of Life Sciences, Nanyang Normal University, Nanyang, Henan, China
Clinopodium gracile is an important medicinal herb in the Lamiaceae family. This

species lacks corresponding genomic resources, which significantly limits the

study of its active compound synthesis pathways, breeding practices, and

assessment of natural genetic variations. We assembled the chromosomal-

level genome of C. gracile using Oxford Nanopore (ONT) technology and Hi-C

sequence. The assembled genome is 307.3 Mb in size and consists of 9

chromosomes. The scaffold N50 was 36.3 Mb. The BUSCO completeness

(Embryophyta_db10) of the genome was 97.2%. The genome annotates

40,083 protein coding genes. C. gracile and S. miltiorrhiza diverged

approximately 30.615 million years ago. C. gracile has not undergone recent

species-specificWGD events. A high proportion of young LTRs indicates a recent

transposable element (TE) transposition burst in C. gracile.
KEYWORDS

genome, chinese herbal medicine, Clinopodium gracile, nanopore sequence,
Hi-C assembly
1 Introduction

C. gracile (Figure 1A) is a medicinal plant belonging to the genus Clinopodium in the

Lamiaceae family (Dai et al., 1984). The Clinopodium genus comprises 20 species, most of

which are medicinal plants (Yao et al., 2020). The triterpenoid saponins of C. gracile exhibit

various pharmacological effects, such as anti-inflammatory (Park et al., 2010), cardioprotection

(Hu et al., 2017), and anti-tumor characteristics (Dzhambazov et al., 2002). Additionally, it

exhibits insecticidal activities (Chen et al., 2013). Research on C. gracile involves transcriptomics

of different tissues analysis (Zhao et al., 2020; Shan et al., 2020). Moreover, studies on species

like Clinopodium chinese include transcriptomics analysis (Shi et al., 2019) and microRNA

analysis (Xu et al., 2022). C. gracile and other plants in the same genus lack corresponding
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reference genomes, significantly hindering the study of their active

compound synthesis pathways, breeding practices, and assessment of

natural genetic variations.

With continuous improvements in DNA sequencing

technologies, assembling chromosome-level genomes is becoming

increasingly feasible (Kong et al., 2023). Nanopore sequencing,

known for its long-read capability, offers distinct advantages in

genome assembly (MacKenzie and Argyropoulos, 2023). Here, we

employed ONT nanopore sequencing and Hi-C sequence to assemble

the C. gracile genome. The assembly’s contig N50 values were 36.3

Mb. Comparative genomic analysis indicated that the C. gracile

genome had undergone a TE insertion burst. The assembled

genome with gene annotations is the first reference genome for this

species and the genus. The assembled genome in this study will

facilitate research on the C. gracile genome, metabolic engineering,

and the improvement of elite cultivars.
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2 Materials and methods

2.1 Material collection and
genome sequencing

The plants used for genome sequencing were cultivated under

laboratory conditions: 25°C, 3000 lx, and a photoperiod of 16 hours

light to 8 hours dark. High molecular weight DNA (HMW DNA)

was extracted for subsequent library construction. Genomic DNA

was extracted using the Qiagen MagAttract HMW DNA Mini Kit,

following the manufacturer’s protocol. The Hi-C libraries were

prepared by chromatin crosslinking, restricted enzyme (MboI)

digestion, end filling and biotinylation tagging, DNA purification

and shearing. All of the prepared DNA fragments were processed

into paired-end sequencing libraries. Sequencing was performed on

the DNBSEQ-T7 and PromethION platforms.
FIGURE 1

Chromosome-scale assembly of the C. gracile genome. (A). The phenotype of C. gracile (The flower pot size was 15 cm). (B) Heat map of Hi-C
interactions for the C. gracile genome. (C) Circos plot showing features in a 100 kb window on 9 chromosomes of the C. gracile genome.
a. Length of each pseudochromosome (Mb). b. Distribution of repetitive sequences. c. Distribution of gene density. d. Distribution of the
GC content.
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2.2 Genome survey

We used fastp (Chen et al., 2018) version 0.20.1 to trim the raw

reads. Using the trimmed data, we employed Jellyfish (Marçais and

Kingsford, 2011) version 2.3.0 to calculate the K-mer distribution

histogram. Genome size, heterozygosity, and repeat rate were

estimated using GenomeScope 2.0 (Ranallo-Benavidez et al.,

2020). Genomic ploidy was analyzed using Smudgeplot (Ranallo-

Benavidez et al., 2020).
2.3 Genome assembly and gene annotation

The genome was assembled using NextDenovo (Hu et al., 2023)

version 2.5.2. The assembled sequences were polished four times

using NextPolish (Hu et al., 2020) version 1.4.1 with short read.

Repetitive elements in the genome were annotated using EDTA

version 2.0.1 (Ou et al., 2019). Gene prediction was conducted using

Funannotate version 1.8.16 (https://github.com/nextgenusfs/

funannotate), integrating de novo prediction, homology

prediction, and transcriptome sequencing data. Functional

annotation was performed using DIAMOND (Buchfink et al.,

2015) version 2.0.14.152 for protein BLAST against EggNOG/

SwissProt/NR/TAIR databases. tRNAs, rRNAs, miRNAs, and

snRNAs were identified using Infernal (Nawrocki and Eddy,

2013) version 1.1. The completeness of the genome assembly and

protein-coding genes were evaluated using BUSCO (Simão et al.,

2015) version 5.2.2. The assembly quality was assessed by mapping

short-read data to the assembled genome using Bowtie2 (Langmead

and Salzberg, 2012) version 2.4.4. Long-read data was mapped to

the assembled genome using Minimap2 (Li, 2018) version

2.24-r1122.
2.4 Phylogenetic analysis

Protein sequences from C. gracile and ten other flowering plants

(Oryza sativa, Amborella trichopoda, Arabidopsis thaliana, Coffea

canephora, Theobroma cacao, Vitis vinifera, Salvia miltiorrhiza,

Leonurus japonicus, Tectona grandis, and Solanum lycopersicum)

were utilized to create a phylogenetic tree. OrthoVenn3 (Sun et al.,

2023) supported analyses of phylogenetic and gene family

expansions and contractions. The process entailed using

OrthoMCL (Li et al., 2003) for identifying homologous proteins

and unique genes. FastTree2 (Price et al., 2010) version 2.1.7 was

employed to develop the phylogenetic tree using the JTT+CAT

model. SH tests verified node accuracy. Divergence among species

was calculated using the r8s tool (Sanderson, 2003) version 1.81

with known divergence times between A. thaliana and C.

canephora, A. thaliana and V. vinifera, S. lycopersicum and T.

cacao, S. miltiorrhiza and L. japonicus. Additionally, gene family

expansions and contractions were evaluated with CAFE5 (Mendes

et al., 2020), applying a stochastic birth-and-death model. Assess

the statistical significance via conditional likelihood, with P-values

<= 0.01 indicating significant findings.
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2.5 Duplicated gene analysis

MCScanX (Wang et al., 2012) was used to detect synteny and

collinearity within and between species. Duplicated genes

originating from WGDs were extracted from collinear regions.

The downstream analysis script ‘duplicate_gene_classifier’ from

MCScanX was utilized to categorize types of duplicated genes.

Based on codon alignments using the YN substitution model, the

four-fold degenerate transversion (4DTv) distances were calculated

between orthologous and paralogous gene pairs within and between

species. GO enrichment analysis was performed using

ClusterProfiler (Wu et al., 2021) version 4.0. Circos are plotted

using the TBtools (Chen et al., 2020) circos function. The link size

parameter under the link region config setting was set to 0.1.
2.6 RNA-Seq analysis

Previously published RNA-Seq data for C. gracile roots, stems,

leaves, and flowers (Shan et al., 2020) were downloaded. The

downloaded RNA-seq reads were mapped to the C. gracile

genome using HISAT2 (Kim et al., 2019) version 2.2.1. Gene

expression levels were quantified by calculating FPKM values

using StringTie2 (Kovaka et al., 2019) version 2.2.1.
3 Data

3.1 Genome assembly

32.26 Gb short-read data, 32.46 Gb Nanopore long-read data

and 43.2 Gb Hi-C data were generated (Supplementary Table S1).

Genome survey using short-read data revealed a genome size of

269.73 MB, with repeat elements constituting 36.9% and

heterozygosity of 0.27% (Supplementary Figure S1). Genomic

ploidy analysis predicts the C. gracile genome to be diploid

(Supplementary Figure S2). The long-read assembly resulted in a

307 Mb genome comprising 31 contigs, with an N50 of 28.2 Mb.

Post-scaffolding with Hi-C data yielded 9 pseudochromosomes with

an N50 of 36.3 Mb (Figure 1B). The pseudochromosome ranges

from 39.2 Mb to 26.9 Mb, covering 99.7% of the genome.

Chromosomes were numbered in descending order of size. For

the genome assembly, the BUSCO completeness was 97.21%

(Supplementary Table S2). The mapping rates of short-read and

long-read genomic data to the unmasked genome were 88.72% and

99.38%, respectively. The mapping rate of previously published

RNA-Seq data (Shan et al., 2020) was 93.90%. These results

indicated good assembly quality.
3.2 Gene prediction and gene annotation

The genome contains 51.39% repetitive sequences, with Type I

transposable elements (TEs) comprising 36.35% and Type II TEs

15.04%. Within Type I TEs (LTR-RTs), the highest proportion is
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Gypsy (21.92%), followed by Copia (12.47%). Consistent with most

plants, LTR-RT represents the most prevalent elements in the C.

gracile genome. In C. gracile, the Gypsy (21.92%) and Copia

(12.47%) retrotransposon families exhibit a slight contraction

compared to Salvia miltiorrhiza (Gypsy: 29.83%, Copia: 14.77%)

(Song et al., 2020).

After masking repetitive sequences, we predicted 40,083 protein-

coding genes (Figure 1C). The average coding sequence (CDS) length

of genes is 978 bp (Supplementary Table S3). Genes contain 4.33

exons on average. 34,193 (85.3%) predicted genes could be annotated

in public databases (EggNOG, NR, Swiss-Prot, and TAIR). These

results indicate that the C. gracile genome assembly is high quality

and nearly complete. Terpene synthesis-related genes in T. grandis

(Zhao et al., 2019) were used for homology prediction. A total of 42

genes of terpene synthesis-related pathways were predicted. Of these,

14 were involved in the mevalonate (MVA) pathway and 28 in the

methylerythritol phosphate (MEP) pathway (Supplementary Table
Frontiers in Plant Science 04
S6). Additionally, we predicted 732 rRNAs, 634 tRNAs, 492 miRNAs,

and 1009 snRNAs.
3.3 Comparative genomic analysis of C.
gracile with other plants

Combining the protein sequences of C. gracile and ten other

angiosperms yielded 40,083 proteins (Supplementary Table S4).

Clustering identified 34,011 gene families, including 319 single-copy

gene families (Supplementary Table S5). These single-copy genes were

used to construct a phylogenetic tree, incorporating known divergence

times. C. gracile and S. miltiorrhiza diverged approximately 30.615

million years ago (MYA) (Figure 2A). Synteny analysis between C.

gracile and S. miltiorrhiza revealed limited collinearity (Supplementary

Figure S3), indicating significant genomic changes since their

divergence. In C. gracile, there are expansions in 36 gene families
FIGURE 2

Gene family and phylogenetic tree analyses of C. gracile and other representative plant genomes. (A) A phylogenetic tree based on shared single-
copy gene families, gene family expansions, and contractions among C. gracile and ten other species. The bar chart on the right displays gene family
clustering in C. gracile and ten other plant species. (B) Venn Diagram Representation of Gene Family Overlaps and Specificities Among C. gracile, L.
japonicus, T. grandis, and S. miltiorrhiza in Labiatae. (C) Density plot showing the burst of LTR-RTs in C. gracile. (D) 4DTv distribution of duplicate
gene pairs in C. gracile and S. miltiorrhiza, calculated based on the alignment of codons with the YN substitution model. (E) Ks value distribution plot
for orthologous gene sets between C. gracile and S. miltiorrhiza.
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and contractions in 621 gene families. The expanded genes are

primarily enriched in categories related to environmental stress, such

as response to growth hormone, toxic substances, and cadmium ion

(Supplementary Figure S4). A comparison across four Lamiaceae

species showed 508 conserved gene families, suggesting high

conservation within the family (Figure 2B). C. gracile and S.

miltiorrhiza have retained the most species-specific gene families,

which may be functionally unique.

TEs play a significant role in genome evolution. In the C. gracile

genome, the LTR-RT families were analyzed (Figure 2C). There was

one peak (Gypsy or Copia) of LTR-RT amplification within the last

1 million years, indicating a recent burst in LTR-RT amplification in

its genome. We identified 1,119 LTR-RTs (87.4%) with insertion

times less than 2 MYA. The high proportion of young LTR-RTs

suggests that TE transposition has been actively shaping the recent

evolutionary history of C. gracile.

To further investigate the evolutionary differences between C.

gracile and S. miltiorrhiza, we analyzed the four-fold degenerate

transversion (4DTv) rates among orthologous gene pairs within and

between species. The peak 4DTv distance of 0.17 corresponds to the

speciation event that separated C. gracile and S. miltiorrhiza

(Figure 2D). The Ks distribution plot for syntenic genes between

C. gracile and S. miltiorrhiza shows similar trends (Figure 2E). The

duplicated genes in the genome were categorized, resulting in 6,481

whole-genome duplications (WGDs), 3,738 tandem duplications,

2,529 proximal, 18,144 dispersed, and 9,722 singleton duplications.

Tandem duplications are particularly enriched in the secondary

metabolite biosynthetic process, response to toxic substances, and

toxin metabolic process (Supplementary Figure S5), suggesting their

role in metabolizing secondary metabolites and toxic substances.

We find 225 positively selected genes (Ka/Ks > 1) and 2,022

negatively selected genes (Ka/Ks < 1) (Supplementary Figure S6).

Positively selected genes were enriched in cellular respiration, heat

acclimation, and positive regulation of auxin-mediated signaling

pathways, indicating selection by harsh environmental conditions

(Supplementary Figure S7).
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