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Introduction: Genetic improvement in rice increased yield potential and improved

varieties for farmers over the last decades. However, the demand for rice is growing

while its cultivation faces challenges posed by climate change. To address these

challenges, rice breeding programs need to adopt efficient breeding strategies to

provide a steady increase in the rate of genetic gain for major traits. The International

Rice Research Institute (IRRI) breeding program has evolved over time to implement

faster andmore efficient breeding techniques such as rapid generation advance (RGA)

and genomic selection (GS). Simulation experiments support data-driven optimization

of the breeding program toward the desired rate of genetic gain for key traits.

Methods: This study used stochastic simulations to compare breeding schemes

with different cycle times. The objective was to assess the impact of different

genomic selection strategies on medium- and long-term genetic gain. Four

genomic selection schemes were simulated, representing the past approaches (5

years recycling), current schemes (3 years recycling), and two options for the

future schemes (both with 2 years recycling).

Results: The 2-Year within-cohort prediction scheme showed a significant

increase in genetic gain in the medium-term horizon. Specifically, it resulted in

a 22%, 24%, and 27% increase over the current scheme in the zero, intermediate,

and high genotype-by-environment interaction (GEI) contexts, respectively. On

the other hand, the 2-Year scheme based on between-cohort prediction was

more efficient in the long term, but only in the absence of GEI. Consistent with

our expectations, the shortest breeding schemes showed an increase in genetic

gain and faster depletion of genetic variance compared to the current scheme.

Discussion: These results suggest that higher rates of genetic gain are achievable

in the breeding program by further reducing the cycle time and adjusting the

target population of environments. However, more attention is needed regarding

the crossing strategy to use genetic variance optimally.
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1 Introduction

Rice (Oryza sativa L.) provides sustenance for more than half of

humanity. Low- and middle-income countries across the globe

depend on rice as a primary dietary and nutrition source. By

developing more productive and adapted varieties, genetic

improvement has played a critical role in achieving higher rice

production levels in smallholder fields (Prasad et al., 2017; Siddiq

and Vemireddy, 2021). However, rice cultivation is facing

important challenges as the population continues to grow in

countries where rice consumption is high (Godfray et al., 2010;

Ray et al., 2013; Tilman et al., 2011). Climate change makes growing

conditions more difficult in these regions. Maximizing yield

potential and resource use efficiency is crucial to overcoming

these challenges (Siddiq and Vemireddy, 2021). Despite the

important efforts of breeding programs, experts consider the

levels of genetic gain achieved until now as low, failing to meet

growing demand (Ray et al., 2013; Seck et al., 2023). As the breeding

targets are becoming more advanced and complex, rice breeding

programs need to develop high-yielding and adapted varieties that

are more efficient, providing a steady increase in the rate of genetic

gain in grain yield and other economically important traits (Cobb

et al., 2019; Xu et al., 2021). Therefore, the optimization of breeding

strategies is essential for breeders to increase the rate of genetic gain

(Cobb et al., 2019; Rutkoski, 2019; Seck et al., 2023). This

optimization dynamic potentially implies a wide range of

scenarios that would be unrealistic to explore with field trials.

Empirical testing of hypotheses is time- and resource-consuming.

Simulation appears to be an interesting and reasonable alternative

to test a wide range of hypotheses rapidly and at a low cost.

Owing to the development of high-performance tools for

simulating breeding programs, breeders are increasingly using

stochastic simulations to evaluate complex breeding strategies

(Bančič et al., 2023; Gaynor et al., 2021; Li et al., 2012; Liu et al.,

2019; Pook et al., 2020; Sun et al., 2011). In most cases, prospective

studies are conducted to i) evaluate the performance of breeding

schemes over the medium-to-long term, ii) compare several

schemes, and iii) identify and guide the choice of the most

effective breeding strategy. Simulations can help breeders guide

their decisions. They can use simulations to choose and define the

optimal number of crosses and progeny size (Covarrubias-Pazaran

et al., 2022), the best genomic selection model, the extent of the

target population of environments (Bančič et al., 2024), and a

selection index, among other uses. Gaynor et al. (2017)

demonstrated the effectiveness of using genomic selection (GS) in

both single and two-part breeding strategies for inbred lines. Their

study highlighted the advantages of implementing genomic

selection, particularly in the early stages of the breeding process.

Stochastic simulation was also used to evaluate the effectiveness of a

two-part breeding program in clonal breeding. Parent selection

based on genomic predicted cross-performance worked better than

selection based on genomic estimated breeding values (GEBVs)

(Werner et al., 2023). Cassava breeding simulations were used to

evaluate the optimal number of parents along with the optimal

number of crosses over two time horizons of 20 and 60 years
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(Covarrubias-Pazaran et al., 2022). Another approach — genetic

complementation between heterotic genetic pools in a reciprocal

recurrent selection context — also demonstrated the advantage of

stochastic simulation (Covarrubias-Pazaran et al., 2023).

With its long history of innovation and important contribution to

modern rice breeding, the International Rice Research Institute (IRRI)

breeding program offers an interesting example of how breeding

schemes can be optimized by integrating new knowledge and modern

tools. IRRI’s breeding program began in 1960 with the main objective

of addressing the food crisis in Asia by developing high-yielding,

fertilizer-responsive, and lodging-resistant rice varieties (Peng and

Khushg, 2003). Short-statured plants were ideal for combating the

lodging problem. Breeders at IRRI created IR8, the first high-yielding,

semi-dwarf variety. IR8 was developed using the pedigree method and

visual selection, the most common approaches used at that time.With

the evolution of demands and constraints related to rice production,

breeding targets became more complex, focusing on higher yield

potential, grain quality, disease and insect resistance, and other traits

of economic importance (Ali et al., 2021; Prasad et al., 2017; Siddiq

and Vemireddy, 2021). This new context led to the integration of

more information via multi-environment testing andmore tools, such

as breeding informatics or high-throughput genotyping (Cobb et al.,

2019, 2018; Xu et al., 2017). However, for several decades, the main

approach to developing inbred varieties remained the pedigree

method, even if it implied a long breeding cycle (around 8 - 10

years). To overcome this limitation, IRRI’s breeding program has

recently initiated an optimization process in its strategy to develop

modern rice varieties. The approach incorporates faster breeding

techniques to shorten the breeding cycle time and, therefore,

increase the rate of genetic gains. Initially, the new breeding strategy

was focused on the rapid fixation of segregating material through

single seed descent using rapid generation advance (RGA) techniques

to reduce costs and time to fixation. RGA was designed to take place

in the greenhouse on a seedling plate, under artificial short days,

at high temperatures, allowing up to four generations a year

(Beredo et al., 2016; Collard et al., 2019, 2017). RGA reduced the

breeding cycle to about 6 or 7 years. Taking advantage of the rapid

fixation of the lines and low-cost molecular markers, the program

then implemented routine marker-assisted selection for major

disease-resistance genes. The objective was to quickly increase the

frequencies of critical alleles in the program (Cobb et al., 2018). The

last main evolution in the breeding scheme was integrating genomic

selection (GS) for population improvement, within a closed

system and based on elite-by-elite parental crosses (Juma et al.,

2021; Khanna et al., 2022). Using genomic information in multi-

environment evaluation for within-cohort prediction helped to

increase the selection intensity and accuracy on traits like grain

yield. In this context, a “cohort” refers to a group of lines treated as

a unit and generated from a set of crosses in each breeding cycle

(parallel breeding cycles). The integration of GS enabled the program

to decrease the cycle time to 5 years (Bartholomé et al., 2022).

In the past, breeding programs at IRRI evaluated early-stage

breeding lines mainly at one location. The best-performing lines

were then selected and distributed to national agricultural research

partners for further evaluation in late-stage yield trials. However, this
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tactic had limitations. The approach reduced the likelihood of

identifying suitable lines for national-level nominations at a

particular target population of environments (TPE) because the

early-stage evaluation does not happen in the TPE. Moreover, the

small proportion of best-performing breeding lines produced by this

strategy tends to be stable and broadly adapted. In recent years, IRRI

has changed its evaluation strategy. Now, advanced yield trials are

conducted in the regions by the partners. This approach, facilitated by

the expansion of the breeding network, harnesses data from multiple

locations within countries to inform breeding decisions. Utilizing such

data is crucial for identifying superior genotypes within the TPE and

for ensuring the development of stable, high-yielding cultivars for

farmers across diverse environments (Bančič et al., 2024; Tolhurst et al.,

2022). However, achieving comprehensive coverage of the TPEs poses

challenges, particularly when resources limit the number of testing

locations and years. In that case, the breeder needs to deal with the

available environments and the underlying genotype-by-environment

interactions (GEI). Identifying GEI, which reflects differential genotype

responses across environments or shifts in performance ranks, requires

integrated approaches to genotype evaluation across multiple

environments (Malosetti et al., 2013; Zakir, 2018). For complex traits

controlled by many genes, like grain yield, GEI is usually considered to

represent an important proportion of the total phenotypic variance

(Cooper et al., 1999; Cullis et al., 2000). GEI’s importance impacts the

evaluation strategy as well as the prediction of the phenotypic

performance in the case of a strategy based on GS. Recently, IRRI

scientists have worked to better integrate the information of multi-

environment trials (MET) and take into account GEI in the context of

genomic predictions (Nguyen et al., 2023). Results have shown that the

typical level of GEI relative to the genetic main effect variance (GEI:

main) encountered for grain yield was of the order of 792:296.

In this context, sustainable yield improvement in rice depends

on understanding the impacts of changes in the breeding strategies.

Through simulation experiments, this study aims to evaluate cycle

shortening and GS effects on medium- and long-term genetic gain

and the efficacy of future strategies for the IRRI breeding program.

The analysis uses different GS methods (within vs. between cohort

prediction) to compare past, present and future strategies to achieve

high rate of genetic gain. We seek to identify optimal strategies to

maximize genetic gain and efficiently use the available genetic

variability. The efficiency of the different strategies was compared

under different levels of GEI, which reflect the mega-environments

in which the breeding program operates with its partners. Such

insights are crucial for guiding the future direction of rice breeding

programs, particularly in the face of escalating challenges posed by

climate change and increasing demand.
2 Materials and methods

2.1 Breeding schemes

The IRRI breeding strategy for a transplanted medium-maturity

rice breeding pipeline (former irrigated breeding program) has

evolved from classical pedigree breeding with phenotypic
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selection to GEBV-based GS (Figure 1). Integrating GS, in

conjunction with other tools, has helped reduce cycle time due to

the higher accuracy of the merit surrogates, allowing earlier

decision-making. In this study, we compared past, present, and

potential future breeding schemes using simulation. We evaluated

the impact of shortening the breeding cycle (earlier parental

selection) on achieving high genetic gain and other breeding-

program performance indicators. The past, present and future

breeding strategies are described below. The breeding schemes are

named according to the cycle length.

2.1.1 Previous breeding scheme: 5-Year parent
recycling scheme

The 5-Year parent recycling scheme is based on RGA and

genomic selection. The strategy involves two stages of multi-

location yield evaluation to select elite breeding lines at the F9 or

F10 generation (Figure 1). The scheme is designed as a closed

system. The recycling of the elite lines as parents for the subsequent

cycle takes place in Year 5 (Stage 1 yield trials) based on genomic

estimated breeding values (GEBVs). The main steps are

described below.

Crosses (Year 1): At the beginning of each cycle, 40 unique elite

lines are selected as parents. The crossing plan would be based on a

half-diallel; however, given the large number of combinations, only

30 crosses are selected based on the coefficient of parentage between

crossed lines, the average breeding values for grain yield, the

appropriate maturity, and the frequency of major QTLs (biotic

and abiotic resistance, grain quality).

RGA (Year 2): Breeders employ the single seed descent (SSD)

method to establish F2 families for line testing and yield evaluation.

This rapid fixation process, known as rapid generation advance

(RGA), allows for the development of four generations in a single

year. The process generates 240 F6 lines from each selected cross,

resulting in 7,200 lines.

Line testing and marker-assisted selection (Year 3): This step

controls the uniformity of the fixed lines (contamination or cross-

pollination) and discards lines susceptible to diseases and stresses.

The 7200 F6 lines from the RGA system are evaluated in head-rows

(one line per row). During this step, called line stage testing (LST),

marker-assisted selection (MAS) identifies materials with disease

resistance (blast and bacterial blight), along with additional

selections for other agronomic traits such as earliness, plant

height, and grain quality. The selection is limited to within-family

selection. Forty lines per family are advanced, reducing the number

of lines to 1,200 for the first-stage yield trial.

Stage 1 of yield evaluation (Year 4): An initial yield trial of the

1,200 lines is carried out on large plots in a single season. The purpose

of this trial is mainly seed amplification for METs in different target

breeding zones. These 1200 lines are for observational yield trials

(OYT). The 1,200 OYT lines are also genotyped using SNP markers

of the 1k-RiCA (Arbelaez et al., 2019).

Stage 1 training set (Year 5): A within-cohort prediction is

performed to select parents for subsequent cycles and advancement

for Stage 2 yield trials. For this purpose, a representative subset of

200 genotypes (covering all crosses) is retrieved from the 1,200
frontiersin.org
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lines. This training population, coded EST (estimation set), is

shipped to regional partners and evaluated in METs in four

locations in one season, with two replications. These data are

used to train the GS model and predict the GEBVs of the 1,200

OYT lines. The GEBVs of Stage 1 are then used to select parents for

the next cycle and line advancement in the Stage 2 yield trial.

Stage 2 of yield evaluation (Year 6): A set of 30 lines is selected

as future products from OYT lines based on GEBVs. To acquire

more precise genetic values, these selected lines are submitted to a

second stage of yield trials in the different breeding zones. They are

evaluated in four locations in one season, with two replicates in each

field trial. This step, called the advanced yield trial (AYT), ends the

breeding cycle and evaluates the performance of the final lines. The

process requires about six years to develop high-performing lines,

which are then submitted to multi-location trials in national trial

systems for variety release in subsequent years.

2.1.2 Current breeding scheme: 3-Year parent
recycling scheme

The 3-Year recycling scheme is derived from the 5-Year scheme

framework, with an early exit of the line fixation stage at the F4

generation (Figure 1). The 7,200 lines are reduced to 1,200 lines

through the MAS in the second season of Year 2 and advanced to

the F5 generation, followed by a seed amplification step for Stage 1

yield trials. In Year 3, a training set of 200 lines selected from the

1,200 lines based on markers is shipped to regions to be phenotyped
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in MET yield evaluations in four locations in each region. The

second season of Year 3 is allotted to the within-cohort prediction

of the breeding values of the 1,200 lines. The GEBVs are used to

select lines that integrate the next cycle as parents and lines for

advancement in the AYTs of Stage 2 in Year 4, which follows the

same process as the 5-Year scheme. The LST and OYT stages are

dropped, hence reducing the time from crossing to parent’s

recycling by two years and the product development cycle to

four years.

2.1.3 Future schemes: 2-year parent
recycling schemes

Alternative breeding schemes (Figure 1) were designed using

the previous scheme’s template and focused mainly on shortening

the breeding cycle length.

The 2-Year within-cohort prediction (2-Year-WP) is an

upgrade of the previous 3-Year scheme by reducing the RGA

exit at the F3 generation, followed by MAS to reduce the 7200

genotypes to 1,200 genotypes. The 1,200 F3 genotypes are

advanced to F4 through the seed amplification stage during the

first season of Year 2. Stage 1 of the METs is carried out during the

second season of Year 2. The training set sample of Stage 1

followed the same method as in previous breeding schemes. The

GEBVs of the 1,200 lines after Stage 1 were used both to select

parents for the next cycle in Year 2 and line advancement in the

Stage 2 yield trial in Year 3.
FIGURE 1

Graphical representation of the breeding schemes simulated in this study. In columns, the different schemes are presented as follows: Baseline
(phenotypic selection); 5-Year parent recycling scheme; 3-Year parent recycling scheme, the 2-Year between-cohort prediction recycling scheme
(2-Year-BP), and the 2-Year within-cohort prediction recycling scheme (2-Year-WP). RGA, Rapid Generation Advancement; LST, Line Stage Testing;
OYT, Observational Yield Trial; SA, Seed Amplification; EST, Estimation Set) AYT, Advanced Yield Trial; GS, Genomic Selection; MET, Multi
Environment Trial.
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The 2-Year between-cohort prediction (2-Year-BP) is similar to

the 3-Year scheme with a shift to between-cohort GEBVs prediction

of untested genotypes (predicted population) based on previous

data (training population). The between-cohort prediction enables

the estimation of the GEBVs of the 1,200 lines in Year 2 rather than

waiting for data from the training set in Year 3. To do so, an initial

training population is built by gathering data from the Stage 1 MET

yield trials of the last three training sets. The parents of the next

breeding cycle and the line advancement to Stage 2 are selected

based on the GEBVs in Year 2. In Year 3, a training set is selected

from the 1,200 lines and evaluated on MET trials across the four

locations in each breeding zone. The data from the current training

set is included in the training set for the next cycle prediction and so

on. Line advancement in Stage 2 for product development is carried

out in Year 4. Indeed, the 2-Year-BP recycling scheme follows the

same operations as the 3-Year cycle scheme, but the parental

selection decision occurs in Year 2.

2.1.4 Baseline: a reference based on
phenotypic selection

We have included a baseline scheme in our study as a reference,

corresponding to the 5-Year scheme without GS. In this approach,

parent selection and advancement are based solely on phenotypic

data. Parents for the next cycle are selected from the equivalent of

Stage 1 to maintain the same recycling length. The baseline

indicates the impact of genomic selection on genetic performance.
2.2 Simulation approach

The AlphaSimR program (CRAN - Package AlphaSimR) was

used to perform the stochastic simulations of the rice genome

structure (ancestral haplotypes), the genetic architecture of the trait

of interest, and the breeding scheme (Gaynor et al., 2021). The

comparison between schemes was based on 100 iterations for each

scheme with the same initial burn-in scheme. Considering the

relative complexity of some breeding operations and the structure

of AlphaSimR, we adopted the following assumptions about the

breeding process: (i) the 30 crosses from the half-diallel design are

randomly selected; (ii) as a single trait is being simulated (grain
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yield), MAS step is simulated through phenotypic selection with low

heritability; (iii) the training set is also randomly selected. All these

actions are equally applied in all breeding scenarios.

2.2.1 Base population establishment: burn-in
A burn-in phase begins with phenotypic selection to establish a

common starting point for the evaluated breeding schemes. The

burn-in scheme was similar to the baseline scheme with a reduced

selection pressure and multi-cohort recycling. Eighty non-inbred

founders are generated based on the parameters described in

Table 1. To initiate the first cycle, 100 crosses are made from the

80 non-inbred individuals. The 12,000 lines are then advanced to

the F6 generation. Two thousand five hundred lines are selected

from the LST stage and advanced to the OYT stage. After

phenotyping in OYT, 600 lines are selected and evaluated in

Stage 1, from which 50 lines are selected and evaluated in the last

Stage 2 trial. All the selections are based only on phenotypic values.

The 80 parents for the next cycle are selected from the last two yield

trial stages based on phenotypic performance. The burn-in was run

over 40 years from the founders’ population. Then, each evaluated

breeding scheme was simulated independently over 30 years from

the same base population derived from the last burn-in cycle.

2.2.2 Genomic structure and trait modeling
The genome of 12 chromosomes was simulated based on the

information on the rice genome (Eckardt, 2000; Jackson, 2016). The

founder haplotype sequences, including the 12 chromosomes, were

simulated using the Markovian Coalescent Simulator (MaCS)

algorithm implemented in AlphaSimR, assuming a diploid

genomic structure, a chromosome length of 1.20 morgan, and

3x107 base pair (bp), and an effective population size of 60,

representing the effective size of the non-elite genetic materials

(Table 1). The mutation rate is set to 2.5x10-8/bp.

A single polygenic trait representing grain yield was simulated

for all breeding schemes. Only additive and genotype-by-

environment interaction effects were modeled since dominance is

less relevant for inbred lines. This genetic architecture was

simulated by assuming 3,000 QTLs equally distributed across

chromosomes. The genetic value of each individual is modeled by

the following equation (Gaynor, 2023):
TABLE 1 Simulation features.

Phase Parameters

Burn-in Genome sequence 12 chromosome pairs
1.20 Morgans per chromosome
3 × 107 base pairs per chromosome

Founder genotypes 80 non-inbred founders
Effective population size = 60
3000 QTLs (additive and GEI effects) Normally distributed QTL effects
Genetic mean = 0 and Genetic variance = 1. GEI variance = c(0, 4, 8)
H2_Plant = 0.001 and H2_Plot = 0.10

Recent phenotypic breeding 40 years of conventional phenotypic breeding from the founder population

Evaluation Breeding schemes 30 years of future breeding.
Testing alternative breeding schemes according to the recycle time and integration of
genomic selection
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GV =   m +onQTL
1 axA + w  ∗onQTL

1 ɡxA (1)

where GV is the genetic value of an individual; m is an intercept,

representing the mean genetic value parameter defined in the founder

population and set to 0; the additive effect of the total QTL is a

summation over all QTL for the product of the additive effect (a) and

the scaled additive dosage vector (xA). The additive effect of each QTL

value is sampled from a standard normal distribution and scaled to

achieve the genetic variance sA = 1, defined in the founder

population. The scaled additive genotype dosage scales the relative

allele dosage {-1; 0; 1} to set the values for opposing homozygotes to

-1 and 1, and the heterozygote values to 0. The genotype-by-

environment interaction effect of each QTL represents a product of

an environmental covariate effect (w) and a genotype-specific slope

(genetic component). The environmental covariate, which represents

the random environmental component of the GEI, was sampled each

year from a normal distribution. The genotype-specific slope is

modeled as a summation over all QTLs for the product of a

GEI effect (ɡ) and the scaled additive dosage (xA). The GEI effects

are sampled from a normal distribution with a mean of zero

and a variance equal to the defined genotype-by-environment

interaction variance.

The phenotypic value was modeled as the sum of the GV and an

environmental deviation. Environmental error deviates are sampled

from a normal distribution with a mean equal to 0 and a variance

equal to the defined environmental error variance. Therefore, the

precision of phenotyping relied mainly on environmental error

variance. The genetic variance was set to 1, and two levels of

environmental variance were set according to the stages of the

field trials. The two levels of the environmental variance are defined

as corresponding to (i) a row heritability of 0.001 on LST and seed

amplification stages (ii) and a plot heritability of 0.10 on MET yield

trials. The GEI variance was set to three levels to assess the effect

of GEI interaction on breeding performance and to highlight

the importance of the TPE definition. The approach defined

GEI variances of 0, 4, and 8, corresponding to null, intermediate,

and high genotype-by-environment interaction, respectively

(Supplementary Table S1).
2.2.3 The estimation of genomic breeding values
To mimic genotyping using the 1k RiCA platform, 1,200 SNP

markers uniformly distributed across the 12 chromosomes were

simulated. The information was used for applying genomic

selection for parental selection and for line advancement in

Stage 2. The prediction of the GEBVs for line advancement and

parent selection at Stage 1 was performed by using the Ridge

Regression Best Linear Unbiased Prediction (RR-BLUP) model

for all breeding schemes according to the following model:

y = 1b + Zu + e (2)

where y is an (n × 1) vector of trait phenotypes; b is a vector

fixed effect; 1 is a (n x 1) vector of 1; u is an (m x 1) vector of marker

effects; Z is an (n x m) design matrix containing the genotypes of n

lines for m biallelic SNP markers, coded as {-1,0,1}; e is a vector of

residuals. The u and e vectors are assumed to be random.
Frontiers in Plant Science 06
The RR-BLUP model for genomic prediction is fitted using the

RRBLUP function from the AlphaSimR package.

In the 2-Year-WP, 3-Year, and 5-Year recycling schemes, the

GEBVs estimation of Stage 1 for line advancement and parent

selection is performed based on data from the training population

available in years 2, 3, and 5, respectively. In each cycle, a new

training set of 200 lines was randomly selected, including all

families. Unlike the 2 Year-BP scheme, the genomic prediction in

the first cycle was based on an initial training population selected

from the last three years of yield evaluations in the burn-in phase,

consisting of a total of 600 lines. After the first cycle, a subset of 200

lines, randomly selected from the 1,200 lines and including all

families, is evaluated on MET trials and added to the training

population for prediction of the next cycle, and so on.

2.2.4 Breeding schemes comparison
Realized genetic gain, prediction accuracy, genetic variance, and

frequency of the favorable alleles made up the four performance

indicators assessed in this analysis. The realized genetic gain (DG)
was estimated as the regression coefficient of the mean genetic value

of Stage 1 against the breeding years by fitting the following model:

Yi = m + bxi + di (3)

where Yi is the mean genetic value of year i; m is the intercept; b
is the linear regression coefficient representing the rate of genetic

gain per unit and year; xi represents the breeding year; and di is the
deviation from the linear model.

The average of the true genetic value for each replicate was

centered on zero in Year 0 as the difference between the average of

the true genetic value of the Stage 1 lines in each cycle and the

average of the true genetic value in Year 0 corresponding to the base

population. Two-time horizons were compared to assess genetic

gain: the first 15 years (medium-term) and all 30 years (long-term).

The evolution of the additive genetic variation over the breeding

cycle was also tracked at Stage 1, as well as the prediction accuracy

and the frequency of the favorable allele in selected parents.

The prediction accuracy was calculated as the correlation

coefficient between the GEBVs and the true genetic values. For

the baseline, since the selection is made only on phenotypic

performance, the accuracy was estimated as the correlation with

the true genetic values.
3 Results

3.1 Realized genetic gain among
breeding schemes

The true genetic values of the breeding population showed a

continuous increase over the 30 years of selection for all the

breeding schemes, resulting in positive genetic gains (Figure 2;

Table 2). The baseline strategy was the lowest-performing scheme,

regardless of the GEI level and the breeding horizon, achieving an

annual rate of genetic gain of 1.04% and 1.08% for intermediate (4)

and high (8) GEI levels, respectively, and a maximum annual
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genetic gain of 1.29% when GEI was 0 (Table 2). Incorporating GS

without changing the cycle length improved the realized genetic

gain compared to the baseline. Indeed, the 5-Year scheme delivered

a rate of genetic gain of 1.69%, 1.35%, and 1.33% for GEI levels 8, 4,

and 0, respectively. The breeding strategies with shorter recycling

time (two or three years) had the highest rates of genetic gain,

ranging from 1.25 to 2.41% in the medium-term (15 years) and 1.08

to 1.83% in the long-term (30 years), depending on the level of GEI

(Table 2). As expected, the rates of genetic gain decreased as the

intensity of GEI increased (Figure 2; Supplementary Figures S1, S2),

but the sensitivity of the breeding strategies relative to GEI

levels varied.

When comparing the 2-Year-WP (within cohort) and 2-Year-

BP (between cohorts), we observed that the latter was more

sensitive to GEI, resulting in a strong reduction in genetic gain as

the level of GEI increased. On the other hand, the ranking order of

2-Year-WP, 3-Year, and 5-Year schemes, as well as the baseline,

remained constant irrespective of the level of GEI. When

considering the medium-term, the 2-Year-WP was the best-

performing breeding scheme at all GEI levels, followed by the 2-

Year-BP, the 3-Year, and the 5-Year scheme. The 2-Year-WP was

up to 28% and 46% better than the 3-Year and 5-Year schemes,

respectively (Table 3). For the 2-Year-BP, the gain over the 3-Year

and the 5-Year schemes was highly dependent on the level of GEI.

At GEI = 0, the increase in genetic gain was 20% and 40% relative to

the 3-Year and 5-Year schemes, respectively. However, this

advantage dropped to -18% and -6% for the higher levels of GEI.

When considering the long-term, the advantage of the 2-Year-WP

was reduced. It ranged from 3% to 10% compared to the 3-Year
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scheme and from 10% to 21% compared to the 5-Year scheme

(Table 3). Contrary to 2-Year-WP, the 2-Year-BP performed better

in the long term with an increase of -10% to 29% and of -1% to 38%

compared to the 3-Year and 5-Year schemes, respectively. Contrary

to the 2-Year-WP, the advantage of the 2-Year-BP was higher when

the level of GEI decreased.
3.2 Accuracy of genomic predictions

Considering all the scenarios, the accuracy of the genomic

predictions ranged from 0.27 to 0.58 in the absence of GEI

(Figure 3; Supplementary Table S2). As the level of GEI

increased, the accuracy logically decreased and ranged from 0.14

to 0.43 for intermediate GEI and from 0.12 to 0.41 for high GEI.

Accuracies tended to decrease over time, but the magnitude was

related to the scheme and the GEI level. Indeed, the decline was

more pronounced for the schemes with the shortest breeding cycle

(2-Year-WP, and 2-Year-BP). The 2-Year-BP displayed the lowest

prediction accuracy in all GEI scenarios. The 2-Year-BP accuracy

showed a marked increase during the first couple of years before

declining continuously. It reached a maximum accuracy of 0.49,

0.32, and 0.24 in absent-, intermediate-, and high-GEI, respectively.

In the absence of GEI, the accuracy for the 2-Year-WP decreased

from 0.52 to 0.27 in Year 30 (-48%), while the accuracy for 2-Year-

BP decreased from 0.40 to 0.32 (-32%). In the presence of GEI, the

reduction in accuracy was less important (Figure 3; Supplementary

Table S2). The accuracy for 3-Year schemes was more stable, with a

20 to 26% reduction for the high level of GEI and in the absence of
FIGURE 2

True genetic value trends at the parent-recycling stage over 30 breeding years for the four breeding schemes and the Baseline. Three levels of
genotype-by-environment interaction (GEI) variance are represented: 0 (left panel), 4 (middle panel), and 8 (right panel) times greater than the main
genetic variance. The breeding schemes are represented as colored lines: the 5-Year parent recycling scheme (5-Year), 3-Year parent recycling
scheme (3-Year), the 2-Year between-cohort prediction recycling scheme (2-Year-BP), and the 2-Year within-cohort prediction recycling scheme
(2-Year-WP). The solid lines represent the average value, and the shaded areas represent the associated standard error based on 100 replicates for
each scenario.
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GEI, respectively. A similar trend was observed for the 5-Year

scheme when GEI was absent, displaying 18% reduction and a

slightly null reduction in intermediate and high GEI. The variation

in accuracy between years was more visible for the scheme based on

with-cohort prediction.
3.3 Evolution of the genetic variance and
the frequency of favorable alleles

The evolution in genetic variance showed an important

depletion over the 30 years in all breeding schemes (Figure 3).

The decline of the variance over the cycles was linked to the GEI

levels, with a faster decline in the absence of GEI (Supplementary

Figure S4; Supplementary Table S2). In addition, the initial genetic
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variance was higher when the GEI levels were intermediate and

high. However, a big difference was observed between the genomic

selection schemes and the baseline based on phenotypic selection.

The variance decrease was much less severe in the baseline scenario,

irrespective of the GEI level, with a decrease of 16%, 22%, and 35%

relative to the base population genetic variance after 30 years of

breeding, when GEI levels were 0, 4, and 8 respectively.

In contrast, the GS schemes showed a faster decline in genetic

variance over the breeding cycles. The reduction of the genetic

variance over the 30 breeding years was more important in the

2-Year-WP scheme in all GEI levels followed by the 3-Year scheme.

The 2-Year-BP scheme showed a depletion pattern slightly similar

to the 5-Year pattern, especially at intermediate and high levels of

GEI. Additionally, the variance of the GS schemes was more severe

during the first 15 years. The 2-Year-WP scheme gave a reduction
TABLE 3 Genetic gains for 2-Year-BP and 2-Year-WP schemes relative to the 3-Year and 5-Year schemes, expressed as a percentage.

Scheme GEI
Medium-Term (15 years) Long-Term (30 years)

3-Year 5-Year 3-Year 5-Year

2-Year-BP

0 19.92 39.61 29.44 37.87

4 -10.47 3.64 1.27 12.68

8 -18.18 -6.13 -10.39 -1.43

2-Year-WP

0 22.41 42.51 3.33 10.06

4 23.56 43.03 6.33 18.31

8 27.27 46.01 9.74 20.71
The three levels of genotype-by-environment interaction (GEI) variance are presented.
TABLE 2 Genetic gain per year and rate of genetic gain per year for all breeding schemes.

Scheme GEI
Medium-Term (15 years) Long-Term (30 years)

Gain per year (± SE) Rate per year (%) Gain per year (± SE) Rate per year (%)

2-Year-BP

0

0.289 ± 0.0054 2.36 0.233 ± 0.0044 1.83

2-Year-WP 0.295 ± 0.0053 2.41 0.186 ± 0.004 1.46

3-Year 0.241 ± 0.0038 1.97 0.18 ± 0.0032 1.41

5-Year 0.207 ± 0.003 1.69 0.169 ± 0.0026 1.32

Baseline 0.158 ± 0.0026 1.29 0.148 ± 0.0026 1.16

2-Year-BP

4

0.171 ± 0.0067 1.39 0.16 ± 0.0045 1.25

2-Year-WP 0.236 ± 0.0065 1.92 0.168 ± 0.0039 1.32

3-Year 0.191 ± 0.005 1.56 0.158 ± 0.003 1.24

5-Year 0.165 ± 0.0048 1.35 0.142 ± 0.0031 1.11

Baseline 0.128 ± 0.0034 1.04 0.124 ± 0.0024 0.97

2-Year-BP

8

0.153 ± 0.0074 1.25 0.138 ± 0.005 1.08

2-Year-WP 0.238 ± 0.0065 1.94 0.169 ± 0.0042 1.32

3-Year 0.187 ± 0.005 1.53 0.154 ± 0.0035 1.21

5-Year 0.163 ± 0.0049 1.33 0.14 ± 0.0033 1.10

Baseline 0.133 ± 0.0041 1.08 0.125 ± 0.0028 0.98
Three levels of genotype-by-environment interaction (GEI) variances are compared: 0, 4, and 8. The different breeding schemes are: 5-Year parent recycling scheme (5-Year), 3-Year parent
recycling scheme (3-Year), 2-Year between-cohort prediction recycling scheme (2-Year-BP), and 2-Year within-cohort prediction recycling scheme (2-Year-WP).
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of the genetic variance relative to the base population variance of

75%, 69%, and 71% during the first 15 years when the GEI levels

were 0, 4, and 8, respectively. With regards to the 2-Year-BP, the

depletion of genetic variance in the medium-term was less severe

compared to the 2-Year-WP. For GEI levels of 0, 4, and 8, a relative

decrease of the 2-Year-BP genetic variance compared to the base

population variance was observed at 55%, 43%, and

45%, respectively.

This decrease in the genetic variance was associated with the

fixation or loss of favorable alleles for the 3000 simulated QTLs over

the years (Figure 4; Table 4; Supplementary Figure S5) Initially, in

the base population, 25% of the 3000 favorable alleles were nearly

fixed (frequency greater than 0.90), whereas 18% were in very low

frequency (lower than 0.10). For all schemes, the level of fixation or

loss of favorable alleles was slightly higher in the absence of GEI

(Supplementary Figure S5). The level of fixation was the lowest for

the baseline, with a maximum of 29% of the favorable alleles fixed

after 30 years. Among the GS schemes, the 2-Year-WP showed the

highest degree of fixation and loss in both the medium- and long-

term. In the medium term, from 43 to 47% of all the favorable alleles

were fixed in the population depending on the level of GEI. These

frequencies reached 51 to 55% in the long term. A similar pattern

was observed for the other GS schemes but with a lower degree of
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fixation or loss of favorable alleles (Table 4). The 3-Year scheme

presented an intermediate level of fixation compared to the 2-Year-

WP and 2-Year-BP, with frequencies ranging from 39 to 44% and

from 49 to 53% for the medium- and long-term, respectively. For

the 2-Year-BP, the degree of fixation ranged from 35 to 39% in the

medium-term and from 45 to 49% in the long term. Interestingly,

for the GS schemes, the proportion of fixed favorable alleles in the

long term was consistently 9 to 11% higher than those lost for

intermediate and high GEI levels (Figure 4; Table 4). This is in

contrast with the baseline, for which the proportion of favorable

alleles fixed in the long term was higher by 7 to 8% compared to

those lost at the same time.
4 Discussion

4.1 Reducing breeding cycle time

In recent years, one focus of the IRRI breeding strategy has been

on shortening the breeding cycle time to enhance genetic gain for

grain yield. Initially, efforts have beenmade to speed up the fixation of

segregating material. The RGA methodology enabled the breeding

program to shorten the line development time and breeding cycle by
FIGURE 3

Evolution of genetic variance (top panels) and genomic prediction accuracy (bottom panels) at the parent-recycling stage over 30 breeding years for
all breeding schemes. Three levels of genotype-by-environment interaction (GEI) variance are represented: 0 (left panel), 4 (middle panel), and 8
(right panel). The colored lines represent the different breeding schemes and the Baseline: the 5-Year parent recycling scheme (5-Year), 3-Year
parent recycling scheme (3-Year), the 2-Year between-cohort prediction recycling scheme (2-Year-BP), and the 2-Year within-cohort prediction
recycling scheme (2-Year-WP). The solid lines represent the average value, and the shaded areas represent the associated standard error based on
100 replicates for each scenario.
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at least two years (Collard et al., 2019, 2017). More recently, the

breeding cycle time was further reduced by the integration of

genomic selection (Bartholomé et al., 2022). This reduction in cycle

time has been recognized as beneficial for boosting the rate of genetic

gain. Indeed, among the variables in the breeder’s equation, reducing

the time required to complete the breeding cycle is the most

straightforward approach to increasing rates of genetic gain in

plant breeding programs (Atlin and Econopouly, 2022; Cobb et al.,

2019; Sinha et al., 2021). Although reducing the generation interval

through genomic selection has shown potential for higher genetic

gain compared to phenotypic selection programs (Biswas et al., 2023;

Gaynor et al., 2017; Heffner et al., 2010; Lubanga et al., 2023; Tessema

et al., 2020; Werner et al., 2023), its effectiveness is amplified when

combined with speed breeding techniques (Collard et al., 2017;

Kabade et al., 2024; Li et al., 2015).
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In the present study, we used simulation experiments for a data-

driven optimization of the breeding program. We found that the

relative increase in genetic gain was even more pronounced for

shorter breeding cycles, especially when considering the medium-

term. For example, reducing the breeding cycle from three years to

two years resulted in a 27% increase in genetic gain, while

shortening the cycle from five years to three years resulted in a

16% gain (Table 3). This difference suggests a non-linear

relationship between genetic gain and breeding cycle time.

According to the breeder’s equation and assuming that the

selection accuracy, additive genetic variance, and selection

intensity are unchanged and equal to 0.4, 1, and 1.75 respectively,

reducing the breeding cycle from five to three years would increase

the gain by 64.3% (Supplementary Figure S6). A breeding cycle

reduction from three to two years would increase the gain by 52%. A
FIGURE 4

Evolution of favorable allele frequencies for each simulated QTL (3000) from the base population to the medium-term (Year 15) and long-term (Year
30). The four breeding schemes and the Baseline are presented, as well as the three levels of genotype-by-environment interaction (GEI) variances:
0 (top panel), 4 (middle panel), and 8 (bottom panel).
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reduction from a two- to a one-year cycle can increase the gain by

100% (Supplementary Figure S6). The impact of reducing the

duration by one year on genetic gain is theoretically small for

breeding programs with a long breeding cycle (8-10 years), but it

becomes increasingly important when the breeding cycle is short (3

years or less). This pattern reflects a law of increasing returns, where

the additional benefits of shorter breeding cycles become

progressively larger. The continuous efforts at IRRI to reduce the

length of the breeding cycle are supported by the results of the 2

years recycling schemes. However, achieving further reductions in

future breeding strategies will require adopting a new and more

efficient speed breeding protocol (Kabade et al., 2024).
4.2 Accuracy of predictions

The breeding strategies using the within-cohort prediction had

the highest rates of genetic gain in the intermediate and high levels of

GEI (Figure 3; Supplementary Figure S3). These higher rates of

genetic gain are mainly related to the difference in the prediction

accuracy between the within-cohort and the between-cohort

predictions. The within-cohort prediction schemes showed the

highest prediction accuracies in all breeding scenarios. Prediction

accuracies are affected by several factors including the genetic

architecture and heritability of the trait, the training population

size, the genetic relationships between training and validation

populations, and marker density (Ahmadi et al., 2020; Asoro et al.,

2011; Heffner et al., 2011; Lorenz et al., 2012; Sallam et al., 2015;

Spindel and Iwata, 2018; Zhong et al., 2009). According to the
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relationship mentioned above between cycle length and genetic

gain, it is more effective to shorten the breeding cycle as much as

possible. Shorter cycles can significantly increase the rate of genetic

gain if prediction accuracies are maintained at a satisfactory level. The

prediction accuracy decreases when relationships between the

individuals in the training set and the selection candidates decrease

(Lorenz, 2013; Lorenz and Smith, 2015). Also, higher broad-sense

and narrow-sense heritabilities are associated with higher prediction

accuracy (Kaler et al., 2022). In this study, only trait heritability and

genetic relationships between training and validation sets are not

fixed parameters between schemes. In the within-cohort prediction

schemes, the training and the validation sets come from the same

population, unlike the between-cohort prediction scheme, where

genotypes from previous cohorts are combined to predict

genotypes from the new cohort. The prediction accuracy of the 2-

Year-BP initially increased, then leveled off, and finally declined

continuously. Improving the genetic gain in the 2-Year-BP could

be achieved by optimizing marker density and updating the training

data using an optimization algorithm for selection, rather than

selecting the most recent cohorts in the training population

(Akdemir, 2014; Akdemir et al., 2021, 2015; Akdemir and Isidro-

Sánchez, 2019; Kadam et al., 2021; Neyhart et al., 2017; Rincent et al.,

2012; Sallam et al., 2015).

In another significant finding, the performance ranking of the

2-Year-BP scheme changed as the severity level of the GEI increased

(Figure 2; Supplementary Figures S1, S2). The 2-Year-BP scheme

showed a decrease in genetic gain of around 47% in the medium-

term horizon from no to high GEI. The accuracy in intermediate

and high GEI did not exceed 0.32 and 0.24, respectively. In contrast,
TABLE 4 Percentage of Quantitative Trait Loci (QTLs) with the favorable allele fixed (frequency = 1) or lost (frequency = 0) at the two time horizons.

Scheme GEI
Medium-Term (15 years) Long-Term (30 years)

Lost (0) Fixed (1) Lost (0) Fixed (1)

2-Year-BP

0 28 39 35 49

4 28 36 35 46

8 28 35 36 45

2-Year-WP

0 35 47 41 55

4 34 43 41 52

8 34 43 41 51

3-Year

0 32 44 40 53

4 31 39 39 50

8 31 39 39 49

5-Year

0 29 39 36 49

4 28 36 37 47

8 28 35 36 45

Baseline

0 16 23 20 29

4 17 22 21 29

8 17 22 22 29
The four breeding schemes, the Baseline, and the three levels of genotype-by-environment interaction (GEI) variance are presented. The total number of simulated QTLs was 3000.
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accuracies of the within-cohort schemes reached a maximum of

0.43 and 0.41, respectively, for intermediate and high GEI. These

results suggest that the between-cohort prediction is more sensitive

to environmental variability. The relatively low prediction accuracy

in moderate and high GEI in this study could be the result of a lack

of connectivity between environments, mainly in the case of the

between-cohort prediction scenario (2-Year-BP). Indeed, a high

GEI leads to a loss of predictive ability of the genomic prediction

model due to a lack of connectivity between environments

(similarities among environments) and between genotypes

(similarities among genotypes). As we know, a lack of correlation

between environments is one of the main characteristics of GEI

(Bustos-Korts et al., 2018; Malosetti et al., 2013). When the pairwise

correlation between environments is negligible or negative, the

observed performance of a set of genotypes in one environment

may be unrelated to performance of the same genotypes or their

relatives in another environment (Malosetti et al., 2013). In addition

to the training set optimization described above, incorporating GEI

and explicit environmental covariables in the prediction model

could further improve the predictive ability in the 2-Year-BP

scenario as demonstrated in many studies (Burgueño et al., 2012;

Lopez-Cruz et al., 2015; Malosetti et al., 2016). However, crop

scientists should take this result with caution and not jump to the

conclusion that 2-Year-BP is highly sensitive to GEI. In this study,

the modeling of the GEI was relatively simple due to the GEI models

available in the tool, which generated a single phenotype for each

genotype, encompassing a main effect, an interaction effect, and an

error across environments. Thus, further research is needed to

investigate the performance of 2-Year-BP with a more realistic GEI

modeling. Using a compound symmetry GEI or, even better, a more

realistic unstructured GEI could give us a better understanding of

how GEI affects between-cohort prediction (Bančič et al., 2024;

Werner et al., 2024).
4.3 Importance of GEI and its implication
for testing strategy

The target population of environments (TPE) represents the set

of farms and future seasons (soil quality, drainage, temperature,

rainfall, daylight, diseases, etc.) in which the varieties produced by a

breeding program will be grown. These environmental factors will

vary considerably due to climate change, making predicting the

future environment less accurate. Thus, one can expect that the GEI

levels will increase for a targeted region. To account for this, we set

the variance levels associated with GEI to be four and eight times

higher than the genotype main effect variance. Currently, the

observed proportion of GEI in the program ranges from 0.7 to

around 0.9, depending on the region and the year. This relatively

low level of GEI is advantageous for implementing methodologies

such as sparse testing, allowing us to make the most of genotyping

information in genomic prediction. An effective sparse-testing MET

design might help to save considerable operational and financial

resources while guaranteeing an optimal level of prediction

accuracy, particularly in the case of the 2-Year-WP scenario

where seed amplification may be compromised by lack of time.
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Indeed, the predictive ability of unobserved lines can be improved

using genome-based prediction models encompassing the genotype

x environment interaction. This approach results in unobserved

genotype × environment combinations that can be better predicted,

reducing the overall cost of MET trials (Atanda et al., 2022; Jarquin

et al., 2020; Montesinos-López et al., 2023).

In the present study, the rate of genetic gain decreased

significantly as the level of GEI increased in all the breeding

schemes (Figure 2; Table 2). This effect of GEI on genetic gain

partly results from the drop in prediction accuracy in intermediate

and high GEI. However, it is interesting to note that, among the

within-cohort prediction schemes, the shortest breeding cycle

schemes showed a smaller decrease in genetic gain with

increasing GEI. For example, from no GEI to high GEI levels, the

2-Year-WP, 3-Year, and 5-Year schemes displayed a reduction of

genetic gains in the medium-term horizon of 19%, 22%, and 25%,

respectively. This decrease in accuracy aligns with other genomic

prediction studies involving GEI, using either simulation or

empirical data (Bančič et al., 2024; Gaynor et al., 2017; Malosetti

et al., 2016). This decrease in accuracy could be related to the

intensity of environmental variability over the years resulting in

genotype-by-year interaction. Thus, fast recycling would help to

capture smaller environmental variations and develop genotypes

that can adapt to short-term changes in the TPE, another advantage

of going for shorter recycling schemes. However, further research is

needed to investigate the impact of early recycling on

GEI mitigation.
4.4 Practical implication for breeding

One component of breeding optimization is reducing the

breeding cycle length to ultimately increase genetic gains. However,

shorter breeding cycles must be achieved while minimizing costs. The

2-Year-WP offers a significant advantage for use in breeding

programs as it is the most efficient in terms of realized gain and in

cost-effectiveness. By reducing the RGA exit to the F3 generation, the

2-Year-WP decreases the RGA cost compared to the 3-Year scheme.

Our results show that the 2-Year-WP costs around 8% less than the

3-Year scheme (Supplementary Table S3). On the other hand, the 2-

Year-BP scheme shifts to predicting untested lines based on previous

data, resulting in a cost comparable to the 3-Year scheme. While the

2-Year-WP scheme is the most effective and cost-efficient, based on

the simulations, its practical implementation is quite challenging. The

activities planned for the second year — RGA, seed amplification,

genotyping, and Stage 1 evaluation — along with the associated time

constraints might cause a delay in the establishment and evaluation of

MET in the regions. The Stage 1 yield trial alone takes roughly 6

months to complete accurately at IRRI headquarters. The seed

amplification step and post-harvest operations take more time. The

fixation stage will need modifications to overcome constraints and

take advantage of this strategy. Therefore, the crosses and the first

generation of the RGA will have to be completed in Year 1, using

speed breeding protocols. Given the constraints associated with seed

shipment, more time will be needed for the Stage 1 evaluation in

regions to ensure data availability.
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5 Conclusion

The most effective way to significantly increase genetic

improvement is by shortening the time it takes to complete a

breeding cycle. In this study, we found that shortening the cycle

from three years to two years using a within-cohort prediction led to

a genetic gain increase up to 27% in the medium term. However,

using a between-cohort prediction scheme to reduce the breeding

cycle could reduce breeding efficiency, especially in the presence of

high genotype-by-environment interactions. Therefore, for

aggressive breeding programs that already have a short cycle

length, further reducing the cycle through between-cohort

genomic selection could decrease the rate of genetic gain due to

lower prediction accuracy. When a breeding program adopts a 2-

Year within-cohort scheme, there is very little time for crossing,

evaluation, and selection processes. Therefore, to implement this

scheme efficiently, the breeding operations process should include

quick seed shipment and clearance, as well as a swift turnaround

time for trial data from partners. Meanwhile, the 2-Year between-

cohort prediction scheme with an optimized training set could be a

good alternative to achieve higher genetic gain when the GEI in a

breeding pipeline is low.
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