Skip to main content

ORIGINAL RESEARCH article

Front. Plant Sci.
Sec. Plant Nutrition
Volume 15 - 2024 | doi: 10.3389/fpls.2024.1488332
This article is part of the Research Topic Harnessing Plant–Microbe Interactions to Improve Nitrogen Use Efficiency and Plant-Soil Health for Sustainable Agriculture View all 3 articles

Lignin-based controlled-release urea improves choy sum growth by regulating soil nitrogen nutrients and bacterial diversity

Provisionally accepted
  • 1 Guangxi University, Nanning, China
  • 2 South China Agricultural University, Guangzhou, Guangdong Province, China

The final, formatted version of the article will be published soon.

    Lignin, as one of the few renewable resources among aromatic compounds, exhibits significant potential for applications in the agricultural sector. Nonetheless, there has been relatively limited research on the effects of lignin-based controlled-release urea (LCRU) on soil nitrogen nutrition and bacterial diversity. In this paper, the impact of LCRU on the growth of choy sum was investigated through a two-season field experiment. The findings suggest that the plant height, stem diameter, SPAD value, and above-ground dry weight under LCRU application surpassed those with conventional urea (CU), increasing by 40.27%, 26.97%, 52.02%, and 38.62%, respectively. Furthermore, the condition that the urea content was reduced by 15% (LCRU15) caused improvements of 24.76%, 26.97%, 43.23%, and 30.86% in the respective variables. Additionally, compared with the CU, the contents of vitamin C, soluble sugar, and soluble protein in choy sum were increased by the LCRU and LCRU15 treatments, and yet no significant differences were observed between the LCRU and LCRU15 treatments. Notably, the nitrogen used efficiency of choy sum increased to 68.90% with the LCRU15 treatment, compared to 64.29% with the LCRU treatment. The levels of soil available nitrogen, NO3 --N, and NH4 + -N were augmented by the LCRU and LCRU15 treatments. Meanwhile, soil urease and nitrate reductase activities were increased by 22.4%-28.6% and 12.3%-14.5%, respectively. Moreover, soil high-throughput sequencing results illustrated that the LCRU15 treatment enhanced the diversity and abundance of bacteria, particularly the abundance of Actinobacteria, Firmicutes, and Cyanobacteria, which can accelerate the decomposition of organic matter. In short, LCRU improves choy sum yield by influencing soil properties, enzyme activity, and microbial communities. These findings are anticipated to offer practical value for the sustainable application of LCRU in agriculture.

    Keywords: Lignin-based controlled-release urea, Choy sum, Growth, Soil nitrogen nutrient, bacterial diversity

    Received: 29 Aug 2024; Accepted: 15 Oct 2024.

    Copyright: © 2024 Chen, Lu, Lv and Sun. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Shaolong Sun, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.